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ABSTRACT

A physical lattice model that approximates a continuous material by reducing

it to a series of rigid bars and deformable connections is used in this report to inves-

tigate the transient-strain redistribution associated with a crack propagating through

a rectangular plate.

Equations are developed for equilibrium of the lattice model in terms of dis-

placements using plane-stress conditions. A complete set of equations is given to

cover all cases of boundary conditions that ordinarily wouid be encountered in appli-

cations of this lattice model. Results of several examples of statically loaded plates

analyzed with the lattice model show excellent agreement when compared with an en-

ergy method solution.

The differential equations expressing the dynamic behavior of the lattice model

are developed, and numerical solution of these equations is discussed. Examples are

given of application of these equations to a steady-state condition and the calculation

of natural frequenciess of lattice models. Several examples of the transient-strain re-

distribution associated with a crack propagating through a plate in finite jumps are

presented. Two methods of numerical integration that are suitable for transient solu-

tions of the differential equations are described and applied to the same problem with

resulting comparable satisfactory solutions.

An immense amount of calculation is involved in solving transient strain-wave

propagation problems with the lattice model, and a high speed digital computer is vir-

tually a necessity for numerical solution of problems of any complexity by this method.

—.



,-

CONTENTS

J?QLIS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Object and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Brief Review of Some Mathematical Solutions . . . . . . . . . . . . 3
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A Model for Studies of Two-Dimensional Wave Propagation . . . . . . . . 6

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Description of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Equilibrium as Related to the Airy Stress Function . . . . . . . . . 11
Equilibrium Equations in Terms of Displacements . . . . . . . . . . 16
BoundaryC onditions . . . . . . . . . . . . . . . . . . . . . . . . . ...19
Representation of a Crack-Type Discontinuity . . . . . . . . . . . 25
Summary of Static Equilibrium Equations for the Lattice Model. . 28

Numerical Results for Static Loading . . . . . . . . . . . . . . . . . . . . . . . 34

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Square Plate with Parabolically Distributed End Tension . . . . . 35
Square Plate with Concentrated Loads . . . . . . . . . . . . . . . . . 41
Uniformly Loaded Plates with Cracks . . . . . . . . . . . . . . . . . 41
Check ingof Bar Stresses.. . . . . . . . . . . . . . . . . . . . . ...43

Solution of Problems Involving Time Dependence . . . .“ . . . . . . . . . . . 45

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . ...45
Natural Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . .5 ..47
Gene ral Approac h for Solving Strain Wave or Crack Propagation

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Numerical Integration of Equations . . . . . . . , . . . . , . . . . . . . . . . . 52

Newmark Beta-Method of Integration . . . . . . . . . . . . . . . . . . 52
Runge-Kutta Method of Integration . . . . . . . . . . . . . . . . . . . 54

Numerical Results for Transient Strains . . . . . . . . . . . . . . . . . . . . . 57

General Remarks and Problems Considered . . . . . . . . . . . . . . 57
Variables Entering Into the Calculation. . . . . . . . . . . . . . . . . 57
Possible Difficulties in Solving Dynamic Problems with a Lat-

tice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6o
Solutions for Transient Strains with a Coarse Lattice Model . . . 60

Summary and Conclusions.. . . . . . . . . . . . . . . . . . . . . . . . . . ...73

Reference s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...77



.-.

Chairman:

Members:

BRITTLE FRACTURE MECHANICS ADVISORY COMMITTEE

for the

COMMITTEE ON SHIP STRUCTURAL DESIGN
Division of Engineering & Industrial Research

National Academy of Sciences-National Research Council

N. J. Hoff
Head of Department of Aeronautical Engineering
Stanford University

D. S. Clark
Professor of Mechanical Engineering
California Institute of Technology

Morris Cohen
Department of Metallurgy
Massachusetts Institute of Technology

F. J. Feely, Jr.
Esso Research & Engineering Company

Martin Goland
Vice President
Southwest Research Institute

G. R. Irwin
Head, Mechanics Division
Naval Research Laboratory

Egon Orowan
Department of Mechanical Engineering
Massachusetts Institute of Technology

W. R. Osgood
Department of Civil Engineering
Catholic University

M. P. White
Head, Civil Engineering Department
University of Massachusetts

.—

.



—.

.-.

—

—

—

INTRODUCTION

QQ.%Q am s-

The” purpose of this investigation was to develop a physical model that

would approximate a continuous material and be suitable for the investigation

of transient two-dimensional strain wave propagation. It was desired that this

model be able to represent a crack-type discontinuity in a plate and provide a

picture of the strain redistribution resulting from the release of internally stored

strain energy as a crack is initiated and grows in size.

The investigation was undertaken as a part of a study of the rapid propa-

gation of brittle fracture in low-carbon steel plates. The mechanics of brittle-

fracture initiation, propagation, and arrest have been the subject of intensive

study for many years. Under certain conditions of stress, temperature, rate of

loading, type and nature of material, and geometry, low-carbon steels often

fracture in a brittle rather than a ductile manner.

From the structural point of view, the term brittle fracture has become as-

sociated with a fracture that is primarily of the cleavage type, with little appar-

ent deformation, and one that proceeds at a very rapid rate once initiated. Such

a fracture can propagate through a steel plate at velocities of as much as 5000

fps or more. Usually there is no warning of impending failure, and in

stances where no barrier was present to stop a propagating crack, the

have bee~ catastrophic.
1

many in-

results

This rapid brittle fracture in which a crack somehow initiates and rapidly

propagates is the result of an inherent instability of the material. On the basis

of present understanding, the gross situation might be pictured as follows: The

elastic energy stored in

yielding of the material,

cient to cause cleavage

the crack has started to

the material, while not sufficient to cause general

may be, below certain temperatures, more than suffi-

fracture in the zone around the moving crack tip once

propagate. After a rapidly propagating brittle crack is

initiated, there is an intense transient strain field associated with the crack

front. 2

In the fracture zone at the head of the moving cracks, a combination of

.
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extremely high strain rate and very high tensile stress exists. This combina-

tion of conditions produces brittle fracture of the material in the immediate

fracture zone, and the released elastic energy in excess of that needed to pro-

duce the fracture is carried away from the fracture zone in the form of strain

waves. The velocity of the strain wave propagation is greater than the net

rate at which the crack grows, so that the zone of high strain

tensile stress extends ahead of the immediate fracture zone.

of the intense transient strain zone ahead of the crack causes

rate arid high

This extension

additional frac -

turing which releases more energy, and the whole system travels along as a

self-sustaining phenomenon until something brings it to a halt. It is empha-

sized that a comprehensive understanding of the brittle-fracture phenomenon

still does not exist.

A finite model that divides a continuous material into a definite num-

ber of pieces that behave according to certain rules can only provide an ap-

proximate representation of the continuous material. If the stress or strain

gradients existing in the continuous material are small, the approximation

with even a coarsely divided model will be fairly good. However, if the

gradients are large, a finely divided model is required to provide a good

representation of the distribution of strains.

Representing a cracked plate with a finite model has two important

disadvantages. First, the strain gradients associated with a“crack are quite

steep, and a very finely divided model would be required to provide accurate

qualitative information in the vicinity of the crack. Second, the model can

only simulate a crack having a length which is some multiple of the model di-

vision, and if the crack is to extend, it must do so in jumps of finite length.

In spite of these disadvantages, an investigation with a model of this type

has value in that it provides to some degree a quantitative picture of strain

redistribution for a propagating crack.

How finely the model is divided depends on the computing facilities

available; because there is an immense amount of calculation involved, solu-

tion of wave propagation problems by this method is contingent upon the

—
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availability of a high-speed digital computer.

Brief Review of Some Mathematical Solutions.—

A number of mathematical solutions have been devised to find the

stress or strain distribution associated with an elongated hole or crack in
3

an elastic material. The earliest of these solutions was given by Inglis,

who considered the case of an elliptical hole in a thin plate (where plane

stress or plane strain conditions may be assumed to apply) and solved the

problem in terms of curvilinear coordinates. The limiting case, consisting

of the minor. axis of the hole going to zero, represents the solution for a

plate containing a crack having a length equal to the major axis of the hole.

By using a complex variable stress function, Westergaard4 arrived

at the same result as Inglis but in a

method also covers cases of cracks

sure, and several other situations.

more easily treated form. Westergaard’s

subject to splitting forces, internal pres -

Griff ithb investigated the cracking phenomenon and derived an equa-

tion for the length of a crack that would become unstable in a brittle material.

Griffith’s theory considers the strain energy stored in a material and deter-

mines the stability of a crack of given length by comparing the decrease in

strain energy re suiting from the formation of the crack with the work required

to form new crack surfaces in the material. When more strain energy is re-

leased than is required to form new crack surfaces, the crack becomes un-

stable and should grow in size. 0rowan6 extended Griffith’s theory to the

case of cracks in steel by replacing the surface tension term with a plastic

work factor, and Irwin7 showed a parallel for certain ductile materials.

Neuber8 developed methods for computing stresses in notched bars
9and presented a cracking mechanism theory. Irwin, using Westergaard’s

method, expressed the stress environment at the end of a crack in terms of a
10

“crack extension force” for plane stress or plane strain conditions. McClintock

considered a crack within a field of uniformly applied elastic shear stress and

calculated the plastic field at the crack root as well as the general elastic

stress field.



All of the solutions
11

stationary cracks. Mott

-4-

which have been mentioned so far considered

extended Griffith’s theory and sugge steal that

the expression for balance of energy should contain a term including the

kinetic energy of the material as well as available elastic energy and sur-

face tension. Through the application of dimensional analysis, Mott ar-

rived at an expression containing a kinetic energy term. Roberts and

Wells
12

used Mott’s work as a starting point, Westergaard’s solution for

the kinetic energy distribution of the material and the distance a stress

wave could extend away from the crack tip as limited by the velocity of

longitudinal elastic waves to arrive at a limiting velocity for a crack propa-

gation in an elastic material.

Yoffe13 considered a moving Griffith crack of constant length 2a

translated at a constant velocity through an infinite plate. This steady-

state solution was based on elastic surface waves and Westergaard’s

static solution. It was concluded that a critical velocity exists beyond

which a crack will tend to curve or form branches.

Only a few of the more prominent references pertaining to the stress

or strain distribution associated with a crack have been mentioned here.

Since the report is concerned with the development of a method for calcu-

lating transient strain effects associated with an extending crack, no at-

tempt has been made in this brief review to give a comprehensive survey

of published literature. The few references reviewed here are only in-

tended to provide background information on available solutions for the

stresses and strains associated with cracks in plates.
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Notation

The notation that follows has been adopted in this report. Each

term is defined

ienc~.

IA! =

—

l:] =

c=

I)=

d=

E=

F=

G=

h=

i=

j=

m=

n=

P’

P=

s=

T=

t=

u=

v=

when first introduced but is summarized here for ccmven-

Matrix of stiffness coefficients

Acceleration

Mass matrix

Amplitude

-(1 - v2)/Ed

Plate thickness

Young’s modulus = 30 x 106 psi for all examples

Extensional force

Shear modulus = E/2(1 + v)

Integration time interval

Variable subscript

Variable subscript

Mass

n-th bar, n-th time interval, etc.

Concentrated load or load factor for parabolic load

Natural frequency = w/2 m

Shear force

Period of vibration

Time

Displacement in x-direction

Displacement in y-direction
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x=

Y=

x=

Y=

a=

P=

Y=

6 =

c=

1=

v’

o-=
T=

~=

+=

u.)’
74=
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Body force in x-direction

Body force in y-direction

Direction of axis or variable

Direction of axis or variable

Undetermined coefficient

Parameter used in Newmark method of integration

Shear strain

Phase angle

Extensional strain

Grid or bar spacing, eigenvalue

Poisson’s ratio = O. 30 for all examples

Extensional stress

Shear stress

Airy stress function

Stress function in energy method

Circular frequency

Biharmonic operator

—

—

—

—

.—

A MODEL FOR STUDIES OF TWO-DIMENSIONAL WAVE PROPAGATION

General

Sometimes it is necessary to resort to an approximate method in order

to investigate the strain and stress distribution in a body. Among the approxi-

mate procedures previously used for the investigation of two-dimensional elas-

ticity problems, which are not readily treated by exact methods, are finite dif-

ferences and physical analogies such as lattice, bar, or framework methods.

Usually the lattice or framework methods used for solution of two-

dimensional problems involving plane stress or plane strain conditions can be

shown to be the physical representation of the finite difference formulation of —-

some set of elasticity equations. Even though there is an equivalence between

the finite difference procedure and the lattice analogy procedure, each of these

methods can be derived independently and each is subject to certain peculiari–
-.
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ties. The use of a phys

something which is easi,

boundary conditions.

cal model is convenient because the model provides

y visualized and facilitates the treatment of difficult

Hrennikoff’4
15

and McHenry have described the development and ap-

plication of several lattice’~’ or framework analogies for solution of two-dimen-

sional static elasticity problems. Their analogies consist of replacing a plate

of continuous material with a network of elastic bars, pin-connected to each

other at the ends, to form a lattice whose deformation in any direction under

any form of loading duplicates the deformation of certain points on the original

plate. Any distributed loading acting on the plate is replaced by statically

equivalent loads acting at joints of the lattice. Each bar forming the lattice is

considered as an”elastic member, and the areas of these bars are selected so

that there are identical deformations at a certain number of points in the con-

tinuous plate and the analogous lattice. One peculiarity of the lattices de-

scribed by Hrennikoff and McHenry is that the value of Poisson’s ratio must be

taken as one third in order to satisfy identically equilibrium and compatibility

conditions. Hrennikoff suggests several lattices that may overcome this dif-

ficulty; however, the use of these lattices would he quite cumbersome.

The lattice model developed in this report is shown to be the physical

analog of an Airy stress function expressed in terms of finite differences. The

report describes the lattice model, as well as the correspondence between the

model and continuous plate that it replaces. The equations of equilibrium for

the lattice model are developed in terms of Airy’s stress function, and the

stress-strain relationships of linear elasticity are then used to develop equi–

librium equations in terms of displacements of the lattice model bars.

Description of Model—

The part icular model used for this investigation of two-dimensional wave

.— propagation and to represent a crack-type discontinuity was suggested by Dr.

‘:<The term “lattice” or “lattice model” will hereafter be used to refer to a
physical model made up of a system of bars and is to be considered to include
the terms “bar” or “framework. “
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N. M. Newrnark. This model replaces a thin plate witha rmmberof dis- —

crete units composed of rigid bars, each having a definite mass, which are

linked together through massless deformable connections. Displacements,

deformations, and forces in the lattice model formed by the discrete bar

units are made to agree as closely as possible at definite points with the

displacements, deformations, and forces at the equivalent points in the

thin plate that the model replaces. —.

In order to illustrate and identify different parts of the model easily,

it is convenient to use a schematic drawing. Such a schematic drawing of
.

a model that replaces a square plate is shown in Fig. 1, The model illus-

trated divides the original square plate into sixteen square units having a

width of A on each side, where A equals the plate width divided by the num-

ber of units (four) into which the plate width is divided. It will be assumed

that the dimensions of my rectangular plate to be represented with this model

are such that the plate can be divided into some number of square units. Each
-

unit of the model is composed of four interconnected rigid bars which are drawn

to a convenient width in Fig. 1 for ease of visualization. In an undeformed

condition, the lattice of bars forming the model are either parallel or perpen-

dicular to each other and have their centerlines spaced at%he distance X.

A system of notation is needed to describe th~ lattice model and readily

identify different lattice model parts and their locations. The system of nota-

tion used is shown in Fig. 1 and consists of a grid of lines parallel to the in-

dicated x- and

ranged so that

terline of bars

two lines, one

y-axes. The lines are spaced at a distance of k/2 and are ar-

in the undeformed lattice model these lines either form the ten-

or pass midway between the bars. Each bar is then bisected by

forming the centerline of

the bar length into two equal sections.

and proceeding in the positive direction

—

the bar and the other laterally dividing —

Starting at the lower left-hand corner

of the x- and y-axes, the lines form-

ing the bar centerlines are assigne’d numbers. The remaining grid lines, situ-

ated between bars, are similarly assigned Ietters. If the numbers and letters -.

are used as x- and y– coordinates, the point formed by the intersection of any

.
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FIG , 1 LATTICE MODELOF RECTANGULARPLATE
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—

wo grid lines carI be identified with a combination of letters, numbers, or a
letter and a number. Only points formed by the intersection of grid lines are

considered to have meaning in the lattice model, and when reference to such

a point is made, it is done so by either giving the appropriate letters and num-

bers or using them as subscripts of terms defined at- that point.

The following definitions are used with the lattice model as shown in

Fig. 1.
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L - Spacing between lattice model bars

d - Thickness of plate represented by the lattice model.

uandv - Displacement of a point, from the initial POSition in the

lattice model, in the x- and y-directions, respectively.

bar

Positive displacement is in the positive x- or y-directions.

- A rigid bar drawn to any convenient size for purposes of

illustration. The mass of each bar is equivalent to a sec-
2

tion of plate having the dimensions 1 d or X2d/2 depend-

ing upon whether the bar is in the interior or at the edge of

the model. A typical interior bar is b-3 and a typical edge

bar is 5-b.

displacement
The point at the center of a bar coinciding with the inter-

point -
section of two grid lines. Displacement is only defined at

node

these points and is in the direction of the x- or y-axes.

This is the displacement u or v and the bar referred to is

identified by letter and number subscripts such as ub ~ for

displacement of bar b-3.

- A point at the intersection of two or more bars. A1l exten-

sional deformation or strain and associated extensional

forces or stresses are concentrated at the node points. For ‘

illustrative purposes, the nodes are drawn as small squares

the same width as the bars such as node 3-2.

—.

.—

.

.

shear point – A point midway between the bars making up the lattice model.

All shear deformation or strain and associated shear stresses

and forces are concentrated at these points. A typical shear

point is c-b.

extensional
force F -

A force which acts on the end of and along the axis of a lattice

model bar. This force is the statical equivalefit of the force
—

acting across a section of the plate that the bar replaces. Posi-
-.

tive force, positive stress 0, and positive strain c are associ-

ated with a linear extension of a piece of elastic material. The
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extensional forces are applied to bars at node points.

shear force S - A force that is applied to a lattice model bar at the dis-

placement point whose lines of action are along the axis

of the bar. This shear force is the statical equivalent of

the shear force acting along a section of the plate replaced

by the bar. Positive shear force is associated with posi-

tive shear stress and strain as defined in books on theory

of elasticity, for example,
16

as in Timoshenko and Goodier.

body force - Force resulting from gravity or any other time independent ef-

fect. A body force is considered to act at the displacement

point and along the axis of a bar. Body forces in an x-direc-

tion are denoted by X and body forces in the y-direction are

denoted by 7. The positive direction of a body force is in a

direction opposite to the positive direction of the x- and y-

axes.

Deformation behavior of the continuous plate is approximated in the

lattice model by stretching or compressing the deformable nodes for extensional

strains and changing the angles between bars for shear strain. The shearing re-

sistance of the lattice can be visualized as a set of elastic rods connecting the

bars at their deformation points as shown in Fig. 2, or as a four-armed spring

device that opposes changes in the angles between its arms, which are con-

nected to four-bar displacement points, as shown in Fig. 3. The four-armed

spring is used in Fig. 1 because it is easier to visualize.

Typical interior bars such as b-3 and 3-b in Fig. 1 are taken as free

bodies in Figs. 4 and 5 to show the forces that could be acting on the bars..

The line of action of all the forces actually must pass through the displacement

point at the center of the bar--the shear forces are drawn at the sides of the bars

for clarity. The directions of the forces as shown are for POSitive strains and a

positive body force.

Equilibrium as Related to the Am Stress Function——

Equilibrium of the model can be developed in terms of finite differences

—
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of Airyts stress function. Such a development shows that the lattice model can

be thought of as a finite physical representation of the Airy stress function

method for solving an elasticity pl-oblem.

The general solution to an elasticity problem must satisfy three sets

of equations: equilibrium, compatibility, and boundary conditions. Simplify-

ing assumptions are made regarding one of the displacements or one of the

stresses to obtain the plane strain or plane stress conditions and thereby re-

duce a three-dimensional problem to one of two dimensions.

The Airy stress function has been shown
16

to provide a convenient so-

lution for problems of plane stress or plane strain. If a function~’ +(x, Y),which

hereafter is called the Airy stress function, satisfies the biharmonic equation
4

V ~ = O, then the equilibrium and compatibility equations are exactly satis-

fied for plane strain conditions and approximately satisfied for plane stress

conditions. The approximation in plane stress problems occurs because for

plane stress conditions it is assumed U = ~xz = ~ = O and that (TX, (TY, and
z yz

T are independent of z. These assumptions imply that ex, c Ez, and Y
w Y’ w

are independent of z and that Yxz and y are zero. The compatibility equation
yz

.

—

-—

. .

—

.

--

—

——

Wnless otherwise noted the symbols for stress, strain, and the Airy stress
function are the same as those defined in Theory Q Elasticity by Timoshenko ‘
and Goodier. 16
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b2~x/ay2+ a2Ey/aX2 = a2Yxy/axaY (1)

—

.,-

—

—.

-.

..—

—.

is then satisfied by the strain components E ey, and y . however, in
x’ Xy ‘

the general three-dimensional case there are five other compatibility

equations which must be satisfied with the above assumptions. All five

of these remaining compatibility equations are satisfied only if e is a
z

linear function of x and y. The strain Q must satisfy the condition
z

E =-v(Ux+ Uy)/E = .3X+ by+ C
z

(2)

where a, b, c are constants.

This condition is not always satisfied in plane stress problems.

Generally, for such problems, yxz, Yyz, and Oz are different from zero

and vary through the thickness of the plate. It is shown in Timoshenko
16

and Goodier, however, that for thin-plate problems the solutions ob-

tained from the plane strain approximation to the plane stress problem

are reasonably good approximations to the “exact” solution. It will be

assumed in this report that the plates considered are thin enough so that

a satisfactory plane” stress solution will be obtained from an Airy stress

function that satisfies V4 ~ = O.

When a stress function ~ (x, y) is known for a particular problem

the stresses are found from the following relations.

One interpretation

tion to represent a

cry ‘ a2+/ax2

T =- a2~/axay
Xy

(3.1)

(3.2)

(3.3)

of the stress function ~ (x, y) is to consider this func -

three-dimensional surface extending over the plate .

—

-
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The stresses can then be interpreted as being represented by the curvature

or twist of this stress surface.

Assume some stress function that satisfies both V4~ = O and the

boundary conditions is known for a rectangular plate subject to some form

of loading. If the magnitude of the stress function at any point is repre -

sented by an ordinate perpendicular to the surface of the plate, these

nates will form a three-dimensional stress surface over the plate. As

plate is to be represented by a lattice model, it is marked with a grid

ordi-

the

of

spacing ~ as shown in Fig. 1. Equilibrium of a typical lattice bar will now

be shown to exist by using finite differences of the Airy stress function.

Consider a typical bar of the lattice model (shown in Fig. 1) such

as b-3 which extends in the direction of the x–axis. Neglecting the body

force there are four forces which act on the bar. These forces are F23 and

’33’
corresponding to extensional forces in the plate, and Sbc

and S
bb’

corresponding to shear forces in the plate. AH of these forces acting in

their positive directions are shown in Fig. 4.

Each of the forces acting on bar b-3 represents the total force in a

section of plate having an area Ad. If U~3 is considered to be the average

stress in the x-direction of a plate section extending from point 2-c to

point 2-b, which the bar b-3 replaces, the bar force F~3 is given by the re-

lation
x

‘23
= U:3Ad (4)

In the lattice model the stress U~3 is at point 2-3. Defining the stresses

0~3, Tbc, and Tbb as the average stresses along a width of plate replaced

by the lattice bar, the remaining three forces ar~ given by the relations

—

.

-..

.-

—

—

.

—.

---

—

—-

Fx
33

= U~3 Ad (5.1)

sbc = ‘bc
Ad

—..

(5.2)
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‘bb ‘ ‘bb
id (5.3)-..

—

----

In order to have a state of equilibrium for the bar b-3, the following equa-

tion must be satisfied.

F~3 - F~3 + Sbb - Sbc = O (6)

Referring to Eqs. 3 it can be seen that the plate stresses can also

_.., be expressed in terms of finite differences of the Airy stress function. The

same grid points are used for the finite difference equations as are used for

.- the lattice model (points 2-4, 2-3, etc. ). Denoting the value of the stress

the plate stresses in terms of fi-

equations:

function at the grid

.— nite differences are

points by a subscript,

given by the following

422)A2 (7.1)---

..._

-—

(7.2)

(7.3)‘bc = (+24 + +33 - +34 ‘~#2

—

—

(7.4)

differences are taken to be

the grid spacing X. If the

4 and 5, the lattice model

The stresses express~d in terms of finite

the average stresses in a width of plate equal to

substituted in Eqs.
--

stresses given by Eqs. 7 are

bar forces are given in terms
.,—.

in the following equations:

of finite differences of Airy’s stress function

(8.1)

---
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s
bc = d (424 + 4’33 -4’34- d23)/k

(8.2)

(8.3)

(8.4)

When Eqs. 8 for the bar forces are substituted in bar equilibrium Eq. 6, the

following identity is found showing that Eq. 6 is satisfied.

[
d d’24 - 2423 + +22 ‘ 434+ 2+33 - $32+ 423+ 432

- +33 - +22 - ‘$24 - +33 + 434+ +23]/k = O (9)

An interior lattice model bar is therefore in equilibrium in terms of finite dif-

ferences of an Airy stress function, which is a solution for the particular

problem considered. Because the model is related to an Airy stress function

that satisfies the e~uilibrium and compatibility conditions, the model satis-

f ies the biharmonic equation in finite form in addition to the equilibrium and

compatibility conditions.

Equilibrium Equations in Terms of Displacements—— —

Static equilibrium of the lattice model can be expressed in terms of

displacements by relating strains in the lattice model to the stress–strain

relationship of classical linear elasticity. In the lattice model, strains are

calculated from the differences in displacements of adjacent bars divided by

the original distance between the displacement points of the bars.

The extensional strains at some typical extensional deformation point

in the lattice model, such as deformable node 3-3, are

---

-.

-.
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Shear strains,

the unstrained

which are

state, are

x

[’33 = ‘c3 - ‘b3 1
/1

~Y
[33 = ‘3c “ ‘3b 1

- /1

(10.1)

(10.2)

the changes in values of an originally right angle in

defined in the lattice model in terms of the displace-

ments of four points surrounding the point at which the shear strain is calcu-

lated. Thus, for a typical shear point in the lattice model such as b-c the

shear strain is

‘bc [= ‘b4 - ‘b3 + ‘3c - ‘,2C1
-/h

The stress- strain relationships for linear elasticity and plane stress

are given by the following equations:

[
ax =E ““Qx+ vcy]/(1-v2)

i
my = ~ ‘“cy+ vE-]/(1-vj

T = G Yxy
Xy

(12.1)

(12.2)

(12.3)

where

E = Young’s modulus

G = Shear modulus = E/2(1 + v)

V = poisson’s ratio

When the lattice model strains in terms of displacements are substituted in

Eqs. 12 for stress, the stresses in the lattice model in terms of displacements

are given by the following equations for extensional node 3-3 and shear joint

b-c .

x
’33 1

=E-UC3-U
b3

-t V(v
3C 1- ‘3b) /~(1 - V2) (13.1)
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CT;3 [= E V3C - v3b 1- V(UC3 - ub3)
1

/A(l - V2)

‘bc [= G ‘b4 - ‘b3 + ‘3c - ‘2c ]/ h

(13.2)

(13.3)

.

Each of the forces acting on a typica~ bar can be expressed in terms of

displacements by substituting the stress given in terms of displacements into

the relations F = OAd and S = ~~d. If the forces expressed in this manner are

substituted into the equilibrium equation for a lattice model bar, the equilibrium

equation will then be formulated in terms of displacements. The equilibrium

equations will hereafter also include the body force terms X or ~.

The equilibrium equation for the typical interior lattice model bar b-3 is

x x
’23 - ’33 -t Sbb - Sbc+x=o (14)

When the forces in Eq. 14 are formulated in terms of displacements the follow-

ing equilibrium equation re suits.

Ed[ub3 - Ua3 + ‘(v2C - ‘~b)]\(l - v2) - Ed[uc3 - ub3 -I- v(v3c - V3b) ]/(1 - ‘2)

Li-Gd “U
b3 - ‘b2 ‘v3b-v2b]- Gd~b4-ub3+v3c -v2c] +X= 0 ‘“)

Substituting the relation G = E/2(1 + v) and simplifying leads to the equation

[
Ed ‘(3 - V) Ub3 - UC3 - ua3 - 1/2 (1 - v)(ub4+ ub2)

+ 1/2 (1 + w(v2c - Vzb+ v3b - v 3c) ]/(1 - V2) +X= o (16)

This is the

body-force

equilibrium equation for bar b-3 in terms of displacements with

terms not enumerated. Similar equations can be found for other

—
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.
interior bars extending in the horizontal or vertical directions.

Because the form of the equations is the same for all internal bars, with

only the subscripts changing, it is convenient to represent the equations in a

schematic form. This is accomplished by making a line drawing consisting of

only the centerline of the bars whose displacements enter into the equilibrium

equation (Eq. 15) and marking the displacement points on the centerlines at the

appropriate points. The coefficients of each

next to the corresponding displacement point

is drawn at the displacement point of the bar

displacement point are written

orI the line drawing. A cross mark

to which the equilibrium equation

.-

- .-

. .

----

.-

applies. Then if this skeleton line drawing is imagined to have the same scale

as a lattice model and is superposed over any interior bar with the cross-marked

point over the center, of the bar, the coefficients would be placed next to their

proper displacement points. The equations may also be multiplied by (1 - v~)/Ed

or some other constant, so these terms do not have to be carried with each co-

efficient. The equilibrium equation in skeleton form for a typical interior bar

running in the x-direction is shown in Fig. 6.

Bounds ry Conditions

Boundary conditions for the lattice model must be established such that

the bars along the boundary are in equilibrium and provide a satisfactory repre-

sentation of the boundary conditions in the plate represented by the lattice

model. The types of boundary conditions to be considered are (1) free

edge with or without applied loads, (2) edge given a specified dis-



placement, or ( 3) any combination

Consider a typical section
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of these two conditions.

along the boundary of the lattice model

as shown in Fig. 1. In order to provide a smooth boundary for the model, a

displacement point must be defined on the boundary with the displacement

taking place perpendicular to the boundary. If a physical interpretation of

this displacement point is desired, it can be imagined that there is a small

plate placed over the deformable node on the boundary as shown in Fig. 7

and that a displacement point is defined at the midpoint of this plate. Any

normal components of loads acting on the boundary will be applied through

this point. If the normal components of the loads are distributed along the

boundary they are concentrated into statically equivalent loads using the

Newmark formula for equivalent loads.
17

If the normal components of the

loads are concentrated forces that fall between boundary displacement

points, the forces are distributed to the displacement points on each side

of the force. Boundary loads that do not act perpendicular to the boundary

are resolved into normal and tangential components, which are then con-

centrated into statically equivalent forces. These statically equivalent

forces act through the displacement point of the bar parallel to the bounda-

ry if it is a tangential force and at the edge displacement point if it is a

normal force.

With the boundary displacement points just described, the strains

in a deformable node along a boundary such as node 5-3 in Fig. 1 will be

x

’53 [= 2 ’53- ‘d3 1
/1

~Y
53 = [‘5C - ‘5b 1

/A

(17.1)

(17.2)

.—

.

Shear strains along the boundary of the lattice model expressed in terms of

displacements are not directly affected by the boundary conditions.

When the edge of the plate is free to move but has some distribution

of loading in the form of normal and shear stress along the boundary, the
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plane stress elasticity stress-strain condition at a y-direction boundary is

Crx=u
Boundary = E(cx+ ‘cY)/(l - v2) (18.1)

my ‘ E(CY -1-Vex)/’(l - V2)

or, because boundary stress only is specified,

Substituting Eq. 19 in Eq. 18.2, we have

[
OY=ECY+V(

1-V2
1

Ox - v~y) /(1 - V2) = Ecy+ v~x
E

The forces applied to bars on or terminating at the boundary would be

Fx = MFX = Equivalent Concentrated Normal Force

Ad ki–
Fy=z Ecy+~YUx+~M

(18.2)

(19)

(20)

(21.1)

(21.2)

where

5X = Average uniform normal force equal to the concentrated force

found by applying the Newmark parabolic formula divided by M

? = Average uniform shear force applied to the boundary

Equilibrium of a bar that intersects the boundary, such as bar d-3 in

Fig. 1, can be written in terms of displacements and equivalent concentrated

boundary loads. Substituting the expressions for strain in terms of displace-

ments into the appropriate bar force equations and writing the equilibrium con-

dition in terms of these forces gives the equation
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[
Ed Ud3 - UC3 + V(V4C - v

1~b) /(1 - V2) - Fx53

—

1+Gdu
d3 - ‘d2 + ‘5b - ‘4b 1

“ Gd [“d4-ud3 + ‘5C - ‘4C 1
+X=o

or, by substituting G = E/2( 1 + P) and combining,

Ed
[2( 2-v)ud3- UC3+ ;(1+V)(V4C - v

l-v
~b)

1-- 2(1 - v)(ud4 + ud2 - V5C + v4b)
1

x

- ’53
+~=o

(22)

(23)

This equation is shown in skeleton form in Fig. 8. Equations for bars of the

same type but of diffarent orientation will be presented later.

A bar lying along a free edge would be one simiiar to” bar .!!i-b in Fig 1.

Considering the equilibrium of the bar in terms of forces and then expressing

the forces in terms of displacements or concentrated boundary loads gives the

equation

Ed
[ 1

Vx Ed-—
— v5b - ‘5a2 [+ ~F52 2 ‘5c - ‘5b 1

v Fx

-2 53 [
+Gdu

d3 - ‘d2 + ‘5b - ‘4b 1

+Y’o (24)
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where any tangential boundary force is in-

cluded in ~. This may be rewritten as

Ed[(3 + 2v)v5b - (1 + v)(v5a + V5C) + ud3

- ‘d2 - ‘4b 1
+ v(1 -I- V)(F~2 - F:3)

+2(1+ V)Y’O (25)

This equation is shown in skeleton form in

Fig. 9.

Should the x-direction boundary dis-

placement be required, this could be com-

puted with the following formula:

+~l-vz x
‘53 [= ‘d3 2 Ed ’53

- V(V5C

- v5b)1 (26)

-j(k)

+ @[i - Fq= o

+$(1-V)

FIG. 8 BKWZTON EQMTION FOR BAR IN1’E.RSEL?TING

A FREE mARY

@

+1

-1
[

~, - ~,)+(3+2V) + & v(l+v)(iJ
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i

-(1*)
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A second boundary condition, which for convenience is called here the

fixed-edge condition, is the case where boundary displacements must be in-

cluded in the equilibrium equations. This condition occurs when a boundary is

given an initial displacement and then held fixed, or when it is desirable to

find boundary displacements as a re suit of loading elsewhere in the plate.

When the boundary displacement is considered for a bar such as d- 3 (Fig. 1),

which is perpendicular to the edge, the equilibrium equation in terms of dis-

placements is

E@d3-UC3 4C - ‘~b)ji( 1- Vz)-+(U53 - ‘d~) + ~(v5c+ V(v - ‘~b) J
(27)

/(1 - V2) -t-Gd[ud3 - Ud2 -F V5~ - V4b] - Gd[ud4 - ud3 + v5c - v4c]+ ~= ()

-. .-.
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Ed2 [(4 - v)ud3 - UC3 1- ; (1 + v)(v4c-v4b
l-v

1 1- V)(IJd2+ ‘d4)
- ‘5C +v5b)-# ‘ 2U53 1

This is

(28)

shown in skeleton form in Fig. 10.

The boundary force re suiting from

the specified displacement of boundary point

5-3 is

Fx x

Boundary ‘ ’53 (29)

and can be found from the calculated dis-

placements as follows:

(30)

x Ed
[

= — 2(U53 -
’53 ~ - ~2 Ud3) + ~(vgc - ‘5b)

1

If it is desirable to calculate the displace-

ment of a point along a boundary, an equa-

tion must be written for this point in the

same manner as those written for bars. Equation 30, which is the equation for

the boundary point, is shown in skeleton form in Fig. 11.

When the additional displacement points are included for a bar such as

5-b which is lying along the boundary, the equilibrium equation will be

Ed
[ 1

Ed v
‘5 b - ‘5a + 2V(U - ‘d~) - [ ‘v5b + 2V(U5 s - ‘d3) 1[

+ Gd Ud3
2(1 - V2)

52
2(1 - V2) 5C

- ‘d2 ‘v5b - ‘4b 1
+~=() (31)
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or

Ed
[(3- ~ )v5b - v5a - V5C+ 2LJ(U52 - U53)

2.(1 - rJ2)

1
+{l+v)(ud3-ud2) -(1 -v)v4b +7= o (32)

This is shown in skeleton form in Fig. 12.

Similar equations can be developed for bars having a different orien-

tation forming the corners of the lattice model. Because development of these

equations is just a repetition of the methods already illustrated, only the re-

sults will be given in a later section of this report.

Representation of a Crack-Type Discontinuity. . —

A crude representation of a crack-type discontinuity may be made in

the model by considering certain of the rigid bars to be split down the middle

and attached at their ends to the extensionally deformable nodes. This re-

quires that the shear stress on each side of the discontinuity be the same so

that the displacements of the midpoints of the two halves are identical, or,

in other words, so that no shear stress can be transmitted across or exist on

the surface of the crack.

The requirements of equal shear will be satisfied if the axis of the

crack extends along a line of symmetry in the plate. Thus, the axis of the

crack could extend along the centerline A-A of the plate shown in the upper

part .of Fig. 13. Minimum length of the crack is one lattice spacing for an

edge crack or two lattice spacings for an interior crack. The actual formation

of the crack takes place because of a separation or fracture of the extension-

ally deformable nodes, with one-half of each node remaining with one bar

half, as shown in Fig. 13.

By using the assumption of zero shear on the crack surface, it is pos-

sible to write displacement-equilibrium equations that satisfy the boundary

conditions for the bars forming the crack. First consider a lattice model rep-
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resenting a cracked plate as shown in Fig. 13. Here the crack extends from

the edge up to node 2-1. Both halves of each bar will be considered to con-

tribute equally to each equilibrium equation and to have identical displace-

ments. With both surfaces of the crack free from loads, the equilibrium of a

split bar forming the end of a crack such as b-1 in Fig. 13 will be

(33)
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When expressed in terms of displacements,

it becomes

Ed
[2 ‘bl - ‘al

+ V(2v2a)] - Ed[ucl
l-v

- %]’ 2Gd[ub2 - ‘h,+ ‘3a - ‘2al

+~.(1 ( 34)

which can be simplified to the following

relation:

‘d 2[(3 - v - Vz)ubl - Ual+ (1 + v)v2a
l-v

- (1 - v)(ub2 - v3d )-(1 -V2)UC1]

+~=o (35)

This is shown in skeleton form in Fig. 14.

A bar forming the surfaces of the

T---T
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crack but not

Fig. 13. The

at the tip or intersecting a boundary is one such as bar c- 1 in

equilibrium equation for this bar in terms of displacement

][
‘ _ 2Gd[uc2 - ‘cl

‘bl - ‘d ‘dl - ‘Cl- + ‘4a 1- ‘3a.
+~=o

is

(36)

or

~ [(3 i- 2V)UC1 1- (1 + ‘)(”b~ - ‘d~) - uc2 - ‘4a+ v3a ‘x= 0 (37)
l+V

This equation is shown in skeleton form in Fig. 15.

A bar forming the surface of the crack and intersecting a free edge is

one such as bar d-1 in Fig. 13. The equilibrium equation for this bar in terms

“of displacements is
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[ 1 [
Ed Udl - Ucl - F;l - 2Gd Ud2 - udl + V5a - v4a] i-x=o (38)

or

+-[(2+Wdl - (1 + Wcl 1
x

‘ ‘d2 - ‘5a + ‘4a - ’51
+~=o ( 39)

This equation is shown in skeleton form in Fig. 16.

Because the surface of the crack is the same as an unloaded free edge,

bars that terminate at this boundary (such as bar 3-a in Fig. 13) have the same

equilibrium equation as a bar that terminates at a free boundary. Similarly a

bar such as 5-a in Fig. 13 is the same as a corner bar along a free edge.

Summary Q Static Equilibrium Equations for the Lattice Model.—

Using the assumptions of plane-stress conditions, equilibrium equa-

tions in terms of displacements have been developed in previous sections of

this chapter for several bars forming various parts of the lattice model. In

each case an equation was developed for a particular bar having a certain

orientation and using the notation, as shown in Fig. 1, for displacement points

involved in the equilibirum of the bar.

terms of definite displacement points,

in a skeleton form so that the equation

bar of the same type and orientation.

When the lattice model is used

plate plane-stress problems, the plate

the problem is thus reduced to solving

After the equation was developed in

the equation was expressed graphically

can be universally applied to any other

for the approximate solution of thin

is replaced by the model. Solution of

for stresses and strains in the model,

which approximate the stresses and strains in the plate. The first step in the

analysis is to determine the number of units (and therefore the number of bars)

in the model. After the number of bars is known, one equilibrium equation, ex-

pressed in terms of displacements, is written for each bar of the lattice model.

Solution of the set of bar equilibrium equations determines the bar displace-

ments for the particular boundary and loading conditions specified. Strain a’nd

stress can then be calculated in the lattice model, at points where these quanti-
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ties are defined, from the bar displacements.

Displacement-equilibrium equations are therefore required for every

type of bar, boundary condition, and bar orientation that may be encountered

in solving problems with the lattice model. A summary of bar equilibrium

equations for most of the conditions that may be encountered in solving static

problems with the lattice model is given in Figs. 17 to 60 in graphical skele-

ton form. Derivation of these equations (except for cases derived in precedi-

ng sections) is not given because of space limitations and to avoid repetition.

Some of the equations in Figs. 17 to 60 have been multiplied by a constant so

that the matrix of coefficients of the unknown displacements for any set of

these equations, written for a particular lattice model, will be a symmetric posi-

tive definite matrix.

The standard notation used in Figs. 17 to 60 is ~s follows:

D= - (1 - v2)/Ed

F = Statically equivalent concentration of forces applied at a boundary

displacement point which is marked with a capital letter and which

is also used as a subscript of F to indicate that F has been applied.

A superscript x or y is also used to indicate in which direction the

force acts.

~ and ~ = Body forces acting on the section of plate repiaced by a bar. Sur-

face forces and tangential components of boundary loads are includ-

ed in the body-force terms.

As previously explained, the graphical skeleton form of illustrating an

equation utilizes only the centerlines of bars involved in the equation. A

cross mark on one of the centerlines indicates the bar to which the equation ap-

plies. If a scale drawing of the model is made and the skeleton equations are

drawn to the same scale, the skeleton equation for a type of bar could be super-

posed, physically or by imagination, over any bar of the same type and orienta -

tion. The coefficients on the skeleton equation are then placed next to the proper

displacement points on the lattice model and their identification can be made.

Hereafter only the centerlines of lattice model bars will be drawn in the
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figures, and the simpler notation of assigning a number to bars, nodes, and

shear points will be used. A few comments pertaining to groups of equations

which apply to various boundary conditions are given below.

Figs. 17 and 18 -

Figs. 19 and 30 -

Figs. 31 to 47 -

Figs. 48 to 55 -

Figs. 56 to 59 -

Fig. 60

General

Analyses of

Equations applicable to all interior bars of the lattice model,

Equations applicable to edges of the lattice model that are

free to move but may have applied loads.

Equations applicable to boundaries ‘that are fixed in position,

or to some combination of fixed and free edges.

Equations applicable to points in the lattice model that

at lines of symmetry.

Equations applicable to points on or adjoining a crack,

are

This equation is a sample equation of the type that would ap-

ply if residual stress was introduced in one of the nodes of

the lattice model. The internal force re suiting from the re sidu-
Y

al stress is F
res. “

NUMERICAL RESULTS FOR STATIC LOADING

several cases of rectangular plates involving several different

boundary conditions are presented in this chapter. A comparison is made, in one

case, between the lattice-model analysis and the solution

with an energy method. Several of the examples analyzed

of changing the number of divisions, or “fineness, “ in the

of the same problem

also indicate the effect

lattice model.

The procedure followed in each case is similar. The plate is divided into

the appropriate number of divisions for the lattice model representation; applied

loads are converted into statically equivalent loads applied to the bars of the

model; appropriate equations, developed and summarized in the preceding chapter,

are written for each bar of the model; and the result is a set of simultaneous line-

ar equations with bar displacements as unknowns. For plate and loads symmetri-

cal about -two axes, only one quarter of the plate need be considered; for plate

and loads with one axis of symmetry, only one half of the plate need be considered;
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and if there is no axis of symmetry with respect to the plate and ioads, then

the entire plate must be considered. Solution of the linear equations deter-

mines the bar displacements from which strain and stress can be calculated,

if desired, by using the formulas of the preceding chapter.

S!3!+E PME WYX.Eparabolically Distributed Em Te~sion

The case of a square plate loaded with parabolically distributed end

tension was selected for comparison of stresses calculated by two methods

{discussed subsequently) because a fairly good energy-method solution is

ava].lable for this problem. Solutions were obtained for lattice models that

represented the same plate but had different degrees of division to determine

the effect of fineness of division on calculated stresses and strains as shown

in Figs. 61-71.

The energy-method solution is taken from the wo[k of Timoshenko and

Goodier.
16

A principle of “least work” is used, in which an expression is

written for the strain energy of a plate of unit thickness, using a sin-ess func-

tion assumed in the form of the following series.

where ~ is the stress function that satisfies the boundary conditions and u rep-

resent constants to be determined. The minimum of the strain energy expres-

sion is found by variational calculus. The notation here has been changed

from that used in the Timoshenko and Goodier book.
16

A parabolically loaded plate has two axes of symmetry, so that only

one quarter of the square of total dimensions 2a must be considered. Such a

quarter plate is shown in Figs. 61 and 65, along with the loading and direction

of axes. By use of the first three terms of the series in Eq. 40, the following

stress function is found:
(41)

*’p<[l-+++(x2- 22
22

a2)2 (Y2 - a ) [
0.04040 -1-0.01174X :Y

1a a a
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The stresses are found from this function by partial differentiation and are

22

L
x’

2
.-2~ 3xT -Z( 1)+15—-12X—2+1

~4 1a a a

~ 2$ 22 2
—= ox= -0.16160 P(l - 3y~)(x—2 - 1)2+ 0.02348 P(XZ -1)2
ay2 aa a

4
.(15~~- 12 Y; +6X+- 2X1

a2
i- 1)

a a a

(42.1)

(42.2)

a2$ 2 2 22
-— = “ =Y P(x— -

dxay = ‘XY ~2 22
1)(YZ - 1) ~.03522 (x j y ) + .05732] (42 j,

a
.

a

These expressions have been evaluated with P = 104 psi at a number of points

that correspond to points where stress is defined in lattice models having vari-

ous numbers of subdivisions. The results are given in Figs. 61 and 65.

Three different grid sizes were used in dividing the quarter section of

the plate for lattice-model analysis. The numbers of divisions on each side of

the quarter plate were 2, 3, and 4. Therefore systems of 12, 24, and 40 equa-

tions had to be solved for bar displacements. Strains calculated from the bar

displacements are summarized in Figs. 62, 66, and 69. In each of these

figures the grid lines forming the centerlines of lattice model bars are shown,

and the strains are given above and to the right of node points and over shear

points using the notation given in the figures. This system of summarizing in-

formation is used in all figures giving results of analyses of statically loaded

lattice models.

A direct comparison of stresses calculated with the lattice model can

be made with the stresses calculated by the energy method; however, such a
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direct comparison may not give the best results, because strains and

stresses in the model are average values over a bar width. In order to

place comparisons of stresses calculated with the methods on a similar

basis, the stresses found from the energy method solution have also been’

averaged. The averaging procedure consisted of ( 1) finding what the bar

force would have been using the energy-method stresses evaluated at node

points of the lattice model, (2) concentrating to a force with the Newmark

parabolic formulae, and ( 3) dividing these forces by the area Ad.

The vertical Uy and shear T stresses calculated from the lattice
Xy

model strains summarized in Figs. 62, 66, and 69 and the vertical stresses

from the energy-method solution, averaged as just indicated, are summa-

rized in Figs. 63, 67, and 70. Horizontal stresses

strains summarized in Figs. 62, 66, and 69 and the

stresses are summarized in Figs. 64, 68, and 71.

ax calculated from the

averaged energy-method

A comparison of stresses calculated with the lattice model and the

averaged energy-method stresses is directly made by examining Figs. 63, 64,

67, 68, 70, and 71. By making this comparison it can be seen that on the

basis of averaged stresses the lattice model gives very good results for ver-

tical stress even with the coarse two-division lattice model, although better

agreement is

agreement is

say which of

of the’ series

obtained with the three- and four-division lattice models. The

so good in the four-division lattice model that it is difficult to

the values is more accurate because only the first three terms

in Eq. 40 were used when the stress function was evaluated for

the energy-method solution. Horizontal stresses are somewhat more sensitive

to changes in the number of divisions in the lattice model. It can be seen

from Figs. 68 and 71 that increasing the number of divisions in the lattice

model provides a better picture of deformation and stress.

If it is desired to compare stresses calculated with the lattice model

to the unaveraged stresses calculated by the energy method, the lattice model

stresses in Figs. 63, 64, 67, 68, 70, and 71 are compared to the energy-method

stresses in Figs. 61 and 65. Comparison of shear stress has not been made on

—

--

...
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an averaged basis; however, direct comparison of the lattice model shear

stresses in Figs. 67 and 70 with the energy-method stresses in Figs. 61

and 65 shows that the lattice model provides a good picture of the distri-

bution of shear stress.

Square Plate with Concentrated Loads——

Many of the plate problems for which solutions may be desired in-

volve concentrated effects or effects involving very high strain gradients.

In order to illustrate how the model represents such an effect and how the

representation changes as the number of plate divisions increases, the

case of a square plate loaded with a pair of concentrated loads has been

analyzed. The entire plate and the loads are shown at the top of Figs. 72

and 73. With two lines of symmetry, only the shaded quarter of the plate

need be considered. The load was taken as P/a = 104 a,~d the plate thick-

ness as unity so that the specific dimensions of the plate would not have

to be considered.

Strain distributions in lattice models that divide the quarter plate

into two and four divisions are shown in Figs. 72 and 74. The stress dis-

tributions calculated from the strains given in Figs. 7’2 and 74 are shown

in Figs. 73 and 75. It can be seen that across the centerline of the plate

both the two-division and the four-division models give similar results,

but as the external loads are approached the two-division model is too

crude to give a representation of the strain or stress gradient near these

points.

Uniformly Loaded Plates with Cracks

Several cases of plate models containing cracks and loaded with

uniform end tension have been analyzed to indicate the static strain distri-

bution resulting from these conditions. Two types of cracked plates have

been considered. The first, called the symmetrical case, consists of a

square plate with uniform tension on two opposite edges and cracks ex–

tending symmetrically from the center of each of the free edges parallel to

.
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the loaded edges. The second, called the unsymmetrical

of a plate of the same length as the square plate but only

case, consists

half as wide,

with uniform tension applied to the short edges and one crack extending

along the centerline of one free edge toward the left edge.

The same number of lattice-model divisions have been used for

each case; however, the symmetrical case has two lines of symmetry so

that the lattice model need only replace one quarter of the plate, while

in the unsymmetrical case there is only one line of symmetry and the lat-

tice model must replace one half of the plate. Four divisions in each di-

rection were used for the lattice models so that the total plate is divided

into eight sections on each edge in the symmetrical case, and eight sec-

tions on the long edge and four sections on the short edge in the unsym-

metrical case.

Strain distributions in the symmetrical, four-division lattice model

having cracks with lengths of one, two, and three divisions are shown in

Figs. 76, 77, and 78. Strain distributions in the unsymmetrical four divi-

sions are shown in Figs. 79 and 80. Loading in each case was 20, OOOpsi

uniform end tension.

The strain distributions in Figs. 76 and 80 provide only a rough

description of the highly concentrated disturbance around the crack tip in

an actual plate because the model division is much too coarse. However,

interesting trends can be noted in regard to the effect of length of crack

and extent of strain redistribution associated with the crack. As would be

expected, deformation at the crack tip and the zone of disturbance becomes

larger as a crack increases in length. The unsymmetrical cases in Figs. 79

and 80 show the bending in the plane of the plate as a result of the cracks.

Checking of Bar Stresses——

The stress values calculated from the lattice model can be checked

for numerical errors by calculating the sum of the forces acting across a sec-

tion through the lattice model. In the case of a plate loaded on two opposite

sides and with the remaining two sides free, the sum of the bar forces across

—
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a section parailel ‘co the loaded ends must be equal to the applied load. The

sum of the forces on a section parallel to the unloaded edges must equal zero, .

Bar forces are calculated by multiplying the stress by the bar area UAd for an

interior bar or by OA/2d for an edge bar.

SOLUTION OF PROBLEMS INVOLVING TIME DEPENDENCE

Differential Equations

The static equilibrium equations for the lattice model including body

forces were developed in an earlier chapter, which included a complete sum-

mary of the equations. Body forces in this case were limited to gravitational

or any time-independent forces. Analysis of a static problem consisted in

writing the equilibrium equations for each bar of the model, taking into account

the boundary conditions. This resulted in a system of simultaneous linear equa-

tions the solution of which gave the bar displacements. From the bar displace-

ments, the strains and stresses, at points where these are defined, could be
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calculated.

If body forces that are not time-independent are considered, then

the equations expressing the behavior of the model will become a system

of differential equations. The time-dependent forces to be considered for

the model are inertial forces of the plate material or time-dependent exter-

nal forces. Under dynamic conditions, the instantaneous equilibrium equa-

tion for a single-mass system free to move in one dimension only is

F=ma (43)

where

F = Resultant of all forces acting on mass at time t

m= Mass

a = Acceleration at time t

For the lattice model, each bar has only one degree of freedom, and therefore

the acceleration of each bar, considered as a rigid mass, is the second de-

rivative of the displacement with respect to time. The body force acting on

each bar can be split into two parts, one time–dependent and one time-

independent. Each equilibrium equation will then be of the form

d2(u or v) = I
-m

2 [1 !
f(un, Vn) +

J+

where

m.

U’, v=
nn

I
f( Un, Vn) =

X,7’

f(t) =

UL

Mass

Displacements

Sum of forces resulting

Time-independent body

Time-dependent force

(X or Y) + f(t)

from material deformations

forces

(44)

Writing one dynamic equilibrium equation for each bar when each bar

—..

.—

—

—

—.

represents one degree of freedom will yield a system of simultaneous second-

order differential equations. Solution of this set of equations will give the
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bar displacement and therefore the stress or strain at a particular time.

Natural Frequencies

A plate considered as a continuous material has an infinite number

of degrees of freedom with respect to vibrational motion. In analyzing

such a situation, any general harmonic vibration can be treated as the su-

perposition of an infinite number of individual frequencies and associated

mode shapes. Usually the most important motion consists of the first few

fundamental modes. This is particularly true when considering the lateral

vibration of a plate.

Motion in the plane of the plate is much more complex than lateral

motion and has not been studied as extensively as lateral motion. The only

simply treated cases

vibrations that occur

Generally the type of

involving motion in the plane of th~ plate are flexural

if the plate has a much greater length than its width.

motion in the plane of the

est is the propagation of strain or stress waves

propagation in a finite plate seldom achieves a

dition, being subject to dispersion, refraction,

plate that is of most inter-

from some source. Wave

tractable steady-state con-

and reflec~ion.

The model has a finite number of frequencie~ of vibrtition and mode

shapes and when assumed to be in harmonic motion oscillates in a steady-

state condition. The calculation of the frequencies and mode shapes is of

general interest, and the values are useful in other calculations involving

wave propagation in the model. If the circular frequency of vibration is

assumed to be w and the amplitude of a particular bar n to be C the dis-
n’

placement of the bar will be

u or v = Cn sin(tit + 6)
n n

(45)

where

b = Phase angle

Cn = Amplitude of n-th bar

u orv = Displacement of n-th bar
n n

—
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.

Or, considering that the system starts from rest (6 = O),

u Orv = Cn sin(ut)
n n

Using the latter assumption, the acceleration (the second time derivative)

would be

d2u
n

dt2
or

d2vn

dt 2
= -U2 Cn sin(tit)

( 46)

(47)

When the lattice is undergoing steady harmonic motion, the accelera-

tion and displacements in the differential equation (Eq. 44 can be replaced by

the values given in Eq. 47 and Eq. 44. When this is done, the equations have

the form

n

m, u 2 C, sin wt = j’a,,c, sin(~t)
1 1 LJ J

j .&I

(48)

where

c.

a,, =
1]

i=

j=

m=
i

As sin (tit) appears in every term of the equation, it can be factored out. There

then remains a system of equations containing the undetermined factors U2 and

the amplitudes C,. The system of equations can be written as follows:
1

Vibration amplitude of a bar as indicated by subscript

Coefficient

Bar to which equation applies 1 ~ i ~ n

Variable subscript 1 s j ~ n

Mass of bar i

(all C +---+a ~ncn = o- mlti2)C,1 + a12 2

. . + --- . .

-t ..-. .

. + --- . .

. . + --- . .

.

-.

—

—

.

.

.

—

—

.

.

---

—

.

--

.
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anl Cl + an2C2 + --- + (ann - mnti2)Cn = o (49)

.
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—

—

—

.

—
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In order that these equations have a non-trivial solution, the determinant of

the coefficients must equal zero, The matric equation of the coefficients can

be written as

(50)

where

IAI =

IBl=

1=

Matrix of displacement coefficients

Mass matrix
2

#

This is a characteristic equation which arises in many }jhysical problems and

for which methods of solution have been worked out, The solution of the char-

acteristic equation yields the eigenvalues A,, from which the frequencies are
1

found, and the eigenvectorsj which give the relative magnitudes of the ampli -

tudes of motion.

AS an illustration, natural frequencies are presented for two examples

in Tables 1 and 2, and the mode shapes are presented for one example in Table

3. The first case is a two-division by three-division symmetric lattice model
—- and is shown in outline form at the bottom of Table 1. It was assumed that the

ends of the model are fixed in both the vertical and the horizontal directions.

. The circular frequencies, natural frequencies, and periods of vibration for the

model with a thickness of unity and with A = 9 in. are given in Table 1. The
--

second case is a two-division by four-division symmetric model with A = 9 in.

As in the first case, the ends are assum~d fixed both vertically and horizontal-
,-

Iy. An outline of the model is shown in Fig. 81 along with bar numbers. Fre-

quencies and periods are given in Table 2, and eigenvectors are given in Table
—

3. Since the eigenvectors, giving the mode shapes, are only rslative values,

they are normalized so that the sum of their squares equals one. The eigenvec-
.-

tors are considered to be numbered consecutively from one to twenty with each

—..
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TABLE 1 FREQUENCIES AND PERIODS FOR 2 x 3 DIVISION

-

SYMMETRICAL LATTICE MODEL

Vibration
Circular Period of

Natural Freq. vibration
FreqUencY CycIeS/Sec.

Mode Rad. /sec. 3
sec. x 10

1 5,561 885 1.1299 ‘k

z 6,776 1,078 0.9276 ~ Fixed Vertically

3 7,525 1,198 0.8347 [7 oiotly

4 8,571 1, 364 0.7331

5 9,534 1,517 0.6592

6 10,788 1,717 0.5824

7 11, 618 1, 849 0.5408

8 12,672 2* 017 0.4958

9 12, 836 2,043 0.4895

~ 7’7’7; !

m

10 14,647 2,331 0.4290

and

11 14,720 2, 343 0,4268
l--L_J.Ld

12 14,877 2,368 0.4223

13 16,755 2,667 0.3750 ~

14 18,072 2,876 0, 3477

~~–

%..

number come spending

It can be seen

to a bar number in Fig. 81.

from Tables 1 and 2 that the highest and lowest frequen-

ties do not differ much i.n these two examples. The main reason for this is that

the values of ~ and d (and therefore the bar masses) were the same in eachcase,

and the total size of the plates is only slightly different.

General Approach for Solving Strain Wave or Crack Propagation Problems— ~— —

The differential equations governing the behavior of the model and an ap-

plication to a steady-state condition were discussed in the two preceding sec-

tions of this chapter. Generally time-dependent behavior of the model or the

continuous material that it represents is not of a steady type and cannot be

solved as an eigenvalue problem. In such cases it is necessary to treat the

problem as an initial-value problem starting with kn~wn conditions and deter-

mining what conditions exist at some later time.
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TABLE Z FPWQUENCfES AN33 PERIODS EIGENVEGTORS FOR LATTIGEMODEL SHOWN IN FIG. 81TABLE 3

Mode 3 Mode 5

+.2319286935
-.0525236499
-.3187646643
+. 2407787491
+.2131761370
-.5118790531
-.1212125982
+. 0106890686
+. 1785709776
-.2792389724
+.2366745136

Mode 4

+.1176407131
-. 1219014093
-. 1403517355
+.5525187329
+.20133 i5642
..09 b9490160
-.0542313b B2

FOR 2 X 4 LI1V7S1ON LATT1G72

MODEL OF FIG, 81

Mnde 1

-.0136197749
-.l)9731526k
-.174030201?
+.496 L3W786
+.2029156750
+. 3601379245
{ . 14732 h2466

. U5036U4<!64
-,30? o13570b4
-.400 j59?434
+. 0730495457

+. 1224708294
+.1110336740
+. 0bB4b91738
+. 32,:2630216
+,151/711737
1.3 A7.h93b138
+. lb L4j667.09
+. 3328754138
+.2’lb52613j0

-.2314875790
-.006488529.!
+. 0908087637

-. 3179879368
-.1531331693
-.o15blolool
-.0 L11967052

circular
Vibration ~

Period of
Natural Freq. ~ibratiOfl

Mode ‘equency Cycle s/see.
Rad. /sec. 3

BL!C. x 10—
-. 474 btihb306
-.080 tibl 1827

-.0874162514
-.0607 .s63609

1 5.061 806 1. ~410

2 5. !980 93b 1. 06b

3 6,230 992 l.oob

4 7, 536 1,199

5 8, 631 1.374 (

6 n, 776 1.397

+. 1799343443

t. 373’? 7764b2
+.1053990457
t. 4384472678
+. 1819074231

. 305946932%
-.1892..59/71
-.oti74h93700
+. 37 bl127,Y85
+. 1703904096

u37b660794
12802 L61O6

-:132 w75917

+.042138b700
-. LfJ9L14J147
-. ll!7b748400
-. 3’1591’d5290
+.ll?2bL>124
+. 3Zi.9565b50
+.4661995L3b
+. 20236 z7b30
-.0010272554
-.0200346261
1,0171449094

0.8340

0.7.378

t. 155ti546277
+. 38?,3506341

+. 0779550795
+. 2703220052
+.0313913L155

-.4435394038
+.046279 H390
-.062 z53576b
t. 1032041348

-.2775765822
-.3585 b56765
-, io5336L3?6

-.0412590bb4
..074063 uJ3J5
-.093239 b033
. .1143500517

+.21 !5b46394
+.12 Z20J4570
+.?24?72j59b
+.0n065175Lb
+. 197h&386Y4
+. 063459 bb24
t ,0%00850452

0.7158

7 9, b96 1,575 0.6349

8 10, 33b 1, 645 0.6079

9 10, 761 1,713 0.5638
—

-.0252 b82532
. 1614ti67779

10 11>799 1.878 0.5324

11 12.698 2,021 o.4948—

12 13, 04b 2,077 o.4ti15

13 13.609 2,16b 0.4b17

,
Mode 10Morlc 6

+.064704b127

Mode 7

-.1490 b7Z37b
+.1897249515
-.0994944307
+. 0b07b63754
+.2931137793
+.084 &5 b28b S
+ . 1564868472
-.434 ?688227

Mode 8

. 36424w01z
. 309 b559654

-. 0196046394
+.05047 ?5&60

“.1561559411
-.0042901415
+.0715731164
-.432598419s
-.2303164844

1140009820
-:0364568169
+.2078436514
+. %35.5963o79
~.432963z578

Mode 9

1637690095
+:0462532936
-.4357 b434Z3
-.1903379543
+. Z3bb23h, ?55
t.0174607z>l
..0790 b14246
-. 1294419364
-.0560244842
-.3235537762
+. 172487k7Z2
-./,515943820
+. 2649864k17
..134779$5b7
+.502 <062946
-.0316300766
+.1088969717
+,101 466812
+.0723204518
+. 2554$29413

i .01444 bZ643
-.3 Z15105441
+.4199745293
+. 16564 q5740
-.455247$524
-.153567S2Y1

.

--

—

..ll?8Z392kb
+.0998651597
b.470uli7965
+.0333096711

14 14, 368 2,287 0.4373

15 14,692 2,338 0.4277 -. 13 LMbo,i367
. .1479989798 +. 368410484o

+.017435Z723
lb 15, b58 2,492 0.4013

17 lb, 657 2,651 0.3772

18 16, 802 2, 674 0.3740

19 18,982 3,021 0,3310

20 20, 236 3,221 0.3105

. .2191281420

..067 zlb$970
+. 55 Z,: b361Z8
+.2 Z2641bb15
+. 1068450b20
-.0115 U35190
-. 1472,;1764
+.33 b923b9L3
-.3319144869
..030 b5b4z8b
-.10 b4&76,?13
+. 030ti437650
1.1734954494

+.36k60b6477
-.1474213042

+.2091780146
-.3471753284
+.12102 S7184
-.26 b78b93Z6
+. 0360064048
-.1153235690
+. 1944z4b841
+. 0134756678
-. O1O5455Z7O
-.0111795471
-.074932.4992
+. 1311516012

+.0749706j94
- .0643 h16040
-.493 Zb666Z0
+.2137931172
-,0068076040
..1>39L12347
-.1811455b66
-.29 S5727616
+.06630673q7
+.1413500932

-.0841770535
-.00234567b9
-.09236500L6
+. Z7b L937k53
+. 29355737S0
+. 1363? 93655

.

Mode 11

+. 0982994407

-.0642950b73
.. 12621$1899
..0604005100
..l12!b38560
+, 0471298277
-.15531 b8004
+. 1956422981
-.1388627711
+.001337443b
+.lo51z3155&
+. 00?,6685554
-.0309310021
+.0895200601
+.0177595244
+.2325556777

-. 53 Zb576412
-. 1534026542
-. 3061723944
+. 62818 J5843

Mode 12 Zviode13 Mode 14

+,0326604260
+, 0046701199
+, Ob77001465
-.2297732340
+, 5896942594
-.2196050744
+. 50675 b3557
..0019545871

10 ~.5873687
;: lD708095b5
..i456&o1989
+. 3147169232
+, 1053707379
.. 1147143277
+.1297714299
+.011013 !5590
+. 0000 S24091
+.0774371896
-.1746720445
+. 2562174284

Made 15

+. 393qz62227
t.z250991218
+.2391103776
+.031444016z

-.0435957329
-.01 ZL687951
-.0066659425

. 37k3846z54
. .2133599084
-.2525450444
+.0226240920

. 0164028653
+. 3b93644283
+.2219857253
+.2.? 50504253

+.4768004457
+.2785894497
i.?,277358173
+,0560829934

+. 35434 E56z0
-. 119794b265
-.lh704b7164
-. 1934603571

—
I /,--EMFixed vertically An, H.rizmtilly

+
/// /// ///////,

20 19

17 16

15 .14

12 U

10 --9

~ 6

5 --2

-.11130,20462
-.03 b7082036
+.05zlb72716
+. 3775780720
-.126114h461
-. %457742402
+. 1579587393
+.221 j512918
-.3340071612
+. 1037986044
+. 1484850484
-.0711348751
+. 1944963637

-.4306405251
+.2857759924
+. 1526275829

.05168 L36z3
-.0172343229
-.0151 b9351Z

lb b5671362
.:llo8zolbh9
-.1255414379
4-.0104085178
-.0331643069
-. 19 T6994066
-.1270179718
-.1460397603
+, 0441722026

-.05 b3i99z95
+.49 ?9073L15
+. Z7b52z6i18
t. 33852234301

18

L3

$

9

—

-.0220932915
+.0296951230
-.3854550595
-.201,2442609
-.2320279921

Mode 16

-.4341185355
+.167 b700118
+. 3096342330

Mode 17

+. 0354642$63
+. lo30b03585
-. Z85IO4841O
+.1562829787
-.k652136671
+.081 s919049

. 0745315bZ3

Mode 18

-.4191038305
+. 1707707608
+. 2939370736
+.1787433714
+.0261360578
-.13113 s4541
-.1158806726
+. 3499856366
-.1134198955
-. 359 L718z76
+. 0907952731
+. 1625723669

Mode 19

+. 1200254482
-.2491599778
+.3261093498

17 b3090576
;: 3769759566
+. 0888407209
-.1901406790
-.0006689292
+.0016677064
-.0029347840
+.0.!365368129
-. 18410008b4
-.1201515317
+. 2495002,870

3239639176
:: 1710193099
+. 3bi64Z7526
+. 1367276159

Mode 20

-.1377043334
+.2925744191

-.3818845123
+. 1629027756
-.3429677347
-.1535503060

-.

—

—

+. 18073 b8647
+.0970519170
-.09659716hb
-.0955678922
+.09924610.26

0231255188

-:091 &736Z96
-.0436135912
-.0136119118
+.2846736998

.1 L15335742

+. 3234749703
+.1204218218
-.2593568200
t, 3386230909

-.1953070130
+. 2547867657

.20 b971z911
-. ?0494b1577 +. 1267740775

-. Z6713Z301b+. 3732520809
+.0.919998?12
..07? 9647R46
+.00? 4372594
-.096963340?
t. 26.>, 01367R2

. .3137100014
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The equations of motion for a continuous elastic material have been

solved for a number of situations, most of which involve semi-infinite media.

In working with the differential equations of motion for a continuous material,

the greatest difficulty is encountered in satisfying the boundary conditions.

The finite model developed in this report provides an approximate two- dimen-

s ional method for treating cliff icult boundary conditions or types of loading.

Use of the model provides a physical system which can easily be visualized

and reduces the problem to the solution of a set of linear second-order differ-

ential equations which are easily solved by numerical integration.

The general approach for solution of a wave propagation or time-depend-

ent boundary value problem with the model is as follows:

1. Determine model dimensions and layout.

2. Determine initial static displacements.

3. Apply a step-by-step humerical integration procedure for

solution of the differential equations.

4. Adjust bounda~-ies and loads as the integration proceeds.

If the boundary conditions are time-independent, it may not be necessary to de-

termine initial displacements for solution of wave-propagation problems. In

such cases the transient effects can be determined separately and superposed

on the initial conditions. Two methods of numerical integration are presented

in the following section.

NUMERICAL INTEGRATION OF EQUATIONS

New mark Beta-Method qf Integration

The Newmark Beta-Method of integration is a step-by-step method for

solution of systems of second-order differential equations having initial condi-

tions specified. This method is about the most convenient method available

for hand solution of equations. The value of 6 can be selected to give the best

possible results for the values (period, amplitude, etc. ) that are considered

most important. A complete development and description of the Beta-Method is

given in several references.
18-20
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The ~-integration equations are

P
ii =-

n+lm

11
h

n- l-l
~+ti‘lin+~(n

n+l )

u ‘un+hfin +h2(~-@)fln+ h2@in+l rl+l

(51.1)

(51.2)

(51.3)

where

P=

m.

ii’

fi=

u.

h=

~.

n=

Unequilibriated force acting on the mass

Mass

Acceleration of mass

Velocity of mass

Displacement of mass

Time interval

Parameter of /3-Method

n-th time interval

The ~-Method is an iterative method starting with an assumed accelera-

tion. Steps in the calculation for each time interval, considering only one mass

at a time, are

1.

2.

3.

4.

5.

Assume an acceleration U
n+l

Calculate fin + ~ and un+l

Using the values of tin + ~ and Un + ~ from Step Z, calculate p.

Calculate a new tin + ~from Eq, 51.1

Compare the values of ti from Steps 1 and 4. If the values
n+l

differ by more than the desired number of figures, repeat Steps 1

to 5 using U from Step 4 as the assumed value.
n+l

when two successively calculated accelerations agree to a desired number of sig-

nificant figures for all masses in the system being considered, one step of integra -

—

..-
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tion has been completed. The values that have just been calculated are then

used in the calculation of the next step.

Varying the value of ~ has the effect of changing the shape of the ac-

celeration-time curve over the integration interval. If ~ is taken as zero this

assumes a constant acceleration pulse for each integration interval which

causes an instantaneous jump in velocity at the start of @ach interval. Taking

F = 1/8 assumes that the acceleration has a constant value equal to the initial

value for the first half of the time interval and equal to the final value for the

—-

.->

—

-<.

second half of

Lion over each

is equal to the

the time

interval;

average

In order for this

interval; ~ = 1/6 assumes a linear variation

and @ = 1/4 assumes a uniform acceleration

of the acceleration at each time interval.

—.
of accelera-

whose value
—

procedure to be useful, the successive values calculated
—.,

in one step must converge toward a definite and correct value. Fairly rapid con-

vergence is also required in order to achieve good accuracy, The convergence —
and accuracy characteristics of the ~-Method have been investigated by consic?-

ering a single-degree-of-freedom elastic vibratory system. Results from the .—

single-degree-of-freedom system can be applied to the multi-degree-of-freedom

systems by considering the various modes of the multi-degree-of-freedom system. —

Limits have been worked out in terms of frequ~nc y (or period) and integration

time interval for convergence, stability of a harmonic motion, and error for each .-

value of ~.

Truncation errors depend upon the value selected for ,B. For example, if _.

~ = 1/4, the accuracy will be of the order of h2, and if 19 = 1/6, the accuracy

will he of the order of h3.

EW!3S-E!S!!EMethod Q I~tegra~io~

The Runge-Kutta Numerical Integration Method is a

by- step procedure. This method achieves its accuracy by

non-iterative

using several

—

—
step-

esti-

mates of the dependent variable for each increment of the independent variable.
—

Usually the method is applied to first-order equations, although modifications
21

of the procedure have been developed for higher-order equations.
. .

—
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The specific form in which

high-speed computing machines is

the Runge-Kutta

due to the work

Method is used with many
22

of Gill. In this form a

program is. designed to solve n simultaneous first-order differential equations.

If it is desired to solve equations of higher order, each higher-order equation

is reduced to a number of first-order equations. For example, consider the

third-order differential equation

d3y d2y dy
—3 + a(x) ‘2 + b(x) TX + c(x)Y = 9(x)
dx dx

and let

dy
rx=u

du
z

‘v

Substitute these into Eq. 52 to get

dv
=

= - a(x)v - b(x)u - c(x)y + g(x)

(52)

(53.1)

(53.2)

(54)

Thus solution of the three simultaneous first-order Eqs. 53.1, 53.2, and 54

is equivalent to the solution of the single third-order Eq. 52.
23, 24

A complete derivation of the Runge-Kutta Method is given elsewhere,

and only the results used in the ILLIAC’:<library program F-1 are stated here. For

a given set of differential equations

?1 = fi (Yoj Yij Y2, ---j yn _ ~), i = O, 1, 2, --- n - 1

the process used in the integration is defined by the following:

k - 2mhf “oj’ ‘Ij’ ‘~j’ ‘--’ ‘II - I j)

Lj -
i

(55)

(56.1)

‘~ILLIAC is the University of Illinois high-speed electronic digital computer.
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r ,, j + , = (Aj + , + W,, j - BjCIij)

Y “ Y,, j i- 2-m ri,l,j i--
j+l

‘ q, + 3r,~, j -t (Cj - l)k,
? j+l=qi, j l,j+l

with the following table of values

j A B, c,
j+l J 1

0 -1/.2 2 1/2

1 -(1/2)1’2 1 (1/2)1’2

2 (1/2)1’2 1 -(1/2)1/2

3 -5/6 2 1/2

(56.2)

(56.3)

(56.4)

Where double subscripts are used, the first subscript indicates which variable

is being considered and the second subscript j indicates which of the four parts

of one step is being performed. The quantities r, are only an intermediate
,j

calculation and are “not carried from step to step. Only the values of y,, ~, the

dependent variable at the end of the integration interval, and the values of qi, 4’
which prevent the rapid accumulation of round-off errors, are carried directly

from step to step. Thus for one integration step the order of calculation would

be

j=() i= O, 1, 2, ---, n-l

j=l i = O, 1, 2, ---, n-l

j=’~ i = O, 1, 2, ---, n-1

j=s i = O, 1, 2, ---, n-1

The truncation error for one integration step is of the order of hb. The re

are no limits for convergence or stability, and the length of the increment of the

.-

--

.-,

.

—

. -.

.

..—

.

-.

—.

--

—

--

independent variable may be altered at any step of the calculation.
—
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.—
NUMERICAL RESULTS FOR TRANSIENT STRAINS

—

—

.-

General Remarks and Problems Considered

Several examples of the transient strain redistribution associated

with a propagating crack are presented in this chapter to indicate the nature

of some of the results that have been found with the lattice model and to

point out some of the difficulties encountered in applying this method. The

lattice models used in these examples are much too coarse to portray ade-

quately strain gradients as steep as those associated with the highly con-

centrated disturbance surrounding a moving crack tip. Therefore the coarse

lattice models do not give quantitative results of practical significance. On

the other hand, the solutions do provide to some degree a qualitative picture

...- of strain redistribution for a propagating crack.

As previously mentioned, the solution of probiems by this method in-

—. volves an immense amount of calculation; thus a very high speed digital com-

puter with a large memory capacity is required. By way of illustration, the

,... ILLIAC, the digital computer used for the examples given in this chapter,

could not treat lattice models with more than 40 bars without the calculation

--. time becoming excessive.

Two cases of crack propagation are considered here, the unsymmetri-

— cal case in which a crack propagates from one side of a plate to the other side,

and the symmetrical case in which cracks propagate from both edges of a plate

.- and meet at the center. These two methods of numerical integration described

in the preceding chapter are applied to the unsymmetrical case to permit a
.—. comparison of solutions by the two methods.

-..

—

Variables Entering Into the Calculation——

A number of variables enter into the transient solution of the set of dif-

ferential equations expressing the behavior of the lattice mode. The most im-

portant of these variables are:

(a) fineness of subdivision of lattice model

(b) boundary conditions

—
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(c) velocity of crack propagation

(d) integra-tion method

(e) integration time interval

Lattice model subdivision is very important for two

the ability of the lattice model to approximate steep strain

reasons. First,

gradients is di-

rectly dependent on how finely the lattice model is subdivided, and this

affects all solutions, either static or dynamic. Second, the periods of the

natural frequencies of the lattice model are directly proportional to the

square root of the bar masses; the natural periods of vibration are important

in dynamic analyses. Some problems associated with the natural frequen-

cies of the model are discussed in the next section.

Boundary conditions define how much energy, if any, can be fed

into a plate during crack propagation and also define whether or not the

boundaries are able to displace during crack propagation. Two boundary

conditions were considered: uniformly loaded boundaries that were free

to move with the magnitude of the load always remaining constant, and

boundaries that were initially given a displacement equivalent to the move-

ment resulting from a uniformly applied load and thereafter held fixed. It

was found that maintaining a uniform load and allowing the boundaries to

move tended to increase the magnitudes of peak strains ahead of the crack,

this effect being much more pronounced at low crack velocities. The end

condition in which the ends were uniformly displaced and then held fixed

was used in the case of the examples presented in this chapter. It is be-

lieved the fixed-end condition closely duplicates conditions experienced in

most plate-fracture experiments made in massive testing machines.

Crack velocity in the lattice model is an artificial concept and in

general has no relation to the fracture process in the physical material that

the lattice model replaces; this will become apparent from the discussion

that follows. Initiation of the crack was carried out by allowing the first

node (or nodes in the symmetrical case) to separate. Crack velocity was

thereafter determined by the time allowed until the next node was permitted

—

..-

--

—..

—

. .-

--
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to separate. IrI this manner the crack proceeded

Transient strain redistribution is dependent upon

-..

—

--,

-.=

,.—

-.

. -.

- .

by jumps of finite length.

the crack velocity; if the

—

.-

... .

crack velocity is progressively increased, a point is reached where the

strain energy released by separation of the deformed nodes does not have

time to propagate ahead of the crack and increase the strain at nodes ahead

of the crack.

One of the original objectives of this investigation was to establish

theoretical fracture criteria for nodes in the lattice model by considering

strain rates, strain magnitudes, previous deformation history, and non-

linear elasticity of some of the nodes and to determine at what velocity or

velocities a crack would propagate or arrest under such theoretical condi-

tions. However, such a search for fracture criteria was found to be impos-

sible because the available digital computer was too slow to consider a lat-

tice model having subdivisions fine enough to give adequate definition of

strain gradients. In the examples of crack propagation in a lattice model

presented in this chapter the crack velocity was arbitrarily selected as a

convenient value falling in the range of velocities that have been experi-
3

mentally observed in tests of wide steel plates.

The integration method used for numerical solution of the differential

equations must be considered a variable because of certain peculiarities as–

sociated with different methods of step-by-step integration of initial-value

problems. Two methods of numerical integration, the Newmark Beta-Method

and the Runge-l<utta Method, were presented in the preceding chapter, These

two methods were applied to the same problem and the results compared to

check whether either method generates a spurious soiution and to determine

how well the calculated values agree when the same time interval and aux-- —,

iliary data are used.

The integration time interval is important because truncation errors--

are proportional to some power of the time interval. Limits of stability and

convergence in the Newmark Beta-Method have been worked out in terms of

the integration time interval and the natural periods of vibration. Rather ex-
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tensive discussions of truncation errors, parasitic or spurious solutions,

stability, convergence, and propagation of round-off errors are given in
18-20, 23

several references.

Possible Difficulties in Solving Dynamic Problems with a Lattice Model— —.

tion of

trating

natural

Several difficulties can arise in using a lattice model for the solu-

dynamic problems. Most of the difficulties are a result of concen-

a continuous material at definite points and introducing distinct

frequencies of vibration. When energy in the form of strain waves

.—

—

is passed through the lattice model, reflections take place at boundaries

and usually cause oscillations of the adjoining lattice model bars. These

oscillations modulate any strain waves that thereafter pass through the

section of lattice model where the oscillations have developed. Eventual-

ly the oscillations also spread through the lattice model and confuse inter-

pretation of strain values.

Another difficulty can arise because of the finit~ nature of the lat-

tice model. The mechanical system formed by the lattice model has as an

electrical analog and L-C filter. Such filters have been extensively studied

for one-dimensional wave propagation, but because they become very com-

plex in two-dimensional analysis, they have not been studied as extensively
25

as the one-dimensional case. It has been shown that L-C filters exhibit —

-.

—

..._

passing and stopping bands toward electrical disturbances of varying frequen-

cies. Certain frequencies are easily propagated through the filter, while others --

are strongly attenuated. On the basis of the coarse lattice models used “tostudy

transient strains associated with a propagating crack, no such effect has been

detected. If the lattice model

re suiting from external loads,

termine if stopping or passing

is used to investigate strain-wave propagation

a careful investigation would be required to de- . .

bands exist.

Solutions for Transient Strains with a Coarse Lattice Model
-.

— —.

Two cases of crack propagation in the lattice model are presented in this

section. The first problem treated (Example 1) is one of unsymmetrical crack
.
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a crack starts from one edge of a plate and extends toward

This case has been integrated with the Runge-Kutta Method

(Example 1) and also with the Newrrmrk Beta-Method; results of the two integra-

tion methods are compared in Example 3. The second problem treated (Example

2) is one of symmetrical crack propagation wherein cracks start from two op-

posite edges of a plate and extend toward the center; the Runge-Kutta Method

of integration is used in lZxample ~. Strains as a function of time are plotted

for all nodes and shear points in the unsymmetrical case {Example 1) and for

only a few points in the symmetrical case (Example 2) .

The lattice model used in each example has four divisions in each di-

rection and therefore has forty bars or forty degrees of freedom. In order to

carry out the numerical solution of the examples, some numerical values must

be assigned for plate dimensions, loads, and other parameters. 1t was ccm-

sidered desirable to work with dimensions and parameters that were similar to

values used in laboratory experiments.
5

On this basis the lattice model divi-

sion ~ was taken equal to nine inches and the thickness of the plate as one

inch. Using these dimensions, the unsymmetrical l,attice model represents a

plate l-in. thick, 3-ft wide and 6-ft long.

The symmetrical lattice model represents a square plate l-in. thick and

6 ft on each side. Initial loading was equivalent to a uniform end tension of

20, 000 psi applied to each end of the plate, which allowed the ends to move

and then held

were taken as

Crack

the ends fixed in position vertically. The elastic constants

E = 30x 106psiandzJ= 0.30.

velocity in the lattice model in each case was held constant and

consisted of jumps of O. 75 ft in 0. 180 millisec, This represents a step veloci-

ty of 4167 fps across the plate wid~h.

The integration time interval was selected as a conservative value, be-

cause the purpose of the examples presented is to illustrate characteristics of

the lattice model and not to investigate all possible variables associated with

the integration methods. The value of h was taken as 2 x 10
-6

see; such a

small time interval gives quite accurate results and eliminates to a large degree

-.
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PROPAGATIONEXN@Ll?S

some of the problems associated with the numerical

llDR CRACK

integration processes.

Values of bar displacements and strains were punched out by the computer for

every five steps of integration to provide a detailed picture of lattice model be -

havior.

The notation used for each of the examples that follow is shown in Fig.

82. In this figure only the bar centerlines are shown, with circles at the node

points and small squares at the shear points. A number inside a circle or rec-

tangle identifies the node or shear point to which reference is made. The left

edge of the lattice model is to be considered a free edge or a centerline depend-

ing upon whether the lattice model represents an unsymmetrical or a symmetric-

al case respectively.
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Example ~. Unsymmetrical Crack Propagation. In this example the

crack propagates in four jumps starting at the right edge and extending to

the left edge of the lattice model. The crack was started by separating

node 1 in Fig. 82 at time zero. After intervals of O. 180 millisec, nodes

2, 3, and 4 were separated. After O. 720 millisec, nodes 1 to 4 were

separated and node 5 was still intact but just ready to separate to com-

plete propagation of the crack across the lattice model. Integration was

carried out with the Runge -Kutta Method using the integration time

h= 2x10
-6

sec as mentioned previously.

-.

-...

—,.

points of the lattice

Horizontal and vertical

Strain-time curves for all nodes and shear

model (Fig. 82) are presented in Figs. 83 to 122.

strains are given at the node points as indicated on the figures except at
—

nodes where the horizontal strain values cannot be calculated as at the

edges. When a node is separated to extend the crack, the point of sepa--.
ration is indicated on the appropriate vertical strain curve in Figs. 83 to

86 by an X. It can be seen by examining Figs. 83 to 86 that in-the nodes-+
ahead of the crack in the lattice model the vertical strain increases in

value as the crack approaches a node until the node is separated to ex–

tend the crack. Node 4, shown in Fig. 85, shows a slight relaxation of

the iriitial positive vertical strain before the increase re suiting from the

approaching crack. Figure 86 shows a fairly large decrease of initial ver-

tical strain at node 5 until the crack reaches node 4, whereupon a sharp

increase of strain takes place. The horizontal strain in nodes 2, 3, and

4, as shown in Figs. 83 to 85, goes from a negative value to a positive

value as the crack approaches and passes one of the nodes. This creates

a zone of biaxial tension ahead of the crack. After separation of node 2,

a definite oscillation on the horizontal strain value occurs because of a

strain wave reflection off the right side of the lattice model.

Vertical strains in nodes 7 to 9 (Figs. 88 to 90) show a small peak

as the crack passes by a node and then a rapid decrease in strain magnitude.

After the crack has passed by a node, an oscillation in the strain values oc–

-.
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curs because of reflections from the boundaries formed by the crack surface

and because of reflections at the right edge of the model. Node 6, situated

on the left side of the lattice model, is affected by reflections from the left

edge of the lattice model, and the strain value starts to oscillate sooner than

the strain values in interior nodes.

In general, the group of nodes ( 12–14 and 17-19) situated in the in-

terior of the lattice model tends to show only a slight peaking of the strain

values; oscillations begin after the first small peak, as shown in Figs. 93-95

and 98–100. After the crack has passed beneath one of the nodes, the strain

values begin to relax and release stored strain energy in the form of strain

waves that eventually reflect from the lattice model boundaries. After a period

of time the strain values all oscillate within the spectrum of the natural fre-

quencies of the lattice model as the strain waves reflect and re-reflect from the

lattice model boundaries.

Strain values in nodes along the lattice model boundaries show the ef -

fects of reflected strain waves from the boundaries, and the strain values tend

to oscillate quite a bit. At some nodes, such as 15 and 22 shown in Figs. 96

and 103, the reflections reinforce each other and produce quite high positive

strain values.

Shear strains are shown in Figs. 107 to 122 for the shear points in the

lattice model. The shear strains at shear points 1, 2, 3, and 4 adjoining the

crack path become positive as the crack approaches and then rapidly drop to a

negative value as the crack passes. Shear points 5, 6, 7, and 8 follow the

same trend as shear points 1, 2, 3, and 4. As the distance from the crack

path increases, the shear strain varies in an oscillatory manner, showing the

effect of wave reflections from the lattice model boundaries.

A general picture of the strain redistribution associated with crack

propagation is as follows: A tension pulse is generated when strain energy is

released by crack formation and propagates away from the source, creating a

zone of biaxial tension ahead of the crack. As the crack approaches a particu-

lar point, the shear strain becomes positive in value and then decreases in
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value as the crack goes past. Because the lattice model used is purely

elastic and dissipates no energy, the strain energy released by the crack

formatio~ must be stored in the lattice model as kinetic energy of the bars

and changes in strain of nodes and shear points. After the initial pulse

resulting from separation of a node has passed, the bars of the lattice

model develop an oscillatory motion because of strain wave reflection from

boundaries.

Example ~ Symmetrical Crack Propagation. In this example a pair of

cracks propagate from each edge of a square plate toward the center. As

in Example 1 each of the cracks propagate toward the center in four jumps

spaced at equal intervals of O. 180 millisec. Both cracks start at time zero

and reac”h the center of the plate after O. 720 millisec. Integration was car-
-6

ried out with the Runge-Kutta Method with the time interval h = 2 x 10 Sec .

Strain-time curves for nodes 1 to 10, node 13, and shear points 1 to

4 (as shown in Fig. 82) are presented in Figs. 123 to 136. A comparison of

the strain-time curves for nodes 1 to 10 and node 13 of this symmetric crack-

propagation case with strain--time curves for the same nodes of the unsym-

metrical case in Example 1 show that there is very little difference in verti-

cal strain response .“ There is some slight difference in magnitude, but the

shapes of the curves are about the same. The horizontal strains are affected

markedly because of the continuity at the left side of the symmetrical lattice

model. Shear strains toward the right edge of the lattice model are the same

for both the unsymmetrical and the symmetrical cases; however, toward the

left side of the lattice model, the symmetrical-case shear strains at shear

points 3 and 4 do not decrease to negative values in the same manner as shear

points 3 and 4 in the unsymmetrical case, again showing the effect of conti-

nuity at the left side of the model (which is the center of the square plate

represented by the lattice model).

Example ~ Comparison ~ Values Calculated b~ Two Numerical Integra-

tion Methods. The same problem discussed in Example 1 was solved using
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the Newmark Beta-Method of integration with ~ = 1/’6. As nearly as pos-

sible, +11 auxiliary data required for the numerical integration process are

supplied by the same computer routines used for the solution with the

Runge-Kutta Method. Ail starting conditions also were made identical, so

that any difference in calculated values could be attributed to the integra-

tion method.

The time interval used was very conservative as far as limits of

stability and convergence are concerned. As worked out in Ref. 18, the

limits of stability and convergence for a single-degree-of-freedom system

can be expressed in terms of h/T, where h is the integration time interval

and T is the period of vibration. If a multi-degree-of-freedom system is

considered, then T is taken as the period of a particular mode of vibration.

For ~ = 1/6, the stability limit is h/T = O. 551 and the convergence limit is

h/T= 0.389. Because the largest value of h/T is desired, the smallest

period would be used when considering a multi-degree-of-freedom system.

The smallest period for the four-division unsymmetrical lattice model
-3

is T= O. 31x10 sec as shown in Table 2. As the bar spacing and bar

mass are the same for the symmetrical model as for the unsymmetrical model,

the shortest period ~f vibration is about the same in each case. Using the
-6 -3

values h= 2x 10 secand T= O. 31x10 see, the ratio h/T is O. 006,

which is only a fraction of either the stability or convergence

and convergence are therefore not a problem in carrying out

of this example with the Beta Method.

A comparison of extensional and shear strains at all

limit. Stability

the integration

node shear points

of the unsymmetrical lattice model, as calculated with the Runge-Kutta and

Newmark Beta-Methods of integration, is given in Table 4. Locations of the

node and shear points listed in the table are shown in Fig. 82. Values are

compared at times of O. 180, 0.360, 0.540, and O. 700 millisec after a crack

initiation; the latter value was chosen because it fell

separation.

Referring to Table 4, it can be seen that at t =

just before complete

O. 180 millisec the



TABLE 4 COMPARISON OF STRAINS CALCULATED’.<’ITHT1VO integration METHODS

Runge-Kutta Newmark Beta

Time 0.360 millisec.

ExtensionalStrzms-in. /in.X106

R“~~~-KWa Newmark Beta

Time 0.540 millisec.

Exten.imdStrains -m.,&. x lo6

Runge-Kut

Time

Extensiona

Method

Node

1
2
3
4
5
6
7
s
9
10
11
lz
13
14
15
16
17
lB
1?
20
21
2:
23
24
25

Shea,
Point

1
2
3
4
5
6
-i
8
?
10
11
12
13
14
15
16

Rm-qje-KIItta
I

Ne=mark Beta

Time 0.180 miilisec.

ExtensionalStrains-in./in. x 106

(Cy)

---.-
---.-
.----
-----

1079.82
+815.74

-34.1s
-2? .55

-1s4.46
-409.10
-60;. 29
+~fi. ~g

-146.03
-216. 12
+216. E9
+587. 86
+164. 67
-129.80
-361 .-f7
-600.26
676.2?
012.52
:660.49
+67. .Z4

.596. 7?

(Cy)

. . . . .
+s52. 6?
+553.60
+610.04
*6<6.33
+676.87
+695.06
+751.9’3
+s13.51
+14-.26
+33s.55
+6zl.6z
,6E&.24
+675.66
+665.kO
+.565.10
+660.35
+532.50
+530.95
+3.57.86
+432.01
+665.46
+660.75
+634.32
+54b.4E

(Cx)

+.00
-208.69
-215.45
-107. -lb

+.00
+. 00

-?15.2E.
-43. 2.5

+411 .27
+. 00
+.00

+160.36
-155.79
-163.16

+.00
+.00

-1$6. 3&

+26. 29
-66. &4

+.CO
+.00

-43. 10
+210.54
-273.64

+.00

(Cx) (<y) (tx)

----- +.00
---- - _31~.9q

(q

----
----
----

1270.73
+241.96
+770. 75
~004. 4b

+?0.57
-40? .43
-132.31
-567.60
-2:7. 57
+1 Z5 .98
+65o. 73
+56?. ?6
+671.30
+410.67
+4&. <5
-54. ?1

-371.77
.171 .06

iObl .36
+530. .55

-76.57
+10,36

(.x) (1 J

+.00 . ----

-199,61 ---- .
-217.66 --- --
107.&3 +1180.55
+.00 +275.91
+.00 +S,02.46

-231.72 +7?.4.66
-lk.41 +.E9
+375.44 -436.07
+.00 -135.49
+.00 -599.37

+150.67 -235.64
-110.00+137-.22
-1919q +673.95

+4
-1
-5

+1
+20
-

-?

+.00 ---- --- +.00
+111.23 +845. 20 +114.36

+51,49 +546.90 +56.58
-s3.98 +610,72 -82.76

+,00 +64s.79 +.00

+.00
-303.61

-79.02
+25.14

+. 00
+.00

-191.97

----
----
1206.74

+566.29
+3s0. 82
+599. 62
+749. 94
+777.30

+32.45
+71.73
+16.86

}1211 .43 -88.0s
+555. 33 +27.82
+3E0. S4 +.00
+606.85 +. 00
+764. 40 -193.05

~,oo +676.1~ +,00
-203,65 +696.30 -306.71
-210.99 +758.02 -212.57

+620.?3 -2s5.81
-7-3; .00

+7. 97
+772.41
+13.11

-zZ6.52
+1.76-? S6.53

+.00
+.00

-255, 74
-2$1.86
-235.69

+.00
+.00

-215.4s
-! 36.95
-? 11,91

+.00
+.00

-z02. S6
-z17, E5
-206, 40

+,00

+144.?5
+340.59
+617.95
+6.54.16
+673,54
+667.E5
+665,33

+.00
+.00

-255.49
.284. 6?
-235.60

+.00
+.00

-213.76
-23 E.01

+.00
+. 00

+]s0.28

-128.44

+66.60
+14.68
-18.45

+565.5z
+637.99
+616.4s
+794.19
+621.21
+459, 29
+189.45
-120.57

+.00
+.00

.5.70
~560 .51

+199.1?
-118.70 +1

+z+650. 26
+636.66
+790.72
+629. 34
+466.19
+187.26
.109.14
-27.35

+s93 50
+707. 95
+514. 60
+322. 12

-258.26
+. 00
+.00

-230.41

-270.01
+.00
+.00

-Z32.72
-174.04
-17,46
+.00
+.00

-160.49
-190.64
-iLi3.12

+.00

+.00 +49&.s?
+.00 +619.57

-17s.20 +412.33
+14.69 +56.64
-70.46 -45.73
+.00 -361.00
+.00 -92.75

45.12 +1212.56
+163.50 +290.41
-211.32 -1o9.37

?-.00

+
-

+2

+660.53
+632. 17 -171.91

-20.34
+. 00
+,00

-145’, 05
-l&9. 58
-194.74

+. 00

I

+52S. 33
+350.61

-213.64
+.00
+.00

-204. 4E +40
-22
-21

+432.64
+665.Z3
+661.89
+637.74
+553.71

-12.21
+913.45

-216.05
-205.06

+730, s0
+527.45
+339.26+.00 +30.49

Shear Stra,n, y
XY

Shear .5traiShear Straim ~hdar Straira, Shear Strain, 5hear Strain,y
XY

-2L.26
-260.99
+6z0.45
-662.26
-454.76
+l?l.22
-617.k9
-538.70
-~~7>45
-3.54.50

-;4.i7
-?46.45
+ 5q4.46
-642.H
-39E.ZO
-1s5.11
-5L5.74
-500.15
-283.!55
-386.39

-3.00
+52.15

+166. 45
-37.21

-137.5s
-2.04

+300. 37
255,71
-239.79
+446. 70

+?5.04
-?49. 55
402.12
+106. 87
-2?9. 14
436.26
-?65. 86

+11.88
+62.4o
-59. 51
-208.02
-346.95

+295.32
-312.61
-1?7.’?1

-6G. 17
-7.32

-10.71
+100.79

+290. 33 -29.87
+? 3?. 48

-3?.09
+968. 66

-27.2.05
-291.98
-174.08
459.77
+559. ?0
+261.83

-321. :4
-203.76 -274.54

-284,90
-175.70
-138.07
+562.29
+237.81
+17.18

+123. 83
+47.96
+18.34
+24.50
+61.56
+43.46
+ .6.76

-66.94
-3.56
-3.73

+i06. 40
+410. l&
+3?6.08
+221.92

+69.83
+14.34

+4.25
+23.05
+74.98

+102.57

+404.50
+315.96 +13.89

+108 .73+215.65
+69. 34
+15,16

+5. 15
+25. 09
+75.90
+?9.86

+63.72
+27.14
+15.60
+75.55
+51.38
-10.01

-45.84
+90.32

+276.06
-70.3s

-157.95
+17.32

1:1
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values calculated by the two methods agree very well, with the Runge-Kutta

Method giving a slightly greater response ahead of the crack than the Beta

Method. As the time increases, the values begin to deviate a little more,

and the Beta Method starts giving a larger response ahead of the crack. At

t = 0.700 millisec one of the differences in values, at node point 23 which
-6

is on the fixed boundary, is 117 x 10 in. /in. which is 18 per cent of the

initial vertical strain value. In the vicinity of the crack tip, the values cal-

culated by the two methods do not differ by more than 7 per cent of the initial

strain value. The reason for the differences is that the Runge-Kutta Method

has a truncation error for one step of the order of h5, and the ILLIAC computer

code for the Runge-Kutta Method of integration has a provision for reducing

round-off errors, whereas the Newmark Beta-Method, with ~ = 1/6, has a

truncation error for one step of the order of h3, and the computer routine writ-

ten for this method did not have a special provision to reduce round-off. As

a result, in this particular case the Runge-Kutta Method of integration has a

smaller truncation error and could carry more significant figures than the Beta

Method.

Comparison of the values calculated with the two methods of integra-

tion shows that the same general results are obtained with each method.

After a large number of integration steps there are some deviations in values,

but these deviations do not change the overall picture of the transient strain

distribution in t-he lattice model. Either method of integration provides a sat-

isfactory solution for the problem.

SUMMARY AND CONCLUSIONS

This report has presented a physical lattice model suitable for investi-

gating strain-wave propagation in two dimensions and for investigation of the

transient strain redistribution associated with a crack that propagates in finite

jumps. Equations expressing elastic behavior of the model under plane- stress

conditions were developed for both static and dynamic conditions. The purpose

of this type of model is to provide an approximate solution for problems to which
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it is difficult or impossible to apply classical methods of analysis.

It was shown that the lattice model presented can be related to

finite differences of an Airy stress function for linearly elastic condi-

tions. Static equilibrium equations in terms of displacements were de-

veloped for plane-stress conditions. Equations can be developed for

plane-strain conditions by using the stress- strain relationships apply-

ing to the plane- strain assumptions. The lattice model can also be

used to investigate non-linear elasticity by using an appropriate stress-

strain relationship in developing the equilibrium equations. A high-

speed digital computer of large memory capacity is virtually a necessity

for ,numerical solution of problems of any complexity with the lattice

model.

Several statically loaded plates were analyzed with lattice models

having different numbers of subdivisions. One case, a square plate loaded

with parabolically distributed end tension, was solved by an energy method

and with a lattice model having three different sizes of subdivision. Aver-

aged energy-method stresses were compared to stresses calculated from

the lattice models. It was found that for this comparison the lattice model

gave excellent results. The greatest difficulty encountered with the lattice

model was in duplicating the boundary deformation where the end loads were

applied. Finer subdivision of the lattice model produced a better approxima-

tion of the loaded boundary deformation and gave more accurate results at

other points of the lattice model.

Two examples of concentrated effects, a plate with a pair of concen-

trated loads and plates containing a crack or pair of cracks, were presented

to show how the lattice model represents the strain distribution associated

with such effects and to get some indication of the change in representation

of strain’ distribution as the number of model- subdivisions changes. If steep

strain gradients are involved in a problem, a finely divided lattice model is

required to give a satisfactory representation of these strain gradients.

The differer~tial equations expressing the dynamic behavior of the lat-

—

—
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tice model were developed by adding time-dependent terms to the static

equilibrium equations of the lattice model. Application of these equations

to a steady-state condition, and the calculation of natural frequencies of

lattice models are discussed. Frequencies for two examples and mode

shapes for one example are also given. Two methods of numerical integra-

tion were used in the analysis of crack propagation in lattice models. It

was found that the two methods of numerical integration gave essentially

the same results after a small number of time intervals. After a large num-

ber of time intervals one value differed by 18 per cent of the initial vertical-

strain value, while in the vicinity of the crack, differences were about 7 per

cent of the initial strain value; however, these differences did not change the

overall picture of strain redistribution in the lattice model. The computer

used for the integration of the differential equations expressing the transient

behavior of the lattice model could not be used for lattices having more than

40 bars without the calculation time becoming excessive. A lattice model

with only 40 bars is much too coarse to adequately represent the steep strain

gr~dients associated with a crack, and therefore such a coars~ lattice can

only give a rough qualitative picture of the transient strain redistribution as-

sociated with crack propagation. In spite of the coarseness of the lattice model

used, a general picture of transient strain redistribution was given by the lat-

tice model.

Only undamped elastic behavior of the lattice model was considered be-

cause of the limitations imposed by the available computer. Damping and non-

linear reformational behavior could be treated with the lattice model if a very

large computer is used for solution of the problem.

Several problems arise in solving dynamic problems with a lattice model.

One problem is that bars can be set into oscillatory motion when energy is fed

into or released in the lattice model. This has the effect of modulati~

waves passing through the lattice model. Bar oscillations also occur

suit of reflections of s-train waves from the lattice model boundaries.

problem, of more importance for strain waves originating from externa

g strain

as a re -

A second

dynamic
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loads than for transient strains associated with a crack, is that the elastic

lattice model has an electrical analog in the form of an L-C filter. Such

electrical filters have the property of offering a varying resistance to the

passage of electrical disturbances of varying frequencies, passing some

frequencies with little resistance while stopping passage of other frequen-

cies. Therefore, if the lattice model is to be used for investigation of

strain-wave propagation resulting from external loading, the possibility of

the existence of passing and stopping bands must be considered.

It is concluded that the lattice model presented in this report can

be used for the investigation of strain-wave propagation problems in two-

dimensions. The use of the lattice-model method of analysis is contingent

upon the availability of a large high-speed computer. It was not possible

with the computer available for this investigation to use lattice models hav-

ing very many bars, and only a crude picture could be formed of the transient

strain distribution in a plate with a propagating crack. When larger and

faster computers are used, the lattice-model method for investigating tran-

sient strains associated with a propagating crack can be used to theoretical-

ly investigate different aspects of the fracture process in an ideal plate re-

placed with a lattice model by assuming fracture critieria for nodes in the lat-

tice model and determining whether a crack would propagate or arrest. The

fracture criteria assumed could include internal darnping, strain rates, strain

magnitudes, non-linear stress-strain relationships, and previous deformation

history.
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