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ABSTRACT

A physical lattice model that approximates a continuous material by reducing
it to a series ofrigid bars and deformable connections is used inthisreport to inves=-
tigate the transient-strain redistribution associa’;ed with a crack propagating through
a rectangular plate.

Equations are developed for equilibrium of the lattice model in terms of dis-
placements using plane-stress conditions. A complete set of equations is given to
cover all cases of boundary conditions that ordinarily would be encountered in appli-
cations of this lattice model. Results of several examples of statically loaded plates
analyzed with the lattice model show excellent agreement when compared with an en-
ergy method solution.

The differential equations expressing the dynamic behavior of the lattice model
are developed, and numerical solution of these equations is discussed. Examples are
given of application of these equationsto a steady-state condition and the calgulation
of natural frequencies of lattice models. Several examples of the transient-strain re-
distribution associated with a crack propagating through a plate in finite jumps are
presented. Two methods of numerical integration that are suitable for transient solu-
tions of the differential equations are described and appliedto the same problem with
resulting comparable satisfactory solutions.

An immense amount of calculationis involved in solving transient strain-wave
propagation problems with the lattice model, and a high speed digital computer is vir-

tually a necessity for numerical solution of problems of any complexity by this method.
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INTRODUCTION

Object and Scope

The purpose of this investigation was to develop a physical model that
would approximate a continuous material and be suitable for the investigation
of transient two-dimensional strain wave propagation. It was desired that this
model be able to represent a crack-type discontinuity in a plate and provide a
picture of the strain redistribution resulting from the release of internally stored
strain energy as a crack is initiated and grows in size,.

The investigation was undertaken as a part of a study of the rapid propa-
gation of brittle fracture in low-carbon steel plates. The mechanics of brittle-
iracture initiation, propagation, and arrest have been the subject of intensive
study for many yvears. Under certain conditions of stress, temperature, rate of
loading, 'type and nature of material, and geometry, low-carbon steels often
fracture in a brittle rather than a ductile manner,

From the structural point of view, the term brittle fracture has become as-
sociated with a fracture that is primarily of the cleavage type, with little appar-
ent deformation, and one that proceeds at a very rapid rate once initiated. Such
a fracture can propagate through a steel plate at velocities of as much as 5000
fps or more. Usually there is no warning of impending failure, and in many in-
stances where no barrier was present to stop a propagating crack, the results
have been éatastropic . !

This rapid brittle fracture in which a crack somehow initiates and rapidly
propagates is the result of an inherent instability of the material. On the basis
of present understanding, the gross situation might be pictured as follows: The
elastic energy stored in the material, while not sufficient to cause general
yielding of the material, may be, below certain temperatures, more than suffi-
cilent to cause cleavage fracture in the zone around the moving crack tip once
the crack has started to propagate. After a rapidly propagating brittle crack is
initiated, there is an intense transient strain field associated with the crack
front. 2

In the fracture zone at the head of the moving cracks, a combination of
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extremely high strain rate and very high tensile stress exists. This combina-
tion of conditions produces brittle fracture of the material in the immediate
fracture zone, and the released elastic energy in excess of that needed to pro-
duce the fracture is carried away from the fracture zone in the form of strain
waves. The velocity of the strain wave propagation is greater than the net
rate at which the crack grows, so that the zone of high strain rate and high
tensile stress extends ahead of the immediate fracture zone. This extension
of the intense transient strain zone ahead of the crack causes additional frac-
turing which releases more energy, and the whole system travels along as a
self-sustaining phenomenon until something brings it to a halt. It is empha-
sized that a comprehensive understand‘mg of the brittle-fracture phenomenon
still does not exist.

A finite model that divides a continuous material into a definite num-
ber of pieces that behave according to certain rules can only provide an ap-

- proximate representation of the continuous material. If the stress or strain
gradients existing in the continuous material are small, the approximation
with even a coarsely divided model will be fairly good. However, if the
gradients are large, a finely divided model is required to provide a good
representation of the distribution of strains.

Representing a cracked plate with a finite model has two important
disadvantages. First, the strain gradients associated with a crack are quite
steep, and a very finely divided model would be required to provide accurate
qualitative information in the vicinity of the crack. Second, the model can
only simulate a crack having a length which is some multiple of the model di-
vision, and if the crack is to extend, it must do so in jumps of finite length.
In spite of these disa_dvantages, an investigation with a model of this type
has value in that it provides to some degree a quantitative picture of strain
redistribution for a propagating crack.

How finely the model is divided depends on the computing facilities
available; because there is an immense amount of calculation involved, solu-

tion of wave propagation problems by this method is contingent upon the
}
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availability of a high-speed digital computer.

Brief Review of Some Mathematical Solutions

A number of mathematical solutions have been devised to find the
stress or strain distribution associated with an elongated hole or crack in
an elastic material. The earliest of these solutions was given by Inglis, 3
who considered the case of an elliptical hole \in a thin plate (where plane
stress or plane strain conditions may be assumed to apply) and solved the
problem in terms of curvilinear coordinates. The limiting case, consisting
of the minor axis of the hole going to zero, represents the solution for a
plate containing a crack having a length equal to the major axis of the hole.

By using a complex variable stress function, Westergaard4 arrived
at the same result as Inglis but in a more easily treated form. Westergaard's
method also covers cases of cracks subject to splitting forces, internal pres-
sure, and several other situations.

Griffith5 investigated the cracking phenomenon and derived an equa-
tion for the length of a crack that would become unstable in a brittle material.
Griffith's theory considers the strain energy stored in a material and deter-
mines the stability of a crack of given length by comparing the decrease in
strain energy resulting from the formation of the crack with the work required
to form new crack surfaces in the material. When more strain enérgy is re-
leased than is required to form new crack surfaces, the crack becomes un-
stable and should grow in size,. Orowan6 extended Griffith's theory to the
case of cracks in steel by replacing the surface tension term with a plastic
work factor, and Ilrwin7 showed a parallel for certain ductile materials,

Neuber8 developed methods for computing stresses in notched bars
and presented a cracking mechanism theory. Irwin,g using Westergaard's
method, expressed the stress environment at the end of a crack in terms of a
"crack extension force" for plane stress or plane strain conditions. McClintock10
considered a crack within a field of uniformly applied elastic shear stress and
calculated the plastic field at the crack root as well as the general elastic

stress field.
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All of the solutions which have been mentioned so far considered
stationary cracks. I\/Iot‘c11 extended Griffith's theory and suggested that
the expression for balance of energy should contain a term including the
kinetic energy of the material as well as available elastic energy and sur-
face tension. Through the application of dimensional aﬁalysis, Mott ar-
rived at an expression containing a kinetic energy term. Roberts and
Wellslz used Mott's work as a starting point, Westergaard's solution for
the kinetic energy distribution of the material and the distance a stress
wave could extend away from the crack tip as limited by the velocity of
longitudinal elastic waves to arrive at a limiting velocity for a ¢rack propa-
gation in an elastic material.

Yoffe13 considered a moving Griffith crack of constant length 2a
translated at a constant velocity through an infinite plate. This steady-
state solution was based on elastic surface waves and Westergaard's
static solution. It was concluded that a critical velocity exists beyond
which a crack will tend to curve or form branches.

Only a few of the more prominent references pertaining to the stress
or strain distribution associated with a crack have been mentioned here.
Since the report is concerned with the development of a method for calcu-
lating transient strain effects associated with an extending crack, no at-
tempt has been made in this brief review to give a comprehensive survey
of published literature. The few references reviewed here are only in-
tended to provide background information on available solutions for the

stresses and strains associated with cracks in plates.
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Notation

The notation that follows has been adopted in this report. Each
term is defined when first introduced but is summarized here for conven-

ience,.

B
i

Matrix of stiffness coefficients

= Acceleration

= o T = B < W o B N =R
I

Mass matrix

=  Amplitude

= -(1- vz)/Ed

Plate thickness

= Young's modulus = 30 x 106 psi for all examples
= Extensional force

= Shear modulus = E/2(1 + V)

= Integration time interval

—-
1l

Variable subscript

Variahle subscript

e
It

Mass

=
H

= n-th bar, n-th time interval, etc.
= (Concentrated load or load factor for parabolic load
Natural frequency = w/2«

= Shear force

|2 L V5 B> B v B
1l

= Period of vibration
t = Time
u = Displacement in x-direction

v = Displacement in y-direction
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KX = Body force in x-direction

sl
T

Body force in y-direction

Direction of axis or variable

b
i

= Direction of axis or variable
= Undetermined coefficient
Parameter used in Newmark method of integration

= Shear strain

o < W a w
I

= Phase angle

Extensional strain

™M
1]

P
1

Grid or bar spacing, eigenvalue
= Poisson's ratio = 0,30 for all examples

Extensional stress

A g <
1l

= Shear stress
= Alry stress function
Stress function in energy method

= (Circular frequency

a4 g <= o
11

= Biharmonic operator

A MODEL FOR STUDIES OF TWO-DIMENSIONAL WAVE PROPAGATION

General

Sdmetimes it is necessary to resort to an approximate method in order
to investigate the strain and stress distribution in a body. Among the approxi-
mate procedures previously used for the investigation of two-dimensional elas-
ticity problems, which are not readily treated by exact methods, are finite dif-
ferences and physical analogies such as lattice, bar, or framework methods.

Usually the lattice or framework methods used for solution of two-
dimensional problems involving plane stress or plane strain conditions can be
shown to be the physical representation of the finite difference formulation of
some set of elasticity equations. Even though there is an equivalence between
the finite difference procedure and the lattice analogy procedure, each of these

methods can be derived independently and each is subject to certain peculiari-
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ties. The use of a physical model is convenient because the model provides
something which is easily visualized and facilitates the treatment of difficult
boundary conditions.,

Hrennikoffl4 and 1\/Ic:Henry15 have described the development and ap-
plication of several lattice* or framework analogies for solution of two-dimen-
sional static elasticity problems. Their analogies consist of replacing a plate
of continuous material with a network of elastic bars, pin-connected to each
other at the ends, to form a lattice whose deformation in any direction under
any form of loading duplicates thé deformation of certain points on the original
plate. Any distributed loading acting on the plate is replaced by statically
equivalent loads acting at joints of the lattice. Each bar forming the lattice is
considered as an elastic member, and the areas of these bars are selected so
that there are identical deformations at a certain number of points in the con-
tinuous plate and the analogous lattice. One peculiarity of the lattices de-~
scribed by Hrennikoff and McHenry is that the value of Poisson's ratio must be
taken as one third in order to satisfy identically equilibrium and compatibility
conditions. Hrennikoff suggests several lattices that may overcome this dif~-
ficulty; however, the use of these lattices would be quite cumbersome.

The lattice model developed in this report is shown to be the physical
analog of an Alry stress function expressed in terms of finite differences. The
report describes the lattice model, as well as the correspondence between the
model and continuous plate that it replaces. The equations of equilibrium for
the lattice model are developed in terms of Airy's stress function, and the
stress-—strain relationships of linear elasticity are then used to develop equi-

librium equations in terms of displacements of the lattice model bars.

Description of Model

The particular model used for this investigation of two-dimensional wave

propagation and to represent a crack-type discontinuity was -suggested by Dr.

#*The term "lattice" or "lattice model" will hereafter be used to refer to a
physical model made up of a system of bars and is to be considered to include
the terms “"bar" or "framework."
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N. M. Newmark. This model replaces a thin plate with a number of dis-
crete units composed of rigid bars, each having a definite mass, which are
linked together through massless deformable connections. Displacements,
deformations, and forces in the lattice model formed by the discrete bar
units are made to agree as closely as possible at definite points with the
displacements, deformations, and forces at the equivalent points in the
thin plate that the model replaces.

In order to illustrate and identify different parts of the model easily,
it is convenient to use a schematic drawing. Such a schematic drawing of
a model that replaces a square plate is shown in Fig. 1., The model illus-
trated divides the original square plate into sixteen square units having a
width of X on each side, where A equals the plate width divided by the num-
ber of units (four) into which the plate width is divided. It will be assumed
that the dimensions of any rectangular plate to be represented with this model
are such that the plate can be divided into some number of square units. Each
unit of the model is composed of four interconnected rigid bars which are drawn
to a convenient width in Fig. 1 for ease of visualization. In an undeformed
condition, the lattice of bars forming the model are either parallel or perpen-
dicular to each other and have their centerlines spaced atithe distance \.

A system of notation is needed to describe the lattice model andreadily
ide_ntify different lattice model parts and their locations. The system of nota-
tion used is shown in Fig. 1 and consists of a grid of lines parallel to the in-
dicated x- and y-axes. The lines are spaced at a distance of A/2 and are ar-
ranged so that in the undeformed lattice model these lines either form the cen-
terline of bars or pass midway between the bars. Each bar is then bisected by
two lines, one formi_ng the centerline of the bar and the other laterally dividing
the bar length into two equal sections. Starting at the lower left-hand corner
and proceeding in the positive direction of the x- and y-axes, the lines form-
ing the bar centerlines are assigned numbers. The remaining grid lines, situ-
ated between bars, are similarly assigned letters. If the numbers and letters

are used as x- and y- coordinates, the point formed by the intersection of any
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FIG. 1 LATTICE MODEL OF RECTANGULAR PLATE

two grid lines can be identified with a combination of letters, numbers, or a
letter and a number. Only points formed by the intersection of grid lines are
considered to have meaning in the lattice model, and when reference to such

a point is made, it is done so by either giving the appropriate letters and num-
bers or using them as subscripts of terms defined at that point.

The following definitions are used with the lattice model as shown in
Fig, 1.
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bar

displacement
point

node

shear point

extensional
force F
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Spacing between lattice model bars

Thickness of plate represented by the lattice model.
Displacement of a point, from the initial position in the
lattice model, in the x- and y-directions, respectively.
Positive displacement is in the positive x~ or y-directions,
A rigid bar drawn to any convenient size for purposes of
illustration. The mass of each bar is equivalent to a sec-
tion of plate having the dimensions )\2 d or de/z depend-~
ing upon whether the bar is in the interior or at the edge of
the model. A typical interior bar is b-3 and a typical edge
bar is 5-b.

The point at the center of a bar coinciding with the inter-
section of two grid lines. Displacement is only defined at
these points and is in the direction of the x- or y-axes.

This is the displacement u or v and the bar referred to is
identified by letter and number subscripts such as ub3 for
displacement of bar b-3.

A point at the intersection of two or more bars. All exten-
sional deformation or strain and associated extensional
forces or stresses are concentrated at the node points. For
illustrative purposes, the nodes are drawn as small squares
the same width as the bars such as node 3-2.

A point midway between the bars making up the lattice model,
All shear deformation or strain and associated shear stresses
and forces are concentrated at these points. A typical shear

point is ¢-b.

A force which acts on the end of and along the axis of a lattice
model bar. This force is the statical equivalent of the force
acting across a section of the plate that the bar replaces. Posi-
tive force, positive stress (7, and positive strain € are associ-

ated with a linear extension of a piece of elastic material. The
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extensional forces are applied to bars at node points.
shear force S - A force that is applied to a lattice model bar at the dis~
placement point whose lines of action are along the axis
of the bar. This shear force is the statical equivalent of
the shear force acting along a section of the plate replaced
by the bar. Positive shear force is associated with posi-
tive shear stress and strain as defined in books on theory
of elasticity, for example, as in Timoshenko and GOOdief}é’
body force -~ Force resulting from gravity or any other time independent ef-
fect. A body force is considered to act at the displacement
point and along the axis of a bar. Body forces in an x-direc-
tion are denoted by X and body forces in the y~direction are
denoted by Y. The positive direction of a body force is in a
direction opposite to the positive direction of the x- and y-
axes.

Deformation behavior of the continuouz plate is approximated in the
lattice model by stretching or compressing the deformable nodes for extensional
strains and changing the angles between bars for shear strain. The shearing re-
sistance of the lattice can be visualized as a set of elastic rods connecting the
bars at their deformation points as shown in Fig. 2, or as a four-armed spring
device that opposes changes in the angles between its arms, which are con-
nected to four-bar displacement points, as shown in Fig. 3. The four-armed
spring is used in Fig. 1 because it is easier to visualize,

Typical interior bars such as b-3 and 3-b in Fig. 1 are taken as free
bodies in Figs. 4 and 5 to show the forces that could be acting on the bars..
The line of action of all the forces actually must pass through the displacement
point at the center of the bar-~the shear forces are drawn at the sides of the bars
for clarity. The directions of the forces as shown are for positive strains and a

positive body force.

Equilibrium as Related to the Airy Stress Function

Equilibrium of the model can be developed in terms of finite differences
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of Airy's stress function. Such a development shows that the lattice model can
be thought of as a finite physical representation of the Airy stress function
method for solving an elasticity problem.

The general solution to an elasticity problem must satisfy three sets
of equations: equilibrium, compatibility, and boundary conditions. Simplify-
ing assumptions are made regarding one of the displacements or one of the
stresses to obtain the plane strain or plane stress conditions and thereby re-
duce a three~dimensional problem to one of two dimensions.

The Airy stress function has been shown16 to provide a convenient so-
lution for problems of plane stress or plane strain. If a function¥ d)(x, y},which
hereafter is called the Airy stress function, satisfies the biharmonic equation
V4 ¢ = 0, then the equilibrium and compatibility equations are exactly satis-
fied for plane strain conditions and approximately satisfied for plane stress
conditions. The approximation in plane stress problems occurs because for

XZ

T are independent of z, These assumptions imply that ex, ey, ez, and vy

are independent of z and that sz and sz are zero. The compatibility equation

plane stress conditions it is assumed 0‘Z =T = Tyz = 0 and that O‘X, Uy, and

#*Unless otherwise noted the symbols for stress, strain, and the Airy stress

function are the same as those defined in Theory of Elasticity by Timoshenko
and Goodier. 16
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2 2 2 2 2
= 1
3 eX/By + 9 ey/ax 3 ny/axay (1)

is then satisfied by the strain components €0 ey, and ny; however, in
the general three-dimensional case there are five other compatibility
equations which must be satisfied with the above assumptions. All five
of these remaining compatibility equations are satisfied only if €, is a

linear function of x and y. The strain €, must satisfy the condition

e, =V(0_ + ny)/E=ax+ by + ¢ (2)
where a, b, ¢ are constants.

This condition is not always satisfied in plane stress problems.
Generally, for such problems, sz’ sz’ and 0'Z are different from zero
and vary through the thickness of the plate. It is shown in Timoshenko
and Goodier, 16 however, that for thin-plate problems the solutions ob-
tained from the plane strain approximation to the plane stress problem
are reasonably good approximations to the "exact" solution. It will be
assumed in this report that the plates considered are thin enough so that
a satisfactory plane stress solution will be obtained from an Airy stress
function that satisfies Vo ¢ = 0.

When a stress function d)(x, y) is known for a particular problem

the stresses are found from the following relations.

0 = 3% ay" (3.1)
X
o, = 82¢/Bx2 (3.2)
T =- a?‘cb/axa (3.3)
Xy Y '

One interpretation of the stress function cf)(x, v) is to consider this func-

tion to represent a three-dimensional surface extending over the plate.
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The stresses can then be interpreted as being represented by the curvature
or twist of this stress surface.

Assume some stress function that satisfies both V4¢ = 0 and the
boundary conditions is known for a rectangular plate subject to some form
of loading. If the magnitude of the stress function at any point is repre-
sented by an ordinate perpendicular to the surface of the plate, these ordi-
nates will form a three-dimensional stress surface over the plate. As the
plate is to be represented by a lattice model, it is marked with a grid of
spacing A as shown in Fig. 1. Equilibrium of a typical lattice bar will now
be shown to exist by using finite differences of the Airy stress function.

Consider a typical bar of the lattice model (shown in Fig. 1) such
as b~3 which extends in the direction of the x-axis. Neglecting the body

force there are four forces which act on the bar. These forces are F d

23 an

33’ corresponding to extensional forces in the plate, and Sbc and Sbb’

corresponding to shear forces in the plate. All of these forces acting in

F

their positive directions are shown in Fig. 4.

Each of the forces acting on bar b-3 represents the total force in a
section of plate having an area Ad. If 0'};3 is considered to be the average
stress in the x-direction of a plate section extending from point 2-c to
point 2-b, which the bar b-3 replaces, the bar force F;{3 is given by the re-
lation

-

X
>3 Uz3kd (4)

In the lattice model the stress (T;{B is at point 2-3. Defining the stresses

X
0“33, Tbc’ and Tbb as the average stresses along a width of plate replaced

by the lattice bar, the remaining three forces are given by the relations

X
Fiq= Uy, Ad (5.1)

Spe = Tpe M (5.2)
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= 5.3
Sbb Tbb M ( )
In order to have a state of equilibrium for the bar b~3, the following equa-

tion must be satisfied.

oo 48 -8 =0 (6)

Referring to Egs. 3 it can be seen that the plate stresses can also
be expressed in terms of finite differences of the Airy stress function. The
same grid points are used for the finite difference equations as are used for
the lattice model (points 2-4, 2-3, etc.). Denoting the value of the stress
function at the grid points by a subscript, the plate stresses in terms of fi-

nite differences are given by the following equations:

2

053 (9 = 29,5+ 4,50/ (7.1)
03 = (g = 2455+ ‘t’azvkZ (7.2)
Tpe = (Gpg 7 435 434 —¢23)/x2 | (7.3)
Tpp = ($p3+ #3, ~ ¢33 cﬁzz)Ai2 (7.4)

The stresses expressed in terms of finite differences are taken to be
the average stresses in a width of plate equal to the grid spacing A. If the
stresses given by Egs. 7 are substituted in Eqs. 4 and 5, the lattice model
bar forces are given in terms of finite differences of Airy's stress function

in the following equations:

X
o= d(dyy = 24,51 ¢,,)/2 (8.1)
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X
Fag = d(¢34 - 24’33"‘ 4’32)/>\ (8.2)
Sbb =d (CbZS + c1)32 - 4’33 - d’zz)/X (8. 3)
Spe = A4y F ¢s5 - $oy - ¢23)/X (8. 4)

When Eqgs. 8 for the bar forces are substituted in bar equilibrium Eq. 6, the

following identity is found showing that Eq. 6 is satisfied.

d[¢24 T 2,5t Gy~ byt 2955 - dg, 4,5+ by

T9y3 by by byt gyt ct’;33]/K =0 (9)

An interior lattice model bar is therefore in equilibrium in terms of finite dif-
ferences of an Airy stress function, which is a sclution for the particular

problem considered. Because the model is related to an Airy stress function
that satisfies the equilibrium and compatibility conditions, the model satis-
fies the biharmonic equation in finite form in addition to the equilibrium and

compatibility conditions.

Equilibrium Equations in Terms of Displacements

Static equilibrium of the lattice model can be expressed in terms of
displacements by relating strains in the lattice model to the stress-strain
relationship of classical linear elasticity. In the lattice model, strains are
calculated from the differences in displacements of adjacent bars divided by
the original distance between the displacement points of the bars.

The extensional strains at some typical extensional deformation point |

in the lattice model, such as deformable node 3-3, are
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e§3=[uc3—ub3]/X (10.1)
€§3 ) [V3c ) V:«s}a]/A (10.2)

Shear strains, which are the changes in values of an originally right angle in
the unstrained state, are defined in the lattice model in terms of the displace-
ments of four points surrounding the point at which the shear strain is calcu~

lated. Thus, for a typical shear point in the lattice model such as b-c the
shear strain ig

be :[ubﬁl T Up3t Vi T VchA (11)

The stress-strain relationships for linear elasticity and plane stress

are given by the following equations:

- 2

0'X=E[ex+ vey]/(l—v ) , (12.1)
“E _v?

7, Ley+ \)ex]/(l va) (12.2)

Ty = G Yy (12.3)

where

E = Young's modulus

G = Bhear modulus = E/2(1 + V)

vV = Poisson's ratio
When the lattice model strains in terms of displacements are substituted in
Eqs. 12 for stress, the stresses in the lattice model in terms of displacements

are given by the following equations for extensional node 3-3 and shear joint
b-c.

- 2
cr§3 = E [_ucB Vv, - v3b)]/x(1 - VA (13.1)
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T :G’[“bax'ub3+"3c"’;ac]/x (13.3)

Each of the forces acting on a typical bar can be expressed in terms of
displacements by substituting the stress given in terms of displacements into
the relations F = 0Ad and S = TAd. If the forces expressed in this manner are
substituted into the equilibrium equation for a lattice model bar, the equilibrium
equation will then be formulated in terms of displacements. The equilibrium
equations will hereafter also include the body force terms Xor¥Y.

The equilibrium equation for the typical interior lattice model bar b-3 is
F._-F._+8,~-8 +X=0 (14)

When the forces in Eq. 14 are formulated in terms of displacements the follow-

ing equilibrium equation results.

2 : - 2
Ed[“m S uggt VY, T VZb):'/(l "V EdL”cs T Upg WVt Vay) J/“ =)

>

e vzb]— Gd[ub4 StV - vchJr =0 (15)

Substituting the relation G = E/2(1 + v) and simplifying leads to the equation

pe T Upa!

Ed[(B SV w - -, 1/2 (1 Vi

+ l/2(1+\))(v20-v2b+ v3b—v3c):l/(1-\)z)+'}_(=0 (16)

This is the equilibrium equation for bar b-3 in terms of displacements with

body-force terms not enumerated. Similar equations can be found for other
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FIG. 6 DISPLACEMENT—EQUILIERIUM EQUATION FOR

x-DIRECTION INTERTIOR BAR FIG. 7 PHISICAL REPRESENTATION OF BOUNDARY DISPLACEMENT

interior bars extending in the horizontal or vertical directions.

Because the form of the equations is the same for all internal bars, with
only the subscripts changing, it is convenient to represent the equations in a
schematic form. This is accomplished by making a line drawing consisting of
only the centerline of the bars whose displacements enter into the equilibrium
equation (Eq. 15) and marking the displacement points on the centerlines atthe
appropriate points. The coefficients of each displacement point are written
next to the corresponding displacement point on the line drawing. A cross mark
is drawn at the displacement point of the bar to which the equilibrium equation
applies. Then if this skeleton line drawing is imagined to have the same scale
as a lattice model and is superposed over any interior bar with the cross-marked
point over the center of the bar, the coefficients would be placed next to their
proper displacement points. The equations may also be multiplied by (1 - vz)/Ed
or some other constant, so these terms do not have to be carried with each co-
efficient. The equilibrium equation in skeleton form for a typical interior bar

running in the x~direction is shown in Fig. 6.

Boundary Conditions

Boundary conditions for the lattice model must be established such that
the bars along the boundary are in equilibrium and provide a satisfactory repre-
sentation of the boundary conditions in the plate represented by the lattice
model. The types of boundary conditions to be considered are (1) free

edge with or without applied loads, (2) edge given a specified dis-
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placement, or (3) any combination of these two conditions.

Consider a typical section along the boundary of the lattice model
as shown in Fig. 1. In order to provide a smooth boundary for the model, a
displacement point must be defined on the boundary with the displacement
taking place perpendicular to the boundary. If a physical interpretation of
this displacement point is desired, it can be imagined that there is a small
plate placed over the deformable node on the boundary as shown in Fig. 7
and that a displacement point is defined at the midpoint of this plate. Any
normal components of leads acting on the boundary will be applied through
this point. AIf the normal components of the locads are distributed along the
boundary they are concentrated into statically equivalent loads using the
Newmark formula for equivalent loads. 17 If the nérmal components of the
loads are concentrated forces that fall between boundary displacement
points, the forces are distributed to the displacement points on each side
of the force. Boundary loads that do not act perpendicular to the boundary
are resolved into normal and tangential components, which are then con-
centrated into statically equivalent forces., These statically equivalent
forces act through the displacement point of the bar parallel to the bounda-
ry if it is a tangential force and at the edge displacement point if it is a
normal force.

With the boundary displacement points just described, the strains

in a deformable node along a boundary such as node 5-3 in Fig. 1 will be

er - z[uss-ud3]/x (17.1)
€§3: [‘%a""Sb]A (17.2)

Shear strains along the boundary of the lattice model expressed in terms of
displacements are not directly affected by the boundary conditions.
When the edge of the plate is free to move but has some distribution

of loading in the form of normal and shear stress along the boundary, the
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plane stress elasticity stress-strain condition at a y-direction boundary is

g =

2
= Y -V 18.1
X O~Boundary E(ex + ey)/(1 ) ( )

2
0, = Ele + Ve )L =) (18.2)

or, because boundary stress only is specified,

g = 0 - ve (19)

Substituting Eq. 19 in Egq. 18.2, we have

l—\)2

g =E[e + v
b4

2
. o, - \)ey)]/(l V) = Be + VO (20)

The forces applied to bars on or terminating at the boundary would be

F= kdﬁx = Equivalent Concentrated Normal Force (21.1)

F :%Eef\)%ﬁx#ﬂd : (21.2)
where

Ex = Average uniform normal force equal to the concentrated force

found by applying the Newmark parabolic formula divided by Ad

T = Average uniform shear force applied to the boundary

Equilibrium of a bar that intersects the boundary, such as bar d-3 in
Fig. 1, can be written in terms of displacements and equivalent concentrated
boundary loads. Substituting the expressions for strain in terms of displace-
ments into the appropriate bar force equations and writing the equilibrium con-

dition in terms of these forces gives the equation
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Ed[u -u_,+ vv

2 x
a3~ Ye3 4c_v4;b)J/(l_v)_F53

+GdLu ~Uu,. .+ Vv

ds ~ Y4z 5b_v4b]

—Gd[ud4-ud3+v5c_v4c:|+x=o (22)

or, by substituting G = E/2(1 + V) and combining,

Ed

]
2[(2 T UNGs T U gt S VY, - vy )

-F._+%X=0 (23)

This equation is shown in skeleton form in Fig. 8. Equations for bars of the
same type but of different orientation will be presented later.

A bar lying along a free edge would be one similar to bar 5-b in Fig 1.
Considering the equilibrium of the bar in terms of forces and then expressing
the forces in terms of displacements or concentrated boundary loads gives the

equation

+T=0 (24)
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where any tangential boundary force is in- -H3)
cluded in Y. This may be rewritten as | P .
-1 +{2-y) [
- @ ' (% + % - Fi ]- 0
Ed[(s + 2 - (1 V)V + Vg )+ U, @ @ +ElfR - L)
F -3{(1+v) 4 +H{1-v)
X X
-ug, - v4b:| + UL+ V)(Fy, - Fa) )
FIG. B BKELETON EQUATION FOR BAR INTERSECTING
+21+¥=0 (25) A FREE BOUNDARY

®
This equation is shown in skeleton form in

Fig. 9.

Should the x-direction boundary dis-

-( 1+v)

+1

placement be required, this could be com-

W H3av) o+ E"‘—d [v(1+v)(y*;2 - 5“5‘5

)
puted with the following formula: v 2) T] - e

2 1 (1)
. 1[1 vt ox
Y53 7 Y43t 3| TEq 53~ YVg, ®
FIG. 9 SKELETON EQUATION FOR BAR AIONG A
- v5b)] (26) FREE BOUNDARY

A second boundary condition, which for convenience is called here the
fixed-edge condition, is the case where boundary displacements must be in-
cluded in the equilibrium equations. This condition occurs when a boundary is
given an initial displacement and then held fixed, or when it is desirable to
find boundary displacements as a result of loading elsewhere in the plate.

When the boundary displacement is considered for a bar suchas d-3(Fig. 1),
which is perpendicular to the edge, the equilibrium equation in terms of dis-

placements is

Ed[ud_,’ - U, VY, - v4b)J/(l _v%y - Ed[Z(u53 - ug,) + Ul - v5b)J

(27)
2 —
/1 - v3) + Gd[ud3 -, Vg - v4b]- Gdl:ud4-ud3+ ve, - v4c]+ %= 0



-24-

-ﬁ(l-v)
T—'—’ or
+ +H{1+v) 4 -H1w) -
Ed l:
—_——é— (4 U)U.d3 u \Y

1
9 R g c3t 3 (1T VNV~ Yy,
N Y ¢

-L - 1+v) + +H1+wv)

1
(1) -~ -] - -
i o Veo T Vgp) T 3 (1 =VHU U Zu53]
FIG. 10 SKELETON EQUATION FOR BAH INTERSECTING
A FIXED BOUNDARY + 3’2 = 0 (28)
—+——9

4+——Mxed Boundary

This is shown in skeleton form in Fig. 10.

-+ 1 tv

2 " The boundary force resulting from
+2 =0
the specified displacement of boundary point
| 1" 5-3 is

FIG. 11 SKELETON EQUATION FOR FIXED BOUNDARY POINT X

FBounda]ry - P5 3

(29)

!

and can be found from the calculated dis-

placements as follows:

Y R (30)
Ed
X Ed
537 T2 (2055 = g+ - |
} -1
)\ If it is desirable to calculate the displace-
FIG. 1z SKELETON EQUATION FOR BAR ALONG ment of a point along a boundary, an equa-

A FLEED BOUNDARY tion must be written for this point in the

same manner as those written for bars. Equation 30, which is the equation for
the boundary point, is shown in skeleton form in Fig. 11.
When the additional displacement points are included for a bar such as

5-b which is lying along the boundary, the equilibrium equation will be

Ed Ed
- Voo ™ Vot 2V 57 Ugg) [+ Gy,

(V5™ Vaa ™ 22005, 7 v, |- )

~ud2+v5b—y4b]+y=o (31)
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or

v - - -V Y = 3
S (14 V)(u g, - ) - (1 )v4b:l+Y (32)
This is shown in skeleton form in Fig. 12,

Similar equations can be developed for bars having a different orien-
tation forming the corners of the lattice model. Because development of these
equations is just a repetition of the methods already illustrated, only the re-

sults will be given in a later section of this report.

Representation of a Crack-Type Discontinuity

A crude representation of a crack~type discontinuity may be made in
the model by considering certain of the rigid bars to be split down the middle
and attached at their ends to the extensionally deformable nodes. This re~
quires that the shear stress on each side of the discontinuity be the same so
that the displacements of the midpoints of the two halves are identical, or,
in other words, so that no shear stress can be transmitted across or exist on
the surface of the crack.

The requirements of equal shear will be satisfied if the axis of the
crack extends along a line of symmetry in the plate. Thus, the axis of the
crack could extend along the centerline A-A of the plate shown in the upper
part of Fig. 13, Minimum length of the crack is one lattice spacing for an
edge crack or two lattice spacings for an interior crack. The actual formation
of the crack takes place because of a separation or fracture of the extension-
ally deformable nodes, with one-half of each node remaining with one bar
half, as shown in Fig. 13.

By using the assumption of zero shear on the crack surface, it is pos-
sible to write displacement-equilibrium equations that satisfy the boundary

conditions for the bars forming the crack. First consider a lattice model rep-
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the edge up to node 2-1.

FIG. 13 MODEL REFRESENTATION OF A CRACK

resenting a cracked plate as shown in Fig. 13.

Here the crack extends from

Both halves of each bar will be considered to con-

split bar forming the end of a crack such as b-1 in Fig. 13 will be

tribute equally to each equilibrium equation and to have identical displace-

With both surfaces of the crack free from loads, the equilibrium of a

(33)
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When expressed in terms of displacements, (1)

it becomes

Ed [
- v(z :I— d[u
5191 T Yar T VEVRe) T BN :
1 -V Symmetrical i .
About ¢ 1 L4 (e 2]1_‘0
| | £d
¥IG, 14 BKELETON EQUATION FOR BAR FORMING THE
B ule_ 2Gd[ubz - ub] + V3a - VZa:I END OF A CRACK
- _(Lwl -
+X=0 (34) r-o
which can be simplified to the following ) +(5+?V) '(M)
'—---l—-—S—v———)é——vv———-v———-
relation: Symetrical — | '
About ¢ . \
Ed FIG. 15 SKELETON EQUATION FOR BAR FORMING BURFACE

2
2[(3—1/—1) )ubl - ual—i-(l-rl/)v2

a OF A CRACK
1-v

) . 2 *f4
(1= )y, = v5) = =¥ | a :
_(1+v) *((\Ew)
+X=0 (35) r—*l*lﬂ'-' 3~
Symmetrical | 1
About ¢ i :
This is shown in skeleton form in Fig. 14, FIG. 16 SKELETON EQUATION FOR BAR FORMING SURFACE

OF A CRACK AND INTERSECTING 4 FREE EIOE
A bar forming the surfaces of the

crack but not at the tip or intersecting a boundary is one such as bar ¢-1 in

Fig. 13. The equilibrium equation for this bar in terms of displacement is

Ed[ucl - ubl] - _Ed[udl B “cl]' ZGd[“cz T Ue1 T V4a T V3a]+X= 0 (36)

or

Ed

u [(3+ 2v)u_ | = (L V(o) —ugg) < gy Vot v3a]+X= 0 (37)

a1
This equation is shown in skeleton form in Fig. 15.

A bar forming the surface of the crack and intersecting a free edge is
one such as bar d-1 in Fig. 13. The equilibrium equation for this bar in terms

‘of displacements is



X —_
Ed[udl - ucl:‘_ Fgp ™ ZGd[udz T Ugp t Vs T V4a] TXx=0 (38)
or
£d _—
1+u[(2+”)“d1 -+ “dz‘v5a+"4a]" Fop+X= (39)

This equation is shown in skeleton form in Fig. 16.

Because the surface of the crack is the same as an unloaded free edge,
bars that terminate at this boundary (such as bar 3-a in Fig. 13) have the same
equilibrium equation as a bar that terminates at a free boundary. Similarly a

bar such as 5-a in Fig. 13 is the same as a corner bar along a free edge.

Summary of Static Equilibrium Equations for the Lattice Model

Using the assumptions of plane-stress conditions, equilibrium equa-
tions in terms of displacements have been developed in previous sections of
this chapter for several bars forming various parts of the lattice model. In
each case an equation was developed for a particular bar having a certain
orientation and using the notation, as shown in Fig. 1, for displacementpoints
involved in the equilibirum of the bar. After the equation was developed in
terms of definite displacement points, the equation was expressed graphically
in a skeleton form so that the equation can be universally applied to any other
bar of the same type and orientation.

When the lattice model is used for the approximate solution of thin
plate plane-stress problems, the plate is replaced by the model. Solution of
the problem is thus reduced to solving for stresses and strains in the model,
which approximate the stresses and strains in the plate. The first step in the
analysis is to determine the number of units (and therefore the number of bars)
in the model. After the number of bars is known, one equilibrium equation, ex-
pressed in terms of displacements, is written for each bar of the lattice model.
Solution of the set of bar equilibrium equations determines the bar displace-
ments for the particular beundary and loading conditions specified. Strain and

stress can then be calculated in the lattice model, at points where these quanti-
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ties are defined, from the bar displacements.

Displacement-equilibrium equations are therefore required for every

type of bar, boundary condition, and bar orientation that may be encountered

in solving problems with the lattice model. A summary of bar equilibrium

equations for most of the conditions that may be encountered in solving static

problems with the lattice model is given in Figs. 17 to 60 in graphical skele-
ton form. Derivation of these equations (except for cases derived in preceed-
ing sections) is not given because of space limitations and to avoid repetition.

Some of the equations in Figs. 17 to 60 have been multiplied by a constant so

that the matrix of coefficients of the unknown displacements for any set of

these equations, written for a particular lattice model, will be a symmetric posi-

tive definite matrix.

The standard notation used in Figs. 17 to 60 is 15 follows:

D=-(1- UZ)/Ed

F = Statically equivalent concentration of forces applied at a boundary
displacement point which is marked with a capital letter and which
is also used as a subscript of T to indicate that ' has been applied.
A superscript x or y is also used to indicate in which direction the
force acts.

X and ¥ = Body forces acting on the section of plate replaced by a bar. Sur-
face forces and tangential components of boundary loads are includ-
ed in the body-force terms.

As previously explained, the graphical skeleton form of illustrating an

equation utilizes only the centerlines of bars involved in the equation. A

cross mark on one of the centerlines indicates the bar to which the equation ap-

plies. If a scale drawing of the model is made and the skeleton equations are

drawn to the same scale, the skeleton equation for a type of bar could be super-
posed, physically or by imagination, over any bar of the same type and orienta-
tion. Th.e coefficients on the skeleton equation are then placed next to the proper
displacement points on the lattice model and their identification can be made.

Hereafter only the centerlines of lattice model bars will be drawn in the
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figures, and the simpler notation of assigning a number to bars, nodes, and

shear points will be used. A few comments pertaining to groups of equations

which apply to various boqndary conditions are given below.

Figs. 17 and 18 - Equations applicable to all interior bars of the lattice model.

Figs. 19 and 30 - Equations applicable to edges of the lattice model that are
free to move but may have applied loads.

Figs. 31 to 47 - Equations appiicable to boundaries that are fixed in position,

or to some combination of fixed and free edges.

Figs. 48 to 55 Equations applicable to points in the lattice model that are
at lines of symmetry.

Figs. 56 to 59

Fquations applicable to points on or adjoining a crack.

Fig. 60 ~ This equation is a sample equation of the type that would ap-
ply if residual stress was introduced in one of the nodes of
the lattice model. The internal force resulting from the residu=~
al stress is FY .
res.
NUMERICAIL RESULTS FOR STATIC LOADING
Ceneral

Analyses of several cases of rectangular plates involving several different
boundary conditions are presented in this chapter. A comparison is made, in one
case, between the lattice-model analysis and the solution of the same problem
with an energy method. Several of the examples analyzed also indicate the effect
of changing the number of divisions, or "fineness, " in the lattice model.

| The procedure followed in each case is similar. The plate is divided into
the appropriate number of divisions for the latfice model representation; applied
loads are converted into statically equivalent loads applied to the bars of the
model; appropriate equations, developed and summarized in the preceding chapter,
are written for each bar of the model; and the result is a set of simultaneous line-
ar equations with bar displacements as unknowns. For plate and loads symmetri~
cal about two axes, only one quarter of the plate need be considered; for plate

and loads with one axis of symmetry, only one half of the plate need be considered;
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and if there is no axis of symmetry with respect to the plate and loads, then
the entire plate must be considered. Solution of the linear equations deter-
mines the bar displacements from which strain and stress can be calculated,_

if desired, by using the formulas of the preceding chapter.

Square Plate with Parabolically Distributed End Tension

The case of a square plate loaded with parabolically distributed end
tension was selected for comparison of stresses calculated by two methods
(discussed subsequently) because a fairly good energy—method solution is
available for this problem. Solutions were obtained for lattice models that
represented the same plate but had different degrees of division to determine
the effect of fineness of division on calculated stresses and strains as shown
in Figs. 61-71.

The energy-method solution is taken from the work of Timoshenko and
Goodier., 16 A principle of "least work" is used, in which an expression is
written for the strain energy of a plate of unit thickness, using a stress func-

tion assumed in the form of the following series.
P = 11)0 + alzbl + ozzz,bz + oz3zp3 + -—- (40)

where ¥ is the stress function that satisfies the boundary conditions and o rep-
resent constants to be determined. The minimum of the strain energy expres-
sion is found by variational calculus. The notation here has been changed
from that used in the Timoshenko and Goodier book. 16
A parabolically loaded plate has two axes of symmetry, so that only
one quarter of the square of total dimensions 2a must be considered. Such a
quarter plate is shown in Pigs, 61 and 65, along with the loading and direction

of axes. By use of the first three terms of the series in Eq. 40, the following

stress function is found:
(41)

2 2
_bkx o lxy RS2 a2 2 2 x ty
b= [1 : 2]+ - (x7 - a5 % (v* - a9 [0.04040+o.01174 X ]
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The stresses are found from this function by partial differentiation and are

22 2 2 2 2,
- SE¥-og =pl-Ey-0.16160 0~ 1)“(1- 3%+ 0.02348P( ~ 1)
2 Yy p 2 2 2
ox a a a a
A 4 2
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_ 2
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2 " Yk AN 2
RY% a a a
ot N
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— BZQD 8xy x” yz X2+ y‘2
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S50 " Tay = P(az 1)(az 1) [0.03522( > ) +.057 ] (42,3

These expressions have been evaluated with P = 10LL psi at a number of points
— that correspond to points where stress is defined in lattice models having vari-

ous numbers of subdivisions., The results are given in Figs. 61 and 65,
-— Three different grid sizes were used in dividing the quarter section of

the plate for lattice-model analysis., The numbers of divisions on each side of
— the guarter plate were 2, 3, and 4. Therefore systems of 12, 24, and 40 equa-
tions had to be solved for bar displacements. Sirains calculated from the bar
displacements are summarized in Figs. 62, 66, and 69. In each of these
figures the grid lines forming the centerlines of lattice model bars are shown,
and the strains are gi'ven above and to the right of node points and over shear
points using the notation given in the figures. This system of summarizing in-
formation is used in all figures giving results of analyses of statically loaded
lattice models.

A direct comparison of stresses calculated with the lattice model can

be made with the stresses calculated by the energy method; however, such a
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direct comparison may not give the best results, because strains and
stresses in the model are average values over a bar width. In order to
place comparisons of stresses calculated with the methods on a similar
bagis, the stresses found from the energy method solution have also been’
averaged. The averaging procedure consisted of (1) finding what the bar
force would have been using the energy-method stresses evaluated atnode
points of the lattice model, (2) concentrating to a force with the Newmark
parabolic formulae, and (3) dividing these forces by the area Ad.

The vertical 0'y and shear Txy stresses calculated from the lattice
model strains summarized in Figs. 62, 66, and 69 and the vertical stresses
from the energy-method solution, averaged as just indicated, are summa-
rized in Figs. 63, 67, and 70. Horizontal stresses O‘X calculated from the
strains summarized in Figs. 62, 66, and 69 and the averaged energy-method
stresses are summarized in Figs. 64, 68, and 71.

A comparison of stresses calculated with the lattice model and the
averaged energy-method stresses is directly made by examining Figs. 63, 64,
67, 68, 70, and 71. By making this comparison it can be seen that on the
basis of averaged stresses the lattice model gives very good results for ver-
tical stress even with the coarse two-division lattice model, although better
agreement is obtained with the three- and four-division lattice models. The
agreement is s0 good in the four-division lattice model that it is difficult to
say which of the values is more accurate because only the first three terms
of the series in Eq. 40 were used when the stress function was evaluated for
the energy-method solution. Horizontal stresses are somewhat more sensitive
to changes in the number of divisions in the lattice model. It can be seen
from Figs. 68 and 71 that increasing the number of divisions in the lattice
model provides a better picture of deformation and stress.

If it is desired to compare stresses calculated with the lattice model
to the unaveraged stresses calculated by the energy method, the lattice model
stresses in Figs. 63, 64, 67, 68, 70, and 71 are compared to the energy-method

stresses in Figs. 61 and 65, Comparison of shear stress has not been made on



~-417]-

an averaged basis; however, direct comparison of the lattice model shear
stresses in Figs. 67 and 70 with the energy-method stresses in Figs. 61
and 65 shows that the lattice model provides a good picture of the distri-

bution of shear stress.

Square Plate with Concentrated Loads

Many of the plate problems for which solutions may be desired in-
volve concentrated effects or effects involving very high strain gradients.
In order to illustrate how the model represents such an effect and how the
representation changes as the number of plate divisions increases, the
case of a square plate loaded with a pair of concentrated loads has been
analyzed. The entire plate and the lcads are shown at the top of Figs. 72
and 73. With two lines of symmetry, only the shaded guarter of the plate
need be considered. The load was taken as P/a = 104 aund the plate thick-
ness as unity so that the specific dimensions of the plate would not have
to be considered.

Strain distributions in lattice models that divide the quarter plate
into two and four divisions are shown in Figs. 72 and 74. The stress dis-
tributions calculated from the strains given in Figs. 72 and 74 are shown
in Figs. 73 and 75. It can be seen that across the centerline of the plate
both the two-division and the four-division models give similar results,
but as the external loads are approached the two-division model is too

crude to give a representation of the strain or stress gradient near these

points.

Uniformly Loaded Plates with Cracks

Several cases of plate models containing cracks and loaded with
uniform end tension 1tllave been analvzed to indicate the static strain distri-
bution resulting from these conditions. Two types of cracked plates have
been considered. The first, called the symmetrical case, consists of a
square plate with uniform tension on two opposite edges and cracks ex-

tending symmetrically from the center of each of the free edges parallelto
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the loaded edges. The second, called the unsymmetrical case, consists
of a plate of the same length as the square plate but only half as wide,
with uniform tension applied to the short edges and one crack extending
along the centerline of one free edge toward the left edge.

The same number of lattice-model divisions have been used for
each case; however, the symmetrical case has two lines of symmetry so
that the lattice model need only replace one quarter of the plate, while
in the unsymmetrical case there is only one line of symmetry and the lat-
tice model must replace one half of the plate. Four divisions in each di-
rection were used for the lattice models so that the total plate is divided
into eight sections on each edge in the symmetrical case, and eight sec-
tions on the long edge and four sections on the short edge in the unsym-
metrical case.

Strain distributions in the symmetrical, four-division lattice model
having cracks with lengths of one, two, and three divisions are shown in
Figs. 76, 77, and 78. Strain distributions in the unsymmetrical four divi-
sions are shown in Figs. 79 and 80. Loading in each case was 20, 000 psi
uniform end tension.

The strain distributions in Figs. 76 and 80 provide only a rough
description of the highly concentrated disturbance around the crack tip in
an actual plate because the model division is much too coarse. However,
interésting trends can be noted in regard to the effect of length of crack
and extent of strain redistribution associated with the crack. As would be
expected, deformation at the crack tip and the zone of disturbance becomes
larger as a crack increases in length. The unsymmetrical cases in Figs. 79

and 80 show the bending in the plane of the plate as a result of the cracks.

Checking of Bar Stresses

The stress values calculated from the lattice model can be checked
for numerical errors by calculating the sum of the forces acting across a sec-
tion through the lattice model. In the case of a plate loaded on two opposite

sides and with the remaining two sides free, the sum of the bar forces across
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MUDEL WITH A 3-DIVISION CRACK
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a section parallel to the loaded ends must be equal to the applied load. The
sum of the forces on a section parallel to the unloaded edges must equal zero,
Bar forces are calculated by multiplying the stress by the bar area §Ad for an

interior bar or by 0A/2d for an edge bar,

SOLUTION OF PROBLEMS INVOLVING TIME DEPENDENCE

Differential Equations

The static equilibrium equations for the lattice model including body
forces were developed in an earlier chapter, which included a complete sum-
mary of the equations. Body forces in this case were limited to gravitational
or any time-independent forces. Analysis of a static problem consisted in
writing the equilibrium equations for each bar of the model, taking into account
the boundary conditions. This resulted in a system of simultaneous linear equa-
tions the solution of which gave the bar displacements. From the bar displace-

ments, the strains and stresses, at points where these are defined, could be
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calculated.

1f body forces that are not time-independent are considered, then
the equations expressing the behavior of the model will become a system
of differential equations. The time-dependent forces to be considered for
the model are inertial forces of the plate material or time-dependent exter-
nal forces. Under dynamic conditions, the instantaneous equilibrium equa-

tion for a single-mass system free to move in one dimension only is
F = ma ' (43)

where

F

]

Resultant of all forces acting on mass at time t

m= Mass

a = Acceleration at time t
For the lattice model, each bar has only one degree of freedom, and therefore
the acceleration of each har, considered as a rigid mass, is the second de-
rivative of the displacement with respect to time. The body force acting on
each bar can be split into two parts, one time-dependent and one time-

independent. Each equilibrium equation will then be of the form
d (u or v) — —
-m [Zf(u , vn)J + (X orY) + K1) (44)

where
m = Mass

u, v_ = Displacements
n n

X, Y = Time-independent body forces

Sum of forces resulting from material deformations

f(t) = Time-dependent force
Writing one dynamic equilibrium equation for each bar when each bar
represents one degree of freedom will yield a system of simultaneous second-

order differential equations. Solution of this set of equations will give the
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bar displacement and therefore the stress or strain at a particular time.

Natural Frequencies

A plate considered as a continuous material has an infinite number
of degrees of freedom with respect to vibrational motion. In analyzing
such a situation, any general harmonic vibration can be treated as the su-
perposition of an infinite number of individual frequencies and associated
mode shapes. Usually the most important motion consgists of the first few
fundamental modes. This is particularly true when considering the lateral
vibration of a plate.

Motion in the plane of the plate is much more complex than lateral
motion and has not been studied as extensively as lateral motion. The only
simply treated cases involving motion in the plane of the plate are flexural
vibrations that occur if the plate has a much greater lenglh than its width.
Generally the type of motion in the plane of the plate that is of most inter—
est is the propagation of strain or stress waves from some source. Wave
propagation in a finite plate seldom achieves a tractable steady-state con-
dition, being subject to dispersion, refraction, and reflection.

The model has a finite number of frequencies of vibration and mode
shapes and when assumed to be in harmonic motion oscillates in a steady-
state condition. The calculation of the frequencies and mode shapes is of
general interest, and the values are useful in other calculations involving
wave propagation in the model. If the circular frequency of vibration is
assumed to be wand the amplitude of a particular bar n to be Cn’ the dis-

placement of the bar will be

u_ orv_=C_sin{wt+ &) (45)
n n n ‘
where
6 = Phase angle
Cn = Amplitude of n-th bar
u orv = Displacement of n-th bar
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Or, considering that the system starts from rest (8 = 0),

u orv = Cn sin(wt) { 46)

Using the latter assumption, the acceleration (the second time derivative)

would be
dzu dzv
n n 2 ‘
> or = - Cn sin(wt) (47)
dt dt

When the lattice is undergoing steady harmonic motion, the accelera-
tion and displacements in the differential equation (Eg. 44 can be replaced by

the values given in Eq. 47 and Eq. 46. When this is done, the equations have

the form
n
m, w® G sin wt = Za._c. sin(wt) (48)
i i 1] ]
j=1
where

C = Vibration amplitude of a bar as indicated by subscript

aij = Coefficient

Bar to which equation applies 1 =1 £ n

—-
1

Variable subscript 1 =j £ n

e
11

mi = Mass of bar i

As sin (wt) appears in every term of the equation, it can be factored out. There

L . 2
then remains a system of equations containing the undetermined factors w and

the amplitudes Cj' The system of equations can be written as follows:

2
w)c, +a ,C,+--~+a, C =0
1 n

(@, -m 1272 in

1
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a C +a C,+--—-+{a _-m wZ)C =0 (49)
nl”1 " “n2”2 nn n n-

In order that these equations have a non-trivial solution, the determinant of
the coefficients must equal zero. The matric equation of the coefficients can

be written as
[A] -X{B] =0 (50)

where

|A] = Matrix of displacement coefficients

|B| = Mass matrix

A = wz
This is a characteristic equation which arises in many physical problems and
for which methods of sclution have been worked out., The solution of the char-
acteristic equation yields the eigenvalues )\i, from which the frequencies are
found, and the eigenvectors, which give the relative magnitudes of the ampli-
tudes of motion.

As an illustration, natural frequencies are presented for two examples
in Tables 1 and 2, and the mode shapes are presented for one example in Tabie
3. The first case is a two-division by three-division symmetric lattice model
and is shown in outline form at the bottom of Table 1. It was assumed that the
ends of the model are fixed in both the vertical and the horizontal directions.
The circular frequencies, natural frequencies, and periods of vibration for the
model with a thickness of unity and with A = 9 in. are given in Table 1. The
secbnd case is a two-division by four-division symmetric model with A = 9 in.
As in the first case, the ends are assumed fixed both vertically and horizontal-
ly. An outline of the model is shown in Fig. 81 along with bar numbers. Fre-
quencies and periods are given in Table 2, and eigenvectors are given in Table
3. ©Since the eigenvectors, giving the mode shapes, are only relative values,
they are normalized so that the sum of their squares equals one. The eigenvec-

tors are considered to be numbered consecutively from one to twenty with each
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TABLE 1 FREQUENCIES AND PERIODS FOR 2 x 3 DIVISION
SYMMETRICAL LATTICE MODEL

Vibraion CESIEE aroral Frea. i
Rad./sec. ycles/sec. sec. X 103
1 5,561 885 1.1299 3
2 6,776 1,078 0.9276 Fixed Vertically and
3 7.525 1,198 0,8347 I/ML/Ijo i}?,?tza}ly
4 8,571 1,364 0.7331 ‘
5 9,534 1, 517 0.6592
6 10,788 1, 717 0.5824
7 11, 618 1, 849 0.5408
8 12,672 2,017 0.4958
9 12, 836 2,043 0.4895 "
10 14, 647 2,331 0.4290
11 14,720 2,343 0.4268 _ 4_
12 14, 877 2,368 0.4223 2N
13 16,755 2,667 0.3750
14 18,072 2,876 0,3477
15 20,138 3,205 0,3120

number corresponding to @ bar number in Fig. 81.

It can be seen from Tables 1 and 2 that the highest and lowest frequen-
cies do not differ much in these two examples. The main reason for this is that
the values of A and d (and therefore the bar masses) were the same in eachcase,

and the total size of the plates is only slightly different.

General Approach for Solving Strain Wave or Crack Propagation Problems

The differential equations governing the bebavior of the model and an ap-
plication to a steady-state condition were discussed in the two preceding sec-
tions of this chapter. Generally time-dependent behavior of the model or the
continuous material that it represents is not of a steady type and cannot be
solved as an eigenvalue problem. In such cases it is necessary to treat the
problem as an initial-value problem starting with known conditions and deter-

mining what conditions exist at some later time.



TABLE 2 FREQUENCIES AND PERIODS

FOR 2 X 4 DIVISION LATTICE
MODEL OF FIG. 81

Vraen i iqiuney el Fren Vi
ad. /sec. sec. X 103
1 5,061 806 1. 2410
2 5. BBO 936 1. 066
3 6,230 992 1. 008
4 7,536 1,199 0. 8340
& 8,631 1,374 0.7278
6 8,776 1, 397 0.7158
7 9, b96 1,575 0.6349
& 10, 33% 1, 645 0.6079
9 10, 761 1,713 0.3838
10 11,799 1,678 0.5324
11 12,658 2,021 0.4948
12 13, 04% 2,077 0.4815
13 13, 609 2,166 0.4617
14 14, 368 2,287 0.4373
15 14, 692 2,338 0.4277
16 15, 658 2,492 0,4013
17 16, 657 2,651 0.3772
18 16, 802 2,674 0.3740
19 18,982 3,021 0,3310
20 20,236 3,221 0, 3105

%/—*-End Fixed Vertically And Horizontally

\ ez i £
Foo 19 il&

17 16
115 +1k }»13

%2 %1 P
110 +9 18

1 &
el T2 1

5 L
PR

FIG. 81 LATTICE MODEL FOR FREQUENCY ANALYSIS

TABLE 3

Mode 1

-.0136197749
-.1297315266
-. 1740302012
+.49062364756
+.2029156750
+.3601379245
1.1473202466
- . 0503604264
-, 3070057064
-.4003599434
+.0730495457
+.0305473873
-, QLETTIELLS
- 2775765622
~. 3585656765
-, 1053366326
-.0412590664
-. 0740630625
-.0932395033
-. 1143500527

Mode 6

+. 0647046127
4. 1228239288
+.0995651597
F. 4700127965
+.0333096711
- 1328502387
-.1479989798
~.219lz8l420
~. 0672168970
+.552.636124
+.2226416615
+.1068450620
-.0115035190
-, 1472701764
+.33892308923
~.3419244869
- 0305554285
-. 1054876213
+,0308437650
t. 1734954494

Mode 11

+.0982994407
-.0642950473
~.1262181899
-. 0604005100
-.112:638560
+.,0471298277
-.1553168004
+.1956422981
-. 1388627711
+.0013374436
+.1051231558
+.0026685554
-.030931002]1
+.0895200601
+.0177595244
+.2325556777
-.5326576412
-.1534026542
-.3061723944
+.6261825843

Mode 16

-.4341185355
+.1676700118
+.3096342330
+. 1807308647
+.0970519170
-.0965971688
-.095%678922
+.0992461026
-.0232255188
-.0915736296
~.0436135912
-.0136119118
+.2845736998
-. 1115335742
-.2413523903
+.1255399660
+.1340073784
-.4799801272
+.1570140616
+. 3935575107

EIGENVECTORS FOR LATTICE MCDEL SHOWN IN FIG. 81

Maode 2

+.1224708294
.1110336740
L ObH4891738
L3222630216
1612712737
5625936138
L 1624366209
L 3328754138
L 2465261330
. 1799343443
. 37397764562
L 1535546277
. 3BE350634)
.21 13646394
L 1222024570
2247723596
.DB06BLTBLL
19768658694
. 0634590524
0200850452

+

R e e e s i T S s

Mode 7

-1450672378
1897249515
. 0994944307
. 0807563754
2931137793
0845582888
. 1564868472
4342688227
-3656066477
1474213042
.0749706594
0643516040
-4932666620
.2137931172
-. 0068076040
-.1339612347
-. 1811435666
- 2965727516
. 0663067397
L 1413500932

L T A R

+

Mode 12

+.3543485620
-.1195945265
- 1670467164
-.1934603571
. 1113020462
. 0357082036
. 0521672716
L 3775780720
L 1261146461
. 2457742402
. 1579587393
2213512914
. 3340071612
. 1037956044
1484850484
L0711345751
1944963637
4306405251
. 2857759924
. 1526275829

L e L e

+ 41

Mode 17

.D354642 883
. 1030503585
2851048410
.1562829 787
L 4652136671
. 0818919049
. 0745315623
-.1953070130
. 2547867657
-.2069712911
-.2049461577
+.3732520809
+.0819998212
-.0729647284¢6
+.0024372594
+
'
3

[ RS

+

. 0969633402
. 2677006782
1102557201
. 2582697055
. 3967869519

Mode 3

-. 2314875790
-.0064885294
+.0908087637
-, 3179879368
-.1531331693
-.0156101001
-.0211967052
-. 4746886306
~.0s08s11827
+.10 53990457
T, 4384472678
+.1819074231
-. 30589469322
-.1892.59:271
-. 0874893700
+.3761127885
+.1703904096
-.037t660794
-.1280286106
-. 1326975917

Meode 8

-. 3642444012
-. 3096559654
-.0196046394
+. 0504725560
~.1561559411
-.0042901415
+.0715731164
-.4325944198
-.2303164844
-.1140009820
-.0364568169
+.2078436514
+.2355963079

-T.4329632598

-. 0841770535
- . 0023456759
-, 0923650046
+.2765937853
+.2935573780
+.13632593655

Meode 13

+.4768004457
+.2765894497
v. 3277358173
+.0560629934
-.05168L3623
-.0172343229
-.0151893512
-. 1605671362
-.1108201689
-.1255414379
+.0104085178
-.0331643069
-.1996994066
-.127017971&
-, 1460397603
+,0441722026
-, 0563399295
+.4929073615
+.2765226118
+,3385223430

Mode 18

-.4191038305
+.1907707608
+.2939370736
+.1787433714
+.0261360578
~.1311384541
-, 1158806728
+.3499856366
-.1134198955
-.3592918276
+.0907952731
+.1625723669
%.3137100014
+,1209976580
4, 2843774422
-.1153177920
-. 0319775648
+, 664719498
-.1587051797
-.1538931292

Mode 4

+.1176407131
-. 1219014093
-. 1403517355
+.5525187329
+.2013325642
~. 0959490160
-.0542313682
-. 0874162514
-. 0607863609
+.0421386700
-. 2698143147
-. 1076746400
-, 3459185290
+.1122623124
+.32.9565650
+.466199523%
+.2023627630
-.0010272554
«. 0200346261
1, 0171449098

Mode 9

-.1637690095
+.0462532936
-. 4359843423
-.1903379543
+.2366236255
+.0174607221
-.0790614246
-.1294419364
-.0560244842
-.3235537782
+.1724876722
-. 2515943820
T. 2649864617
-. 1347798567
+.5024062948
-. 0316300766
+.1088969717
+.201 466812
+.0723204518
+.2554829413

Made 14

+.03256504260
+.0046702199
+,0677001465
-. 2297732340
+.5896942594
-.2196050744
+. 5067563557
-. 0019545871
~.10:5673687
+.1070809565
-. 1456801989
+.3147169232
+,1053707379
-.1147143277
+.1297714299
+.0110138590
+. 0000824091
+.0774371896
-. 1746720445
+.2562174284

Mode 19

+.1200254482
-.2491599778
+,3261093498
-.1763090576
+.3769759566
+. 0888407209
-. 1901406790
-.0006689292
+. 0016677064
-.0029347840
+.0865368129
-.1841000864
-.1201515317
+.2495002870
-.3239639176
-. 1710193099
#.3616427526
+.1367276159
-.2733257341
+.3513641863

Mode 5

+.2319286935
-.0525236499
-.3187646643
+.2407787491
+.2131761370
~. 5114790531
-.1212125982
+. 0106890686
+. 1785709776
- 2792389724
+.2366745136
+.0779550795
+.2203220052
+.0313902155
-.4435394038
+.0462798390
-.0622536766
b 1032041348
-.0252682532
-. 1614867779

N
Mode 10

1.01444562643
-.3215105441
+.4199745293%
+.1656495740
-. 4552478524
~. 1535678291
+.3684104540
+.017T4352723
+.2091780146
-.3471753284
+.1210287184
-. 2667869386
+.0360084088
-.1153235690
+,1944246841
+,0134755678
~.0105455270
~.0111795471
-. 0749324992
+.13115160k2

Mode 15

+.3939262227
+.2250991214
+.2391103776
+.0314440162
-.0435957329
-.D122687951
. 0066659425
- 3783846254
-.2133599084
-.2525450444
+.,0226240920
-.0164028653
+.3693644283
+.2219857253
+.2250504253
-.0220932915
+.0296951230
- . 3854550595
- . 2012442609
-.2320279921

Mode 20

1377043334
.2925744191
. 3818845123
. 1629027756
. 3429677347
.1535503060
. 3234749703
.1204218218
.2593568200
. 3386230909
. 1267740775
. 2671323016
-.0918356791
.1974770826
-.2574921278
-.08414%0487
+.1764669082
+.0570673717
-.1194409484
+.1545382129

o

[ T |

+
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The equations of motion for a continuous elastic material have been
solved for a number of situations, most of which involve semi-infinite media.
In working with the differential equations of motion for a continuous material,
the greatest difficulty is encountered in satisfying the boundary conditions.

The finite model developed in this report provides an approximate two-dimen-
sional method for treating difficult boundary conditions or types of loading.
Use of the model provides a physical system which can easily be visualized
and reduces the problem to the solution of a set of linear second=-order differ~
ential equations which are easily solved by numerical integration.

The general approach for solution of a wave propagation or time-depend-
ent boundary value problem with the model is as follows:

1. Determine model dimensions and layout.

2. Determine initial static displacements.

3. Apply a step-by-step numerical integration procedure for

solution of the differential equations.

4. Adjust boundaries and loads as the integration proceeds.

If the boundary conditions are time-independent, it may not be necessary to de-
termine initial displacements for solution of wave-propagation problems. In
such cases the transient effects can be determined separately and superposed
on the initial conditions. Two methods of numerical integration are presented

in the following section.

NUMERICAL INTEGRATION OF EQUATIONS

Newmark Beta-Method of Integration

The Newmark Beta-Method of integration is a step-by-step method for
solution of systems of second-order differential equations having initial condi-
tions specified. This method is about the most convenient method available
for hand solution of equations. The value of 8 can be selected to give the best
possible regults for the values (period, amplitude, etc.) that are considered
most important. A complete development and description of the Beta-Method is

. , 18-20 :
given in several references.
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The B~integration equations are

4

n+ 1

n+1 Yptztptu )

P
= (51.1)

(51.2)

I
=
~+

i
o
+
-

un+l=un+hﬁn+h (E_‘B)ﬁn+h ‘Bun+l (51, 3)
where _

P = Unequilibriated force acting on the mass

m= Mass

{i = Acceleration of mass

U = Velocity of mass

u = Displacement of mass

h = Time interval

B = Parameter of B~Method

n = n-th time interval

The B-Method is an iterative method starting with an assumed accelera-

tion. Steps in the calculation for each time interval, considering only one mass

at a time, are

.

Assume an acceleration iin .1

Calculate U and u
n+ 1 n+ 1

Using the values of 4 and u from Step 2, calculate P.
n+1 n+1

Calculate a new i from Eq. 51.1
n+ 1

Compare the values of iin L1 from Steps 1 and 4. If the values
differ by more than the desired number of figures, repeat Steps 1

to 5 using Tln L from Step 4 as the assumed value,

when two successively calculated accelerations agree to a desired number of sig-

nificant figures for all masses in the system being considered, one step of integra-
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tion has been completed. The values that have just been calculated are then
used in the calculation of the next step.

Varying the value of 8 has the effect of changing the shape of the ac-
celeration-time curve over the integration interval. If 8 is taken as zero this
assumes a constant acceleration pulse for each integration interval which
causes an instantaneous jump in velocity at the start of each interval. Taking
B = 1/8 assumes that the acceleration has a constant value equal to the initial
value for the first half of the time interval and equal to the final value for the
second half of the time interval; B = 1/6 assumes a linear variation of accelera-
tion over each interval; and 8 = 1/4 assumes a uniform acceleration whose value
is equal to the average of the acceleration at each time interval.

In order for this procedure to be useful, the successive values calculated
in one step must converge toward a definite and correct value, Fairly rapid con-
vergence is also required in order to achieve good accuracy. The convergence
and accuracy characteristics of the B-Method have been investigated by consid-
ering a single-degree-of-freedom elastic vibratory system. Results from the

single-degree-of-freedom system can be applied to the multi~-degree~of-freedom

systems by considering the various modes of the multi-degree-of-freedom system.

Limits have been worked out in terms of frequency (or period) and integration
time interval for convergence, stability of a harmonic motion, and error for each
value of 8.

Truncation errors depend upon the value selected for 8. Tor example, if
B = 1/4, the accuracy will be of the order of hz, and if 8 = 1/6, the accuracy
will he of the order of h3.

Runge-Kutta Method of Integration

The Runge-Kutta Numerical Integration Method is a non-~iterative step-
by-step procedure. This method achieves its accuracy by using several esti-
mates of the dependent variable for each increment of the independent variable.
Usually the method is applied to first-order equations, although modifications

21
of the procedure have been developed for higher~order equations.
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The specific form in which the Runge-Kutta Method is used with many
high~speed computing machines is due to the work of Gill. 22 In this form a
program is designed to solve n simultaneous first-order differential equations.
If it is desired to solve equations of higher order, each higher-order equation
is reduced to a number of first-order equations. For example, consider the
third-order differential equation

C-fl + a(x) d—zz + b(x) dy + ¢(x)y = g(x) (52)

>
dx dx dx

and let
¥ - (53.1)

du
&— v (53.2)

Substitute these into Eq. 52 to get

Eii_:fc = - a(x)v - bSX)U - c(x)y + 9(x) (>4)

Thus solution of the three simultaneous first-order Egs. 53.1, 53.2, and 54
is equivalént to the solution of the single third-order Eq. 52.

A complete derivation of the Runge-Kutta Method is given élsewhere%?)’ 24
and only the results used in the ILLIACa::library program F-1 are stated here. For

a given set of differential equations

yl = fl (yoa Yl: Yz, T Yn _ 1): i=0, 1: 2: --—-n-1 (55)

the process used in the integration is defined by the following:

kl J _ th fl (yO]’ Y1J: yz]s =TT, Yn -1 ]) (56.1)

*ILLIAC is the University of Illinois high-speed electronic digital computer.



.= Ik, .- B.,q,, 56.2

L, j+ 1 (A] + 1 + 1IN i, ] Jqu) ( )
—m

- L 56.3

Vi 41 yi’j+2 rp d+ 1 ( )

, = -1 56.4

qi: J + 1 q]-! ] * 3rj—: J T (CJ )kli .] + 1 ( )

with the following table of values

j AL B, c,

0 ~1/2 2 1/2

] ~(1/2)2 1 (1/2)2?
2 (1/2)+? 1 (17212
3 ~5/6 2 1/2

Where double subscripts are used, the first subscript indicates which variable
is being considered and the second subscript j indicates which of the fourparts
of one step is being performed. The guantities r., |, are only an intermediate
calculation and are not carried from step to step. ’ Only the values of yi, 4 the
dependent variable at the end of the integration interval, and the values of qi, &

which prévent the rapid accumulation of round-off errors, are carried directly

from step to step. Thus for one integration step the order of calculation would
be

j=0 i=0,1, 2, -———, n-1
j=1 i=0,1, 2, ---, n-1
j=2 i=o0,1, 2, —=, n-1
j=3 i=0, 1, 2, ---, n-1

, . . , 5
The truncation error for one integration step is of the order of h™. There
are no limits for convergence or stability, and the length of the increment of the

independent variable may be altered at any step of the calculation.
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NUMERICAL RESULTS FOR TRANSIENT STRAINS

General Remarks and Problems Considered

Several examples of the transient strain redistribution associated
with a propagating crack are presented in this chapter to indicate the nature
of some of the results that have been found with the lattice model and to
point out some of the difficulties encountered in applying this method. The
lattice models used in these examples are much too coarse to portray ade-
quately strain gradients as steep as those associated with the highly con-
centrated disturbance surrounding a moving crack tip. Therefore the coarse
lattice models do not give quantitative results of practical significance. On
the other hand, the solutions do provide to some degree a qualitative picture
of strain redistribution for a propagating crack.

As previously mentioned, the solution of problems by this method in-
volves an immense amount of calculation; thus a very high speed digital com-
puter with a large memory capacity is required. By way of illustration, the
ILLIAC, the digital computer used for the examples given in this chapter,
could not treat lattice models with more than 40 bars vﬁthout the calculation
time becoming excessive,

Two cases of crack propagation are considered here, the unsymmetri=-
cal case in which a crack propagates from one side of a plate to the other side,
and the symmetrical case in which cracks propagate from both edges of a plate
and meet at the center. These two methods of numerical integration described
in the preceding chapter are applied to the unsymmetrical case to permit a

comparison of golutions by the two methods.

Variables Entering Into the Calculation

A number of {fariables enter into the transient solution of the set of dif-
ferential equations expressing the behavior of the lattice mode. The most im-
portant of these variables are:

(a) fineness of subdivision of lattice model

(b} boundary conditions
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(¢) velocity of crack propagation

(d) integration method

(e) integration time interval

Lattice model subdivision is very important for two reasons. First,
the ability of the lattice model to approximate steep strain gradients is di-
rectly dependent on how finely the lattice model is subdivided, and this
affects all solutions, either static or dynamic. Second, the periods of the
natural frequencies of the lattice model are directly proportional to the
square root of the bar masses; the natural periods of vibration are important
in dynamic analyses. Some problems associated with the natural frequen-
cies of the model are discussed in the next section.

Boundary conditions define how much energy, if any, can be fed
into a plate during crack propagation and also define whether or not the
boundaries are able to displace during crack propagation. Two boundary
conditions were considered: uniformly loaded boundaries that were free
to move with the magnitude of the leoad always remaining constant, and
boundaries that were initially given a displacement equivalent to the move-
ment resulting from a uniformly applied load and thereafter held fixed. It
wag found that maintaining a uniform load and allowing the boundaries to
move tended to increase the magnitudes of peak strains ahead of the crack,
this effect being much more pronounced at low crack velocities. The end
condition in which the ends were uniformly displaced and then held fixed
was used in the case of the examples presented in this chapter. It is be-
lieved the fixed-end condition closely duplicates conditions experiencedin
most plate-fracture experiments made in massive testing machines.

Crack velocity in the lattice model is an artificial concept and in
general has no relation to the fracture process in the physical material that
the lattice model replaces; this will become apparent from the discussion
that follows. Initiation of the crack was carried out by allowing the first
node (or nedes in the symmetrical case) to separate. Crack velocity was

thereafter determined by the time allowed until the next node was permitted
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to separate., In this manner the crack proceeded by jumps of finite length.
Transient strain redistribution is dependent upon the crack velocity; if the
crack velocity is progressively increased, a point is reached where the
strain energy released by separation of the deformed nodes does not have
time to propagate ahead of the crack and increase the strain at nodes ahead
of the crack,

One of the original cobjectives of this investigation was to establish
theoretical fracture criteria for nodes in the lattice model by considering
strain rates, strain magnitudes, previous deformation history, and non-
linear elasticity of some of the nodes and to determine at what velocity or
velocities a crack would propagate or arrest under such theoretical condi-
tions, However, such a search for fracture criteria was found to he impos-
sible because the available digital computer was too slow to consider a lat-
tice model having subdivisions fine enough to give adequate definition of
strain gradients. In the examples of crack propagation in a lattice model
presented in this chapter the crack velocity was arbitrarily selected as a
convenient value falling in the range of velocities that have been experi-
mentally observed in tests of wide steel plates. 3

The integration method used for numerical solution of the differential
equations must be considered a variable because of certain peculiarities as-
sociated with different methods of step-~by-step integration of initial-value
problems. Two methods of numerical integration, the Newmark Beta-Method
and the Runge-Kutta Method, were presented in the preceding chapter. These
two methods were applied to the same problem and the results compared to
check whether either method generates a spurious solution and to determine
how well the calculated values agree when the same time interval and aux-
iliary data are used.

The integration time interval is important because truncation errors
are proportional to some power of the time interval. Limits of stability anc;l
convergence in the Newmark Beta-Method have been worked out in terms of

the integration time interval and the natural periods of vibration. Rather ex-—
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tensive discussions of truncation errors, parasitic or spurious solutions,
stability, convergence, and propagation of round-off errors are given in

18-20, 23
several references.

Possible Difficulties in Solving Dynamic Problems with a Lattice Model

Several difficulties can arise in using a lattice model for the solu-~
tion of dynamic problems. Most of the difficulties are a result of concen-
trating a continuous material at definite points and introducing distinct
natural frequencies of vibration. When energy in the form of strain waves
is passed through the lattice model, reflections take place at boundaries
and usually cause oscillations of the adjoining lattice model bars. These
oscillations modulate any strain waves that thereafter pass through the
section of lattice model where the oscillations have developed. Eventual-
ly the oscillations also spread through the lattice model and confuse inter-
pretation of sirain values.

Another difficulty can arise because of the finite nature of the lat-
tice model. The mechanical system formed by the lattice model has as an
electrical analog and L-C filter. Such filters have been extensively studied
for one~dimensional wave propagation, but because they become very com-
plex in two-dimensional analysis, they have not been studied as extensively
as the onejdimensional case. It has been shown25 that L-C filters exhibit
passing and stopping bands toward electrical disturbances of varying frequen-
cies. Certain frequencies are easily propagated through the filter, while chers
are strongly attenuated. On the basis of the coarse lattice models used to study
transient strains associated with a propagating crack, no such effect has been
detected. If the lattice model is used to investigate strain-wave propagation
resulting from external loads, a careful investigation would be required to de-

termine if stopping or passing bands exist.

Solutions for Transient Strains with a Coarse Lattice Model

Two cases of crack propagation in the lattice model are presented in this

section. The first problem treated (Example 1) is one of unsymmetrical crack
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propagation where a crack starts from one edge of a plate and extends toward
the opposite edge. This case has been integrated with the Runge-Kutta Method
(Fxample 1) and also with the Newmark Beta-Method; results of the two integra-
tion methods are compared in Example 3. The second problem treated (Example
2) is one of symmetrical crack propagation wherein cracks start from two op-
posite edges of a plate and extend toward the center; the Runge-Kutta Method
of integration is used in Example 2. Strains as a function of time are plotted
for all nodes and shear points in the unsymmetrical case (Example 1) and for
only a few points in the symmeitrical case (Example 2).

The lattice model used in each example has four divisions in each di-
rection and therefore has forty bars or forty degrees of freedom. In order to
carry out the numerical solution of the examples, some numerical values must
be assigned for plate dimensions, loads, and other parameters. It was con-
sidered desirable to work with dimensions and parameters that were similar to
values used in laboratory experiments. 3 On this basis the lattice model divi-
sion A was taken equal to nine inches and thé thickness of the plate as one
inch. Using these dimensions, the unsymmetrical lattice model represents a
plate 1-in. thick, 3-ft wide and 6-ft long.

The symmetrical lattice model represents a square plate 1-in.thick and
6 ft on each side. Initial loading was equivalent to a uniform end tension of
20, 000 psi applied to each end of the plate, which allowed the ends to move
and then held the ends fixed in position vertically. The elastic constants
were taken as E = 30 x 106 psiand Vv = 0, 30,

Crack velocity in the lattice model in each case was held constant and
consisted of jumps of 0.75 ft in 0.180 millisec. This represents a step veloci-
ty of 4167 fps across the plate widih.

The integration time interval was selected as a conservative value, be-
cause the purpose of the examples presented is to illustrate characteristics of
the lattice model and not to investigate all possible variables agsociated with
the integration methods. The value of h was taken as 2 x 10—6 sec; such a

small time interval gives quite accurate results and eliminates to a large degree
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FIG. 82 LATTICE MODEL NOTATION FOR CRACK
PROPAGATION EXAMPLES

some of the problems associated with the numerical integration processes.
Values of bar displacements and strains were punched out by the computer for
every five steps of integration to provide a detailed picture of lattice model be-
havior.

The notation used for each of the examples that follow is shown in Fig.
82. In this figure only the bar centerlines are shown, with circles at the node
points and small squares at the shear points. A number inside a circle or rec-
tangle identifies the node or shear point to which reference is made. The left
edge of the lattice model is to be considered a free edge or a centerline depend-
ing upon whether the lattice model represents an unsymmetrical or a symmetri-

cal case resgpectively.
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Example 1: Unsymmetrical Crack Propagation. In this example the

crack propagates in four jumps starting at the right edge and extending to
the left edge of the lattice model. The crack was started by separating
node 1 in Fig. 82 at time zero. After intervals of 0.180 millisec, nodes
2, 3, and 4 were separated. After 0.720 millisec, nodes 1 to 4 were
separated and node 5 was still intact but just ready to separate to com-
plete propagation of the crack across the lattice model. Integration was
carried out with the Runge-Kutta Method using the integration time
h=2x 10_6 sec as mentioned previously.

Strain-time curves for all nodes and shear points of the lattice
model (Fig. 82) are presented in Figs. 83 to 122. Horizontal and vertical
strains are given at the node points as indicated on the figures except at
nodes where the horizontal strain values cannot be calculated as at the
edges. When a node is separated to extend the crack, the point of sepa-
ration is indicated on the appropriate vertical strain curve in Figs. 83 to
86 by an X. It can be seen by examining Figs. 83 to 86 that in-the nodes
ahead of the crack in the lattice model the vertical strain increases in
value as the crack approaches a node until the node is separated to ex-
tend the crack. Node 4, shown in Fig. 85, shows a slight relaxation of
the imitial positive vertical strain before the increase resulting from the
approaching crack. Figure 86 shows a fairly large decrease of initial ver~
tical strain at node 5 until the crack reaches node 4, whereupon a sharp
increase of strain takes place. The horizontal strain in nodes 2, 3, and
4, as shown in Figs. 83 to 85, goes from a negative value to a positive
value as the crack approaches and passes one of the nodes. This creates
a zone of bilaxial tension ahead of the crack. After separation of node 2,
a definite oscillation on the horizontal strain value occurs because of a
strain wave reflection off the right side of the lattice model.

Vertical straing in nodes 7 to 9 (Figs. 88 to 90) show a small peak

as the crack passes by a node and then a rapid decrease in strain magnitude.

After the crack has passed by a node, an oscillation in the strain values oc-
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curs because of reflections from the boundaries formed by the crack surface
and because of reflections at the right edge of the model. Node 6, situated
on the left side of the lattice model, is affected by reflections from the left
edge of the lattice model, and the strain value starts to oscillate sooner than
the strain values in interior nodes.

In general, the group of nodes (12-14 and 17-19) situated in the in-
terior of the lattice model tends to show only a slight peaking of the strain
values; oscillations begin after the first small peak, as shown in Figs. 93-95
and 98-100. After the crack has passed beneath one of the nodes, the strain
values begin to relax and release stored strain energy in the form of strain
waves that eventually reflect from the lattice model boundaries. After aperiod
of time the strain values all oscillate within the spectrum of the natural fre-
quencies of the lattice model as the strain waves reflect and re-reflect from the
lattice model boundaries.

Strain values in nodes along the lattice model boundaries show the ef-
fects of reflected strain waves from the boundaries, and the strain values tend
to oscillate quite a bit. At some nodes, such as 15 and 22 shown in Figs. 96
and 103, the reflections reinforce each other and produce quite high positive
strain values,

Shear strains are shown in Figs. 107 to 122 for the shear points in the
lattice model. The shear strains at shear points 1, 2, 3, and 4 adjoining the
crack path become positive as the crack approaches and then rapidly drop to a
negative value as the crack passes. Shear points 5, 6, 7, and 8 follow the
same trend as shear points 1, 2, 3, and 4. As the distance from the crack
path increases, the shear strain varies in an oscillatory manner, showing the
effect of wave reflec_tions from the lattice model boundaries.

A general picture of the strain redistribution associated with crack
propagation is as follows: A tension pulse is generated when strain energy is
released by crack formation and propagatés away from the source, creating a
zone of biaxial tension ahead of the crack. As the crack approaches a particu-

lar point, the shear strain becomes positive in value and then decreases in
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value as the crack goes past. Because the lattice model used is purely
elastic and dissipates no energy, the strain energy released by the crack
formation must be stored in the lattice model as kinetic energy of the bars
and changes in strain of nodes and shear points. After the initial pulse
resulting from separation of a node has passed, the bars of the lattice
model develop an oscillatory motion because of strain wave reflection from

boundaries.

Example 2: Symmetrical Crack Propagation. In this example a pair of

cracks propagate from each edge of a square plate toward the center. As
in Example 1 each of the cracks propagate toward the center in four jumps
spaced at equal intervals of 0.180 millisec. Both ¢racks start at time zero
and reach the center of the plate afier 0. 720 millisec. Integration was car-
ried out with the Runge-Kutta Method with the time interval h = 2 x 10_6 sec.
Strain-time curves for nodes 1 to 10, node 13, and shear points 1to
4 (as shown in Fig. 82) are presented in Figs. 123 to 136, A comparison of
the strain-time curves for nodes 1 to 10 and node 13 of this symmetric crack-
propagation case with strain-time curves for the same nodes of the unsym-
metrical case in Example 1 show that there is very little difference in verti-
cal strain response. There is some slight difference in magnitude, but the
shapes of the curves are about the same. The horizontal strains are affected
markedly because of the continuity at the left side of the symmetrical lattice
model. Shear strains toward the right edge of the lattice model are the same
for both the unsymmetrical and the symmetrical cases; however, toward the
left side of the lattice model, the symmetrical-case shear strains at shear
points 3 and 4 do not decrease to negative values in the same manner as shear
points 3 and 4 in the unsymmetrical case, again showing the effect of conti-
nuity at the left side of the model (which is the center of the square plate

represented by the lattice model).

Example 3: Comparison of Values Calculated by Two Numerical Integra-

tion Methods. The same problem discussed in Example 1 was solved using




+1,000 . oo /‘\
y
------ ‘.X Q&L)O
4800
W4 / a A
=] .
- — T q
[¥:) - +200
" +uoo ) 4600 7 7 it g
L n El
. . f
§ +200 £ 400 Ole1a13s FATI-TO TLIAVIOR,
i - ﬂ NOLE 15 - [XatILC 2 7
. 4 . e
? o - o T @ +200
F : 4 b0
-200 g o
t : @ R - 3 1‘6(”
i i R s i
400 - 1 -200 — xy
FIG.185 STRAIN-TIME DEMAYIOR i ey
600 NODE 2 - EXAMPLD 2 400 F =
+1,200 FIG. 127 B'rms IN-TTME DEIAVIOR b M 000
4 ' NODE: - EXAMPLY 2 3
— / 500 g / N "
x M i)
o : \ / T \ /
'
+800 g ~200)
i \Y
1 - _H\\ 25
+500 g, 00 — -hoo ]
E ¥10.135 STRATN-TIMC BEHAVIOR
| —Gop| EUEAR FOINZ 1 - PUAMPIE 2
a . +hoo
" A \ 41,200
. : S —y
y
4?:*290 ) »? +200 oAl w000 -
P \ : \
[+
' i 2 B
0| e U N P P S o I O \
4 FIG.128 STRATI-TRIC CRGVIOR| 3 6%
wo 100 NOLE 7 = IXAMILE 2 P / \
FIG.124 BTRATN-ITI CLILVEOR 800 a 5 +hoo 3
HOME A - EXAMTLE 2 / —y T
500 - \_/ ...... <) q
o #00 1 #2700
+1,200 N o) 4 .
eened [ L E o
+1,000 -ﬂ +hoQ 3 ~q " \ /
- o5
800} —— / 9 5200 - -0
[ 3 >
g . \
600 — E° 100 v
8 i FYG. 134 STRATHN-DTA SHAVIOR
N e | goo| AMAR PORY 2 - DXAIPLE 2
- W00 e 200 T
“f 1,
H v +1,000)
Ll | F B =400 NoDC 8 - EYAMPLE 2 Vg
R0 K H 800 b~
| ¥ d § +1,000 (\/ \
+ H —_—
' T Y N e y ¥
¢ A H +800 x 5 +600
-200 ¥ [ ] 3 400
], #600 As
o :
0o - Ll
Fio.Le BTRADITDE TEUAVION " ohoo - + 4200
Nobe - EXAMPL: Y k]
€% 4 A
. 4 200 + a
. 0 o - . =200 vy 4
+1,400 H / ] % ¥10.135 STRAIN-TIME EEYIAVIOR
n ! SN -yop| BUEAR PODMY 3 - IXAMULE 2
. B ‘_200 e ‘v -‘ .'. ..
+1,200 ] P L \ kY +1,400
Ly i U Yxy
+1,000 FIG.130 STRATH-TRE CLHAVIOR +1,200
600l NOLE 9 - EXAMLL 2 . /
% 4800 oo™ +1,000
" I [ M\ v % /
] 4600 0, 600 S oo
4 ] o [~
g " ;
| +hoo 4o A6
. FI0.131 STRAIN-TIME DETIAVIOR |
a . 1 g HORL 10 - DNAMPLL 2 4
g+200 P00 » 4hoo
- ' L~ E] FIO, 136 §1RAIN-POAL BCHAVIOI
o e 44 . N ™ 2 o TIAR POLR 4 - DXNTLE 2
" : AR\ |
N 0
-500 200 0 = raa
FIG.126 BIRAIN-TDE TIILAVIOR S~ s
HODE 5 - DANLD 2 \/
W00 -Loo =00y
0 0.1 0.2 0% 0.k 0.5 0.6 0.7 [¥) 0.1 o2 03 ok o5 06 07 Q 0.1 0.2 0. 0. 0.5 0.6 0.7

Time-Sec. X 10> Tl -Bee. & 1L'j Time-5ec. x 1(7‘



-71-

the Newmark Beta-Method of integration with B = 1/6. As nearly as pos-
sible, all auxillary data required for the numerical integration process are
supplied by the same computer routines used for the solution with the
Runge-Kutta Method. All starting conditions also were made identical, so
‘thaj: any difference in calculated values could be attributed to the integra-
tion method.

The time interval used was very conservative as far as limits of
stability and convergence are concerned. As workedv out in Ref. 18, the
limits of stability and convergence for a single-degree-of~freedom system
can be expressed in terms of h/T, where h is the integration time interval
and T is the period of vibration. If a multi-degree-of-freedom system is
considered, then T is taken as the period of a particular mode of vibration.
For § = 1/6, the stability limit is h/T = 0.551 and the convergence limit is
h/T = 0.389. Because the largest value of h/T is desired, the smallest
period would be used when considering a multi-degree-of-freedom system.

The smallest period for the four-division unsymmetrical lattice model
isg T=0.31x 10_3 sec as shown in Table 2. As the bar spacing and bar
mass are the same for the symmetrical model as for the unsymmetrical model,
the shortest period of vibration is about the same in each case. Using the
values h = 2 x 10°° sec and T = 0.31 x 107° sec, the ratio h/T is 0.006,
which is only a fraction of either the stability or convergence limit. Stability
and convergence are therefore not a problem in carrying out the integration
of this example with the Beta Method.

A comparison of extensional and shear strains at all node shear points
of the unsymmetrical lattice model, as calculated with the Runge—~Kutta and
Newmark Beta-Methods of integration, is given in Table 4. Locations of the
node and shear points listed in the table are shown in Fig. 82. Values are
compared at times of 0.180, 0,360, 0.540, and 0. 700 millisec after a crack
initiation; the latter value was chosen because it fell just before complete
separation,

Referring to Table 4, it can be seen that at t = 0. 180 millisec the



TABLE 4 GOMPARISON OF STRAINS CALCULATED WITH TWO INTEGRATION METHODS

Method

Node

PR IER Y T U R N

Shear
Point

e R R N

—
w

—
[=uRE Y

Runge-Kutta

Time 0.180 millisec.

Extensional Strains - in./in. x
[ey} ‘Ex} {e ]
------- +.00 c--e-n-
+852.6% 4111.23  +B45.29
+553. 60 +E1.49  +546.90
+510. 04 -83.98 +6l0,72
+646. 33 +,00 +645.79
+676, 87 -, 00 67618
+695, 00 -203.65 +696. 30
+751.98 -210,99 | +758,02
+8k3.51 -186,53 +6820,93
+147, 26 +.00 <1144, 95
+338.55 +.00 +340, 59
+621. 62 -255, 74 +617. 95
+68k. 24 -251.E6 +6B4. 16
+675. 66 -235,69 +673. 54
+65E. BO +.00 +6567.E5
+665,10 +.00 +665. 33
+560. 35 -215,.48 +H60, B3
+632.50 -135.95  +632.17
+530, 95 -211.91 +325. 33
+387, 86 +.00 +380. 61
+432, 81 +.00 +432, 54
+665, 46 -202, 86 +665. 83
+660, 75 -217. 85 +661. 89
+634, 32 -206, 49 +637.74
+545. 48 +,00 +553. 7L

Shear Strain,

+295, 32 +290, 33
-312.61 -321. 84
-197,91 -203.76
-b&. 17 -66, 94
-7.32 -3, 56
-10.71 -3.73
+100.7¢9 +106, 40
+404, 50 +410,16&
+315.96 +326.08
+215.65 +221.9:2
+69. 34 +59, 83
+15,16 +14, 34
+5.15 +4,25
+25.09 +23.0%8
+75. 90 +74.98
+69. 86 +102, 57

Newmark Beta

{e )

+.00
+114, 36
+86, 58
-82.76
+.00
+.00
-206. 71
-212.57
-285,81
+.00
+.00
-255.49
~284. 69
-235. 60
+. 00
+. 00
-213. 78
-238.01
-213.64
+.00
+,00
-204, 48
-216.05
-205.06
+,00

Shear Strain, ¥

xy

Runge-Kutta

Time 0,360 millisec.

Mewmark Beta

Extensional Strans - in. /in. x 10°
fey} (ex} {EY} fr:x]'
..... +.00 - .09
----- -303.61 -————— -31E.9¢2
+1206. 74 -79.02  +1211.43 -58.05
+ 566,29 +25,14 +555, 33 +27. 82
+380, 82 +. 00 +3E0, 84 +.00
+599, 62 +. 00 +606, 85 +. 00
+74%, 34 -191.97 +764, 40 -193.05
+777. 30 -23%,00 +772.41 -226,52
+32.45 +7.97 +13.11 +1.76
+71.73 +. 00 + 66, 60 +.00
+15, 86 +. 00 +14, 88 +.00

-5.70 +184.28 -18.45 +199.1%
+560.51 -12B.44 +565,52 -118.70
+650. 26 -258.26 +637.99 -270.01
+636. 66 +. 00 +618.48 +.00
+790.72 +, 00 +794.1% +, 00
+629. 34 -2310, 41 +621, 21 -232.72
+468.19 -171,91 +459, 29 ~174. 04
+187.26 -20, 34 +189,45 =17 .46
-109.14 +. 00 -120.57 +, 00

-27.35 +.00 -lz.21 +. 00
+8G& 50 -14%,05 +913,45 -160, 49
+707.95 -189.58 +730. 50 =190, 64
+514. 60 194,74 +527.45 -1E3.12
+322.12 4+, 00 +339.26 +.00
Shear Strain, Yuy Shear Strain, Yy
-29. 87 -39.09

+939, 48 +968, 66

-274.54 -272.05

-284,90 -291, 98

-175.70 -174. 08

-138.07 -159.77

+562.29 +559, 90

+237.81 +261, 63

+17.18 +13. 89

+123.83 +108 .73

+47.96 +63,72

+18.34 +27.14

+24. 50 +15.60

+61, 56 +75.55

+43, 46 +51. 38

+-6.76 -10.01

Runge-Kutta

Newmark Beta

Time 0,540 millisec.

Extensional Strains - in. /In. x 10

(zy} (e}
_____ +. 00
..... ~199. 61
..... ~217.66
+1270.73 -107, 83

t241. 906 +.00

+770. 75 +. 00

+ol4, 4& -231.72

+20.57 -lt. 4l

-£02,43 +375.44

-13z2,31 +. 00

-567.50 +.00

-227. 57 +150. 67

+125, 98 -110. 00

+650.73 -151,99
+562.96 +. 00
+671.30 +. 00

10,67 -178,20

+48,23 +14, 68

-54,91 -T0. 48

~37TL.77 +. 00

-171,06 +. 00
+1081 . 36 -45,12

+330. &5 +163, 50

-76.57 -211.32
+10, 36 +.00

Shear Straim, ny

-21.17
-246, 45
+ 551,40
-b42 . BT
-398.20
-1585.11
-585. 74
-500.15
-283. 65
-386.39

-3.00
+52.15
+166. 45
-37. 21
-137.558

-2.04

&

(e Y} le )
————— +.00
----- -208 69
--- - ~215.45
+1280.55 -107. 76
+278.91 + .00
+502. 486 +. 00
+794. &6 -215. 2&
+. &9 ~43. 2B
-436.07  +41l1.27
-155.4% +. 0O
-59%. 37 +. 00
-235.64 +160, 36

+132.22 -155,7%
+673.95 -163.16

+49%, 58 +.00
+619.57 +.00
+412,33 =156, 36
+56, B4 +28,29
-45,73 -Bb, £4
-361. 00 +.C0
-92.75 +.00
+1212.56 -43,10
+290.41 +210. 54
109,37 -273.64
+30.49 +.00

Shear Strain, Yxy
-Zb, 26
-260.69
+620.45
-662. 26
-454,76
+151.22
-617. &89
-~538.70
-297 .45
-3E4.50
-45, 84
+90. 32
+278,06
~70.38
-157 .55
+17.32

Runge-Ku
Tim
Extensional
€ |
( Y}
JIIIT
----- -
----- B
+1079. 82
+815, 74
-34.18 +
-27 .55 +
+184, 46 -2
-409.10
-608. 29
+48, 39 -2
- 148,03 +]
-216,12 +:
+216, 89
+587. &6

+164. 67 +
-129, 80 -
-381.77 +2

-600, 26

-676,89

10l 2,52 +4
+660. 49 -2
+87., 84 -2
-596.79

Shear Strain

+300, 37
255,71
~239.79
+446.70
+96,04
-24%.55
-402.12
+108. 87
-229,14
436, 26
-265. 88
+11, 88
+ 62,40
-59. 51
-208,02

-346.95
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valuesg calculated by the two methods agree very well, with the Runge-Kutta
Method giving a slightly greater response ahead of the crack than the Beta
Method. As the time increases, the values begin to deviate a little more,
and the Beta Method starts giving a larger response ahead of the crack. At

t = 0.700 millisec one of the differences in values, at node point 23 which

is on the fixed boundary, is 117 x 10_6 in./in. which is 18 per cent of the
initial vertical strain value. In the vicinity of the crack tip, the values cal-
culated by the two methods do not differ by more than 7 per cent of the initial
strain value. The reason for the differences is that the Runge-Kutta Method
has a trunca-tion error for cne step of the order of h5, and the TLLIAC computer
code for the Runge-Kutta Method of integration has a provision for reducing
round-off errors, whereas the Newmark Beta-Method, with 8 = 1/6, has a
truncation error for cne step of the order of h3, and the computer routine writ-
ten for this method did not have a special provision to reduce round-off. As
a resulf, in this particular case the Runge-Kutta Method of integration has a
smaller truncation error and could carry more significant figures than the Beta
Method.

Comparison of the values calculated with the two methods of integra-
tion shows that the same general results are obtained with each method.
After a large number of integration steps there are some deviations in values,
but these deviations do not change the overall picture of the transient strain
distribution in the lattice model. Either method of integration provides a sat-

isfactory solution for the problem.

SUMMARY AND CONCLUSIONS

This report has presented a physical lattice model suitable for investi-
gating strain-wave propagation in two dimensions and for investigation of the
transient strain redistribution associated with a crack that propagates in finite
jumps. Equations expressing elastic behavior of the model under plane-stress
conditions were developed for both static and dynamic conditions. The purpose

of this type of model is to provide an approximate solution for problems to which
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it is difficult or impossible to apply classical methods of analysis.

It was shown that the lattice model presented can be related to
finite differences of an Airy stress function for linearly elastic condi~ -
tions, Static equilibrium equations in terms of displacements were de-
veloped for plane-stress conditions. Equations can be developed for
plane~strain conditions by using the stress-strain relationships apply-
ing to the plane-strain assumptions. The lattice model can also be -
used to investigate non-linear elasticity by using an appropriate stress-
strain relationship in developing the equilibrium equations. A high-
speed digital computer of large memory capacity ig virtually a necessity
for numerical solution of problems of any complexity with the lattice
model.

Several statically loaded plates were analyzed with lattice models
having different numbers of subdivisions. Qne case, a square plate loaded
with parabolically distributed end tension, was solved by an energy method
and with a lattice model having three different sizes of subdivision. Aver-
aged energy-method stresses were compared to stresses calculated from
the lattice models. It was found that for this comparison the lattice model
gave excellent results., The greatest difficulty encountered with the lattice
model was in duplicating the boundary deformation where the end loads were
applied. Finer subdivision of the lattice model produced a better approxima-
tion of the loaded boundary deformation and gave more accurate results at
other points of the lattice model.

Two examples of concentrated effects, a plate with a pair of concen-
trated loads and plates containing a crack or pair of cracks, were presented
to show how the lattice model represents the strain distribution associated
with such effects and to get some indication of the change in representation
of strain distribution as the number of model-subdivisions changes. If steep
strain gradients are involved in a problem, a finely divided lattice model is
required to give a satisfactory representation of these strain gradients.

The differential equations expressing the dynamic behavior of the lat-
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tice model were developed by adding time-dependent terms to the static
equilibrium equations of the lattice model. Application of these equations

to a steady-state condition, and the calculation of natural frequencies of
lattice models are discussed. Frequencies for two examples and mode
shapes for one example are also given., Two methods of numerical integra-
tion were used in the analysis of crack propagation in lattice models. It

was found that the two methods of numerical integration gave essentially

the same results after a small number of time intervals. After a large num-
ber of time intervals one value differed by 18 per cent of the initial vertical-
strain value, while in the vicinity of the crack, differences were about 7 per
cent of the initial strain value; however, these differences did not change the
overall picture of strain redistribution in the lattice model. The computer
used for the integration of the differential equations expregsing the iransient
behavior of the lattice model could not be used for lattices having more than
40 bars without the calculation time becoming excessive. A lattice model
with only 40 bars is much too coarse to adequately represent the steep strain
gradients associated with a crack, and therefore such a coarse lattice can
only give a rough qualitative picture of the transient strain redistribution as-
sociated with crack propagation. In spite of the coarseness of the lattice model
used, a general picture of transient strain redistribution was given by the lat-
tice model .

Only undamped elastic behavior of the lattice model was considered be-
cause of the limitations imposed by the available computer, Damping and non-
linear deformational behavior could be treated with the lattice model if a very
large computer ig used for solution of the problem.

Several problems arise in solving dynamic problems with a lattice model.
One problem is that bars can be set into oscillatory motion when energy is fed
into or released in the lattice model. This has the effect of modulating strain
wavesg passing through the lattice model. Bar oscillations also occur as a re-
sult of reflections of strain waves from the lattice model boundaries. A second

problem, of more importance for strain waves originating from external dynamic
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loads than for transient strains associated with a crack, is that the elastic
lattice model has an electrical analog in the form of an L-C filter. Such
electrical filters have the property'cﬁ offering a varying resistance to the
passage of electrical disturbances of varying frequencies, passing some
frequencies with little resistance while stopping passage of‘ other frequen-
cies. Therefore, if the lattice model is to be used for investigation of
strain-wave propagation resulting from external loading, the possibility of
the existence of passing and stopping bands must be considered.

It is concluded that the lattice model presented in this report can
be used for the investigation of strain-wave propagation problems in two-
dimensions. The use of the lattice-model method of analysis is contingent
upon the availability of a large high-speed computer. It was not possible
with the computer available for this investigation to use lattice models hav-
ing very many bars, and only a crude picture could be formed of the transient
strain distribution in a plate with a propagating crack. When larger and
faster computers are used, the lattice-model method for investigating tran-
sient strains associated with a propagating crack can be used to theoretical-
ly investigate different aspects of the fracture process in an ideal plate re-
placed with a lattice model by assuming fracture critieria for nodes in the lat-
tice model and determining whether a crack would propagate or arrest. The
fracture criteria assumed could include internal damping, strain rates, strain
magnitudes, non-linear stress-strain relationships, and previous deformation

history.
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