SSC-162

F ...

MTRB LIBRARY

Exhaustion of Ductility and Brittle Fracture of E-Steel Caused by Prestrain and Aging

by

C. MYLONAS

SHIP STRUCTURE COMMITTEE

SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES:

BUREAU OF SHIPS, DEPT. OF NAVY MILITARY SEA TRANSPORTATION SERVICE, DEPT. OF NAVY UNITED STATES COAST GUARD, TREASURY DEPT. MARITIME ADMINISTRATION, DEPT. OF COMMERCE AMERICAN BUREAU OF SHIPPING

ADDRESS CORRESPONDENCE TO:

SECRETARY Ship Structure Committee U. S. Coast Guard Headquarters Washington 25, D. C.

July 1964

Dear Sir:

In order to study the effect of gross strain upon the mechanical and metallurgical properties of steel and to relate these variables to steel embrittlement, the Ship Structure Committee is sponsoring a project at Brown University entitled "Macrofracture Fundamentals." Herewith is a copy of the Second Progress Report, SSC-162, <u>Exhaus-</u> tion of Ductility and Brittle Fracture of Project E-Steel Caused by Prestrain and Aging by C. Mylonas.

The project is conducted under the advisory guidance of the Ship Hull Research Committee of the National Academy of Sciences-National Research Council.

Comments on this report would be welcomed and should be addressed to the Secretary, Ship Structure Committee.

Yours sincerely,

T. J. FABIK Rear Admiral, U.S. Coast Guard Chairman, Ship Structure Committee

SSC-162

Second Progress Report of Project SR-158 "Macrofracture Fundamentals"

to the

Ship Structure Committee

EXHAUSTION OF DUCTILITY AND BRITTLE FRACTURE OF E-STEEL CAUSED BY PRESTRAIN AND AGING

by

C. Mylonas Brown University

under

Department of the Navy Bureau of Ships Contract NObs-88294

Washington, D. C. National Academy of Sciences-National Research Council July 1964

ABSTRACT

The investigation of static brittle fracture initiation in engineering structures requires first the establishment of a criterion of brittle behavior of the structure as a whole. Such a criterion is obtained by a comparison of the fracture load with the flow limit of an idealized perfectly plastic material. The difference between static fractures at high and low load was related to the magnitude of the plastic strains at regions of strain concentration and to the ductility of the steel. The contrast between static laboratory tests of notched plates of sound steel which did not fracture before the flow limit was reached, and service failures which have occurred at low nominal stress levels. shows that the ductility of sound steel is sufficient to avoid low average stress fracture, but may be reduced during fabrication or in service. This was demonstrated experimentally with extensive tests of prestrained notched plates, bent bars, and axially compressed bars. It was found that the ductility depends on the whole history of strain and temperature and is suddenly and drastically exhausted by cold straining of a closely determined amount, and far more easily by straining at about 500 F. This led to the first systematic static brittle fracture initiation of unwelded steel plates at low average net stress, as low as 10% of yield. These results provide an explanation of the initiation of service failures, which are usually traced to cold worked regions or to defects close to welds, where complex hot straining occurs. Further tests have shown that the ductility of cold strained steel is restored by a heat treatment at about 1100 F or higher. The required duration of heat treatment is shorter for hot than for cold-strained bars and appears to increase with the amount of prestrain, and to decrease when the temperature is raised. A better understanding of the mechanism of fracture initiation makes it now possible to express qualitative macroscopic criteria of fracture based on the strain hardening law and the ductility of embrittled steel and on the strain and stress distribution at a sharp notch in such material.

CONTENTS

Page

1.	General Concepts	1
	la. Distinguishing Features of Brittle Fracture 1b. Definition of Static Brittle Fracture Initiation 1c. Causes of Static Brittle Fracture Initiation in	1 1
	Structures	2 3
2.	Precompressed Notched Plate Tests	6
3.	Reversed Bend Tests	7
4.	The Influence of Residual Stresses l	. 0
5.	Reversed Bending of Bars Strained Hot	1
6.	Restoration of Ductility by Heating 1	4
	6a. Purpose and Method of Testing16b. Bars Prestrained Hot16c. Bars Prestrained at 75 F16d. Conclusions from Heat-Treating Tests1	.4 16 16
7.	Axially Compressed Bars 1	18
	7a. Method of Compression17b. The Compression Machine17c. Aging under Tension27d. Tension Machine with Cooling Bath27e. Brittle and Ductile Behavior27f. Test Results2	18 19 21 21 21 23 24
8.	Conclusions 3	30
9.	Acknowledgment	31
	References	31

NATIONAL ACADEMY OF SCIENCES-NATIONAL RESEARCH COUNCIL Division of Engineering & Industrial Research

SR-158 Project Advisory Committee "Macrofracture Fundamentals"

Chairman:

W. R. Osgood The Catholic University of America

Members:

N. J. Hoff Stanford University

J. A. Kies Naval Research Laboratory

P. M. Naghdi University of California, Berkley

____.

.....

1. GENERAL CONCEPTS

Several reports and review articles describe the conditions under which service failures have occurred, and the practical measures which led to a reduction of their occurrence. The present report is concerned with the mechanism of fracture initiation in structures subjected to static loading, and is based in part on earlier research (1)-(12), * carried out at Brown University under the sponsorship of the SSC.

Distinguishing features of brittle 1a. fracture. The first difficulty encountered in the study of brittle fracture of steel structures is the lack of a clear definition. Simplified definitions of brittleness of materials are not applicable. A cleavage appearance is not a requirement of brittleness in the failure of steel structures, which always exhibit a good measure of shear fracture mixed with cleavage. Nor is a complete absence of ductility a good criterion, because even the most brittle service failures show signs of plastic deformation at the point of initiation. Likewise the local stress at the point of initiation is always high since fracture starts at defects or points of stress concentration. The problem of brittle failure becomes clearer only when the interdependence of local and overall behavior of the structure as a whole is considered. The laws of plastic deformation and limit analysis of structures have proved invaluable in this respect.

The characteristic feature of brittle failure of structures was indicated by the difference between service failures and laboratory tests. In at least a few clear-cut instances service failures occurred under static loading at overall stress levels well below yield (13), and lower than nominal stress levels successfully sustained in similar structures. It is believed that this is true in the majority of service failures. On the contrary, it had not generally been found possible to reproduce static low-stress brittle initiation of fracture in the numbeous early laboratory tests. Contrary to the elementary Griffith-type theories of fracture

*Numbers in brackets refer to the list than the flow limit. They can become of references at the end of the text. very large only when the flow limit is

(14)-(16) symmetrically notched plates of mild steel having even the deepest and sharpest cracks and temperatures below brittle transition, were not found to fracture in central static loading before the average stress over the net section reached yield level and appreciable plastic deformation occurred (1)-(12). This difficulty or barrier to the static initiation of fracture in sound steel (1)-(4), (6), (11), (12), (17), could only be overcome by a strong impact at a notch, frequently in combination with local severe cooling or by fracture initiation at a brittle bead weld (19). Once started, however, the fracture would propagate at high speed in regions of low stress and higher temperature, just as in service failures.

It appears that brittle fracture passes through the two distinct phases of initiation and propagation. The inability of energy theories of the Griffith type to describe the initiation of fracture is not surprising, because they only express necessary and not sufficient conditions. When no other conditions need be satisfied, as in glass, necessary conditions are also sufficient. But the barrier to fracture initiation indicates that some other criterion apparently more stringent than energy balance must also be fulfilled, probably a maximum stress or strain criterion of fracture. Energy theories may be applicable to the stages of propagation or arrest of a crack, provided the dynamic effects are properly considered.

1b. Definition of Static Brittle Fracture Initiation. The fracture of a structure or structural member containing defects or notches, at a static load causing general yielding of the net section (i.e. at the flow limit) is not surprising or irregular. But fractures at static loads below the flow limit are certainly irregular, and in engineering will be called brittle. This definition may also be derived from a consideration of the magnitude of the local strains prior to fracture in relation with the overall loads and deformations. As discussed by Wells (20), plastic strains at the notch roots are relatively small and contained within elastic regions, as long as the average stress level is lower than the flow limit. They can become

reached and general yielding occurs. The discussion has tacitly referred to perfectly plastic materials for which these concepts are clear. The picture changes little with materials like mild steel. Even though strain hardening sets in at some stage, it is still found that the overall deformations increase distinctly more rapidly at a specific value of the load which usually is close to the flow limit of an idealized perfectly plastic material. The local strains will again increase slowly at first and rapidly after this limit, with an intermediate gradual transition. The basic idea is that in sound mild steel sufficient strain hardening and fracture can occur only at the high strains associated with the flow limit. This has been extensively discussed by Drucker (1) at the 1953 Conference of Brittle Fracture held at MIT. He concluded that low average stress fractures occur at small local strains, and conversely that a ductility smaller than needed to permit yielding at the notches up to the flow limit, will result in low average stress initiation of fracture. Accordingly the smallness of the average stress at fracture is an adequate and sufficient criterion of brittleness of fracture initiation in a structure. If the average net fracture stress is of yield intensity or higher, the fracture is ductile; if it is decidedly smaller the fracture is brittle. The average net stress however is not the direct cause of failure but only a convenient indication of the magnitude of the strains. No confusion should be made with the true peak stress at a crack or notch, which is of yield or raised yield intensity long before general yielding occurs. Fracture starts and advances in a local field of high stress.

The average net stress criterion of brittle fracture initiation has been the basis of the extensive research sponsored by the Ship Structure Committee at Brown University since 1954(2)-(13).

1c. Causes of Static Brittle Fracture Initiation in Structures. The proposed criterion of brittle fracture initiation and the concepts on which it is based provide a clear understanding of the causes of brittle failure of structures. Although the material criterion of fracture is not known, it is clear that brittle fracture does not occur when the material has

sufficient ductility under the conditions of stress and constraint existing at a notch, so as to be able to yield up to at least the flow limit. Therefore the failures obtained in the laboratory at average stress levels of yield intensity, even with the poorest structural steels under the worst conditions of stress concentration and below the transition temperature show that mild steel in its initial state has all the necessary ductility to avoid brittle fracture. Since low stress failures did occur in service it must be concluded that in the region of initiation the original ductility had somehow been reduced or exhausted during fabrication, service or repair.

It must also be concluded that the flow limit fractures generally obtained in the laboratory tests did not reproduce the phenomenon of static brittle fracture initiation. Such reproduction of low static stress failures is an indispensable step in the study of brittle fracture, and a fundamental check of the correctness of the proposed concepts. It was the first aim of this research. According to these concepts low stress initiation under static loading should become possible when the initial ductility of mild steel is sufficiently reduced, as e.g. by suitable cold working or heating. This conclusion was completely substantiated by a series of tests described in later chapters. Typically brittle fractures or arrested cracks were produced in unwelded precompressed notched steel plates, at stress levels as low as 10% of yield (Fig. 1). A drastic exhaustion of the original ductility was produced with sufficient axial compression, or bending of cold or hotbars, which subsequently fractured at extensions of the order of 2%. In general it was found that the remaining ductility depends strongly on the whole history of strain and temperature. and may be highly anisotropic.

These results, which are fully discussed later, substantiate the concepts of plasticity on which this investigation is based. They also clarify some unsuspectedly strong or unknown effects and properties of steel. They also indicate methods for studying the embrittling influences, and for selecting steels according to the properties which are important in fracture, i.e. the properties of the damaged steel.

FIG. 1. NOTCH REGION DETAIL OF 10" SQUARE, 3/4" THICK NOTCHED PLATES PRECOMPRESSED AND TESTED IN TENSION VERTICALLY LOW LOAD BRITTLE INITIATION AND DUCTILE ARREST OF CRACKS.

Several independent investigators (21)-(41), starting from various points of view have studied many aspects of the problem of work hardening or reduction of ductility by straining at various temperatures. Notable among them is the work of Körber, Eichinger and Moller (21) at the Kaiser-Wilhelm Institute in 1941-43, which appears to have escaped the attention of all subsequent investigators, in the U. S. and abroad.* Our understanding of the mechanics of brittle fracture has been greatly delayed by this oversight.

ld. The Criterion of Fracture. Once low stress brittle fracture initiation has been consistently produced, and the importance of exhaustion of ductility demonstrated, the obvious aim is to find methods of assessing the danger of fracture. Fracture of the material may obey a strain criterion (e.g. a maximum strain under certain conditions of constraint), and then the danger of fracture should be assessed by a comparison of available material ductility and required ductility, under the local constraint existing at a notch, and for the strain hardening law of the spec-

ific material. The criterion may also be a maximum stress, which may be reached after sufficient work hardening, such as occurs with large strains, and under sufficient constraint against low stress yielding. But extensive ductility means slow work-hardening and a weak lateral constraint, hence a small stress. Thus even if fracture obeys a maximum stress criterion, its fulfillment depends on the magnitude and type of the strains, as well as on the complete strain hardening law. Provided the interdependence between ductility, strain hardening, constraint, and stress is understood and the exact stressstrain relations and strain distribution are taken under consideration, the conditions of fracture should be equally well expressed in terms of stress or strain. At the moment there is no way of knowing which expression will be simpler or more realistic.

*This work has been brought to our attention by Professor N. H. Polakowsky of the Department of Metallurgy, Illinois Institute of Technology.

The answer to the problem of brittle initiation requires a knowledge not only of the exact strain-hardening law and of the remaining ductility after a damaging strain history, but also of the true strain distribution at a crack or notch. Studies of the properties after various types of straining are reported in the chapters which follow. The problem of the true strain distribution at a notch in a strain hardening material such as prestrained steel is guite difficult. Stress distributions fulfilling differential equation of equilibrium, compatibility and boundary conditions have been given for a notch in a perfectly plastic material in plane strain (42)-(43), but the proof of uniqueness is lacking. An exact solution has also been given for a notch in plane strain subjected to shear (44)-(45). No solution exists for a plate of finite thickness which has a three dimensional distribution of stress, but it has been shown that conditions of plane strain are approached only when the thickness is many times larger than the width of the net section (46). Plane strain conditions in elasticity are reached at a much smaller thickness, which need only be large in comparison with the radius of the notch root (46)-(47).

Attempts have often been made to obtain approximate solutions of the stress distribution around notches in plane strain with the help of gross simplifications and arbitrary assumed distributions. For example in a recent attempt (48), use is made of the elastic solution around a hyperbolic notch in plane strain. The plastic zones are assumed to be regions where the elastic strains violate the Mises vield condition. The plastic stresses are taken to vary linearly from the elastic plastic interface to the notch root, and the relative elastic stress distribution in the elastic region is assumed unchanged. An adjustment is made to achieve overall equilibrium between external load and the altered stress distribution, but otherwise neither differential equations of equilibrium, nor compatibility, nor boundary conditions are satisfied anywhere in the plastic zone or at the elastic-plastic interface where they are obviously violated. Approximate solutions, such as the one mentioned above, overlook the most important factor,

..

namely the local plastic action, which strongly modifies the stress distribution. Errors by a factor of 2 should not be surprising. An additional frequent error is made in the problem of the symmetrical notched bar in plane strain. The value of the average stress at general yielding, is frequently found equal to the yield stress in simple tension, rather than about 2.5 times higher, as is known from limit analysis (1). This error has frequently been made, obviously taken over from the original work of Allen and Southwell (42) and Jacobs (43) who, however, followed much more accurate and thorough methods than the above mentioned. Their error was to assume that general yielding sets in the moment when the plastic zones from opposite symmetrical notches first touch each other, which does happen when the average net stress is not much greater than the yield stress in simple tension. It is now well known that this is not correct. Drucker (46) and Lee (47) have explained that the flow pattern needed to cause unrestricted plastic flow is not formed when the plastic zones first merge, but at a considerably higher average stress, as much as 2.57 times the yield stress for external deep parallel-edged notches.

Solutions based on an elastic-perfectly plastic material are of no great use in the problem of brittle fracture, even when they are correct. It is guite clear that in the range in which it may be idealized as perfectly plastic, steel does not fracture in a brittle manner. Since fracture does not occur below the general yield level of the idealized material, the elastic plastic solutions (contained plastic deformation) are irrelevant to brittle fracture. On the contrary, flow limit calculations, though based on an idealized perfectly plastic material, are relevant to undamaged ductile steel which can sustain large strains. The flow limit indicates when the strains become very large. At that stage strain hardening and constraints build up in the real material, and can raise the local stress to a very large value (of the order of the theoretical strength) at which it fractures. Perfectly plastic solutions are also inapplicable to fractures occurring below general yield (brittle), because these in-

a. Average net stress 90% of virgin yield

b. Average net stress 102% of virgin yield

FIG. 2. BIREFRINGENT COATING SHOWING LINES OF CONSTANT PRINCIPAL IN-PLANE SHEAR DIFFERENCES IN NOTCH REGION OF 3/4" THICK PLATES LEFT: AV. STRESS 28KSI. RIGHT: AV. STRESS 31.3 KSI.

dicate an embrittled material which cannot be approximated with a perfectly plastic law. In embrittled or low-ductility materials, strain hardening is rapid, so that the local stress can rise to the fracture value after little straining, as has been extensively discussed by Drucker (12). Such relatively small plastic strains are evident in all brittle failures. Parallel arguments employing a strain instead of a stress condition of fracture may also be used.

This discussion shows the futility of stress and strain calculations based on perfectly plastic materials, and even more so of approximate calculations. It also shows the importance of the determination of the general anisotropic stress-strain relations (tensorial relations) of work hardened steel. Unless this can be found or inferred from special tests, there is no clear way of calculating the stress or strain distribution around a notch and solving the problem of brittle fracture.

An experimental possibility of solving the problem would be to measure the strains at a notch. But this is extremely

difficult, because interior and not merely the surface strains are needed. No direct means of interior stress measurement exists at present. Measurements of the strains in the midplane of an aluminum notched bar made up of two cemented halves marked with grids on their matching faces (51), have been made after ungluing. The best available synthetic cements, however, do not appear sufficiently strong to hold rigidly together work hardened steel plates deformed in the plastic zone. Another possibility would be to estimate the interior strains from the variation of the surface strains and from other measurements e.g. of surface curvature and thickness changes during the whole process of loading. For this purpose several tests were made with 10 in. square notched plates having birefringent coatings (52), attached to the metal surface. Figure 2 shows (4) such a plate with a 0.06 in. coating subjected to an average net stress of 90% of the vield point in the initial state (left) and 102% (right). The sensitivity is sufficient to show the individual Lüders' lines at low strains, which merge into a more

uniform distribution at higher strains.

2. PRECOMPRESSED NOTCHED PLATE TESTS

The first object of the present work was to reproduce consistently in the laboratory true "brittle" failures of essentially unwelded steel plates, i.e., to obtain initiations of fracture under static loading at a low average net stress. The way to achieve this would be to exhaust the original ductility of the steel. To increase the chances of success, a 3/4 in. rimmed pedigree steel "E" of high brittletransition range was chosen. Typical composition and properties of E-steel are given in Table I and in more detail in reference 38. Various methods of embrittling the steel were tried (2)-(3). The most efficacious was to prestrain machine-notched plates in the direction which would produce compression of the (3)-(4). Subsequently, the notch roots plates were tested in tension at a temperature of -5 to -14° F. The 10 in. square 3/4 in. thick plate had the sharpest possible milled $1 \frac{1}{2}$ in deep symmetric 90° notches on a pair of opposite sides and was subjected to compression on the other pair until 1.000 in. gage lengths the notch roots shortened by across amounts varying between 0.015 in. and 0.060 in. Clamping between heavier plates prevented buckling. The prestrained plate was next welded to special heads which would yield under tension so as to eliminate any eccentricity of loading. It was |

then covered with foamed plastic insulation, and with thermocouples fixed at several points was cooled to about -18 °F in a freezer. The loading was started at an initial rate of about 50,000 psi per minute. The rate slowed appreciably when the hinges started yielding.

The results were remarkable. Most prestrained plates fractured at a low net-stress level, the lowest at 12% of initial yield (3)-(4). As was found by about 100 tests (3), (4), (6), the general trend was toward lower stress fractures for higher prestrains. What is more important, however, is that the prestrained plates developed arrested cracks at extremely low net stress, usually between 9 and 30% of initial yield. Figure 1 shows such cracks on steel plates with ground faces which were not carried to ultimate failure. The brittleness at the point of initiation of the fracture is in clear contrast with the plastic deformation at the point of arrest. It should be noted that these cracks start under static conditions at low loads and at the ralative bluntness of the sharpest possible milled 90 deg. notch; that they are arrested at a greater depth and root sharpness; and that frequently they do not restart even at loads producing general yielding of the section. The result is totally contrary to the elementary energy theories of fracture of the Griffith type, which postulate an average stress at fracture inversely proportional to the square root of the crack length (14)-(16). The obvious

TABLE. I. TYPICAL COMPOSITION AND PROPERTIES OF STEELS.

[Element, per cent								Vield Ultimate Yield Tepsile	B_ongation Charpy per cent Impact				
ee]				Element, per cent			Strength Strength		Τn	n In		Temp.			
St	с	Mn	P	S	Si	Cu	Ni	Cr	Мо	psi	psi	8 in.	2 in.		Fahr.
Е	0.20	0,33	0.013	0.020	0.01	0.18	0.15	0.09	0.02	32 000	65 000	36	30	15 LO 3 3	55 to
ABS-C	0,20	0.62	0.014	0.030	0,20	0.27				43 000	70 000	29		5.5	
Λ7	0.26	0.48	0.014	0.032						35 000	65 000	30			
1-1	0.12	0,69	0.011	0.030	0.17	0.31	0.88	0.56	0.44	111 000	120-000		20	15	-120
HY-80					l					80 000	95 000		24	140	-70

explanation of this behavior is the plastic compression of the steel in the region of the notch root and a consequent reduction of its ductility below the amount required when the flow limit is approached. The crack crosses the embrittled material and stops as it enters the more ductile region, unless it has picked up enough velocity to be able to propagate at the existing low stress level. Similar results have since been obtained with a British Admiralty steel (54), and with an ABS Class B steel.

Tests were also made with plates prestrained in tension and tested cold in tension in the direction of prestrain or transversely to it (2). The results were not as spectacular as with precompressed plates, but fractures in the parallel direction again occurred below the raised yield strength, and even below the initial yield point in the transverse direction. Cold extension appears to reduce the ductility anisotropically. Fracture anisotropy has also been found after hot rolling (35).

Unlike the earlier static test which produced fractures at the fixed yield stress, the present low average stress fractures permit the detection of the size effect as a change of the average fracture stress. Comparisons made to this effect between similarly compressed 10 and 20 in. plates (4), and between plates varying in width from 6.67 to 20 in. (7) did not disclose fracture stress variations consistent with a size effect.

3. REVERSED BEND TESTS

A series of tests with uniformly compressed bars was begun (section 7) in order to study the exhaustion of ductility by prestraining which led to the brittle fractures of the precompressed notched plates. These tests required a lengthy compression procedure with precautions against buckling, and great care in the machining of the tension specimens to prevent heating or straining. To get a rapid approximate answer on the effect of prestrain, Ludley and Drucker (8) devised the practical reversed bend test. shown in Figure 3, which has proved quite usefull (9)-(10). A similar test had been used by Lagasse and Hoffmans

(27)-(29), in the study of metal forming, but involved a severe lateral pressure at the subsequently tested region of greatest interest. Although the strain varies with the depth from the free surface it is almost constant over an appreciable arc of the bent bar. The maximum prestrain is calculated from the radius of curvature and the thickness of the bar. The strain in a bent beam specimen is far more homogeneous than a notched specimen and far more reproducible. In fact the scatter of results was much smaller with the bent beam than with notched plate tests. The success of the reversed bent bar test raises the hope that it can provide an absolute type of test, if correlation is found with axially compressed bar tests and with field experience.

The bars used were 10 in. long and 0.75×1.00 in. in cross-section, where 0.75 in. was the as-rolled thickness of the parent plate. Tests with thinner or

FIG. 4. BRITTLE AND DUCTILE BEHAVIOR OF 0.75×1.00 IN. BARS DURING REVERSED BENDING.

wider bars failed to show any significant differences. The tests disclosed that the reduction of the initial ductility was not proportional to the compressive prestrain. The ductility appeared to remain consistently high until the prestrain reached a critical value, at which the ductility dropped suddenly to very small values. A possible reason for this was given by Drucker (12). The critical strain at which this change occurs is henceforth called the "exhaustion limit" and can usually be determined to within a strain of ± 0.02 or better. Figure 4 shows at the rear two bars of E-steel which were initially bent to strains of 0.57 (rearmost) and 0.30 (i.e. 57% and 30%), both below the exhaustion limit, and were ductile enough to be bent open to angles of about 120° , with strains of the order of 0.20 or more. under loads of more than 5000 lbs. In the front are two bars of an ABS Class C steel which were prestrained to strains of 0.63 (left) and 0.65 (right), which is just above the exhaustion limit for this steel. Both cracked and fractured at loads smaller than 2000 lb, with extensional strains of the order of 0.01. Photomicrographs of a section in the plane of bending of a bar of E-steel which fractured at very small load showed the compression of grains at the intrados and their extension at the extrados (9).

FIG. 5. SKETCH OF LOAD VS. MAX. STRAIN DURING UNBENDING OF BARS OF ABS CLASS C STEEL PRE-BENT TO 60% STRAIN.

Obviously, the important characteristic is the prestrain causing the sudden drop in ductility, i.e. the exhaustion limit, and this can be easily determined by load measurements alone. A typical variation of strain at the intrados as a function of the applied load is shown in Figure 5. The bar was of ABS Class C steel precompressed to 0.60, (lower limit for fracture of unaged bars), and the measurement of strain during the final test was made with a strain gage cemented at the intrados. The rapid change of slope at about 1500 lb. corresponds to the onset of yielding. The continued positive slope is due to the spreading of the plastic zone toward the neutral axis, to strain hardening, and to the reduction of the moment arm by opening up of the bent bar. At a load of 5000 lb. the strain is estimated to be at least 0.10 and probably much larger (the strain gage was not working at such strain). In Figure 6 right, the fracture load of each bar is plotted against prestrain, but only up to 5000 lb., at which the tests were interrupted, as the strains were well above 0.10. This would happen with all bars prestrained to less than 0.50. On the contrary bars prestrained to more than 0.54 would all crack and fracture at loads of less than 1500 lb. The drop in ductility occurs at a prestrain of 0.52 ± 0.02 . This sudden drop of load permits an arbitrary choice of a large load as limit between ductile and brittle behavior. The load of 5000 lb. seemed appropriate, but 4000 or even 3000 lb. would still give the same exhaustion limit.

FIG. 6. RESULTS OF REVERSED BEND TESTS AT -16 F.

FIG. 7. RESULTS OF REVERSED BEND TESTS AT 75 F. (For Explanation of Point Symbols see FIG. 6)

FIG. 8. COLLECTED RESULTS OF UN-BENDING TESTS AT 75 AND -16 F OF STEELS E, A-7, ABS-C, HY-80 AND T-1.

It was found that both aging after straining (optimum accelerated aging consisted of heating for 1 1/2 hours at about 150°C), and lowering of the temperature of final testing reduced the exhaustion limit. This is indicated in Figures 6 and 7. A comparison (9) of E-steel with steels A-7, ABS Class C, T-1, and HY80 (properties in Table I) is given in Table II and Figure 8.

Stevel	Testee	l.at -16 ⁰ ⊬	Tested at 75°F		
ater:	Agod Echnus-	Uniged Exhaus-	Aged Exhaus-	Unaged Lebaus-	
	tion Limit	tion Limit	Fion Limit	tion Limit	
E	0.40 co 0.44	0.5J to 0.55	0.50 to 0.55	0.57 to 0.59	
ABS-C	0.50 to 0.55	0.57 to 0.57	0.52 to 0.56	0.60 to 0.62	
197-50	0.59 co 0.63	0.60 to 0.63	0.61 to 0.65	0.65 to 0.69	
Λ-7	0.46 to 0.48	0.52 to 0.53	0.52 to 0.55	0.61 to 0.62	
Τ-1	0.49 to 0.52	0.52 to 0.53	0.56 to 0.59	0.60 to 0.64	

TABLE II. SUMMARIZED RESULTS OF REVERSED BEND TESTS.

TABLE III. REVERSED-BEND TESTS OF BARS WITH MACHINED SURFACES. Size of specimen: 10" x 1" x 3/8"

		APPLIE	D LOAD, LB.	STRESS	(4M/bd ²)ksi
Steel	COMPRESSIVE PRESTRAIN	First Crack	Fracture	First Crack	Fracture
E E E	0.52 0.54 0.63	900 1 200 120	900 1 200 330	75.3 94.0	75.3 94.0
A7 A7	0.50 0.54		++ ++	 	++ ++
T1 T1 T1	0.50 0.57 0.60	 0 0	1 800 690 690	 0 0	-+-+ 56.6 58.7
Е	0,60	240	310	20.8	26.8
A A	0.60 0.63	420 120	500 420	35.8 10,4	42.5 28.7
Tl	0.60	0	660	0	56.3
E E	0.53 0.60	270 170	370 370	25.2 15.1	32.2 32.8
A7 A7	0.52 0.61	 200	++ 430	17.7	++ 38.0
Tl	0.54	0	750	0	64.0
тι	0.54	0	800	0	68.0

++ No fracture occurred up to a load of 2000 lb., corresponding to a stress larger than 90 ksi.

Tests were also made with beams of different widths, and with depths down to 1/4 in (8). Brittleness was induced at the same prestrain in all bars, which then fractured at similar stress levels, thus showing no size effect.

A limited number of tests were carried out with bars having the compressed face not in the as-rolled condition but machined to a depth of 3/8 in., leaving a 1 by 3/8 in. cross-section. Similar tests with bars machined down to 1/8. in. are reported in reference 8. Since no size effect exists, any variation in exhaustion limit should be attributed solely to the difference between as-rolled and machined surface. The results are given in Table III. The last two columns give the nominal stress at the first crack or at fracture for an assumed fully plastic stress distribution. This should be an acceptable approximation for the purpose of a comparison, when the loads and strains are large. The tests were not sufficient to determine sharp transition limits as was done previously. Wherever the results differ from those of bars of full plate thickness they appear to show a small rise of the exhaustion limit. Later tests with bars of ABS-C steel confirm that machined surfaces raise the exhaustion limit by about 0.05 (67).

The most remarkable result obtained from the reversed-bend tests is the sharp drop of the remaining extensional ductility at a certain value of the compressive prestrain. An interesting confirmation of this result is given in recent fatigue tests with precompressed specimens (34). The endurance limit was found to increase at small prestrains and to drop suddenly to low values at prestrains of about 0.50, which agrees well with the exhaustion limit determined by reverse-bend tests.

"Transition temperatures" obtained with the material in its initial state have been extensively used in the assessment of steel's resistance to fracture. The present tests show that the important properties are those of the damaged steel, e.g. by prestrain and aging. Accordingly, the exhaustion limit and its dependence on temperature seem to be more significant than a transition temperature of the material in the initial state.

4. THE INFLUENCE OF RESIDUAL STRESSES IN THE NOTCHED-PLATE AND BEND-BAR TESTS

It is true that, besides an exhausted ductility, the notched plates and the bent bars had also a high residual tension at the region of fracture initiation. It has been argued that residual stresses and not the exhausted ductility may be the causes of fracture. Sound structures, however, are known to withstand successfully extremely high residual stresses. The subject of the role of residual stresses in fracture has been extensively discussed in recent years (55)-(64), and opinions have differed widely.

The influence of residual stresses can be studied in a rational way when not only stresses but the corresponding strains are considered (4), (11). Residual stresses are at most of yield or raised yield intensity and therefore may be wiped out or even transformed from tension to compression, by plastic strains of the order of the strain at the yield point (about 0.002). As is well known, plastic strains of the order of 0.010 or more are usually evident at the origin of even the most brittle fracture.

A detailed discussion of the importance of large fields of residual stresses (reaction stresses) and of the probable unimportance of localized stress has already been given (4) (11). The confusion over the role of residual stresses arises from their usual co-existence with prestraining and exhaustion of ductility. No clear decision can be reached on the relative importance of these two factors as long as they coexist. Clear differentiation can be done with tests involving each factor separately. Accordingly, the following 4 types of tests were conducted

and the following answers were obtained:

- a. Notched plates with residual stresses but no prestrain do not fracture in a brittle manner.
- b. Bars uniformly precompressed to suitable prestrains, but free of initial stress, fracture at very small strains in typically brittle manner.
- c. After removal of the residual tension without heating or plastic straining of the notches, precompressed notched plates still fracture at low average stress.
- d. After removal of the residual tension without heating or plastic straining of the precompressed region, bars bent beyond the exhaustion limit still fracture in a brittle manner.

The answer is clear and unambiguous: In the present tests the localized residual stresses made no significant contribution to the initiation of brittle fracture. Initiation of fracture was caused by the exhaustion of ductility resulting from suitable prestraining and aging.

These conclusions, however, should not be interpreted as arguments against

"stress-relieving". On the contrary, they emphasize the need for "stressrelieving" but indicate that its main function appears to be other than the removal of residual stresses. As will be shown in paragraph 6, stress-relieving causes a restoration of ductility. It should also be remembered that large fields of residual stress may have an influence on the initiation and more on the propagation of brittle fracture.

5. <u>REVERSED BENDING OF BARS</u> <u>STRAINED HOT</u>

The tests performed with precompressed notched plates, reversed-bent bars, and axially compressed bars (discussed in section 7) show that the exhaustion of ductility caused by suitable room temperature prestraining can lead to brittle fracture initiation under static loading alone. This is in agreement with observations on several service failures where the initiation was traced to cold-worked

regions (65). The origin of brittle fracture, however, has also been traced to regions close to welds (65), though not at the welds themselves when they were sound. In effect this has led to various tests of plates containing a central longitudinal butt weld running over various types of notches in the welded edges (57)-(64). When cooled below zero, some of these plates develop arrested cracks originating at the welded-over notches, or fail at low-longitudinal loads. As indicated by Wells (13), (60), the zone adjacent to a weld is stretched by amounts up to 0.02 during cooling. Any notch or defect in this region will locally raise the strains by a substantial factor. The stretching caused by the shrinkage produces also large residual tension stresses which, unfortunately, have frequently been considered as the main cause of brittle fracture.

But, as was shown in section 5, the existence of strong local residual stresses does not cause brittle fracture if the steel has sufficient ductility. One is necessarily led to the conclusion that the steel has been embrittled at the root of the weldedover notches, and also at the corresponding points of fracture origin near welds in service failures. The heating due to

FIG. 9. REVERSED BEND TESTS OF UNAGED BARS OF E-STEEL PRESTRAINED AT VARIOUS TEMPERATURES AND TESTED AT 75 F.

FIG. 10. REVERSED BEND TESTS OF BARS UNAGED E-STEEL PRESTRAINED AT VARIOUS TEMPERATURES AND TESTED AT -16 F.

welding, however, does not by itself cause such damage. On the other hand simple cold extension of notched plates (2), though causing some reduction of ductility, did not produce the extremely low load fractures achieved by precompression. It thus appears that the complicated hot prestraining occurring during the welding cycle should be the embrittling factor. The purpose of the hot-strained bar tests was to check the validity of this hypothesis (10).

As the actual straining at a defect close to a weld is very complex, changing from compression during heating to longitudinal and transverse stretching during cooling, it was decided at first to try only simple straining such as the compression or extension occurring during

TABLE IV. REVERSED BEND TESTS. INITIAL BENDING AT 150-250 F. TESTED AT 75 F. E -STEEL.

2.1.4	INITIA	J. BEND	APPLIED LOA	<u>, LB. </u>	STRESS (4M/bd	∕) ksi .
ж. Жо.	Tomp.	strain	First Grack	Fracture.	Pirst Crack	Fractu
1	150	0.32		L +		+
		0.34		L .		
3		0.40				+
4	1	0.45		+		+
5		0.48		l i		+
6		0.50		+		·
7		0.52		1	35	+
8	1	0.52	•-	+		+
9		0.52		+		+
10		0.54				1 *
11		0.56	100	1200	25	
12	1	0.57		+	1	۰ I
13	1	0.57	100	1.800	25	-
14		0.63	100	1.260	25	-
1	005	0.22		+		
2		0.30		1 1		1
3	1	8,42				-
4		0.44				+
5	1	0,50		+		+
6		0.52		F		1 +
7		0,52		1		+
8		0.53		-		-
1	250	0.20		+		1
		0.20		+		-
3		0.30		- 1		+
4	1	0.30	1	+) +
5		0.30		- E		1
6		0.35	4200	4200	67	-
1		0.37		1 +	-	1 1
8		0.37		1 .		i !
9		0.40		+		+
10		0.40	2400	2460	59	-
11	1	0,40	1300	1500	32	
12		0.43	j	+		1 1
13		0.43		+		1
14		0.44				1 *
15	Ļ	0.46	800	1100	19	
16		0,50	4600	000		1 1
17	1	0.54	300	1000	1	1 7

 4 No fracture accurred up to a load at 5000 fb., corresponding t stress larger than 78 ksi.

TABLE V. REVERSED BEND TEST. INITIAL BENDING AT 300-400 F. TESTED AT 75 F. E STEEL.

Bar	INITIAL BEND		APPLIED LOA	D, 1.3.	STRESS (4M/bd	²)ksi
No.	Temp.	Strain	First Crack	Fracture	First Grack	Fracture
1	300	0,25		+		4
2		0.30		+		•
3		0.30		+		+
4		0.30		+	1	+
5		0.36		4		+
6		0.40	•	+		
7		0.43		+		+
8		0.46		1	1	+
q		0.46	600	1300	1 15	÷.
10	1	0.46		+		
11		0.46				+
12		0.50	100	1100	1 3	27.5
13		0.50	· ·		1	ŀ
14	!	0.50	100	1300	3	-
15		0.52	100	1500	4	1 .
16		0.54	150	1300	3	
1	350	0.20		+		.+
2		0,21		1 1		1
3		0.30		+		+
4		0.35		1		+
5	1	0.40	800	1300	20	-
ĥ		0.40	1600	3000	40	
7		0.43	800	1200	20	-
8		0.44	50	900		-
9		0.54	200	1400	j	
	400	0.33		i +		+
2		0.33	0011	1300	2.5	-
		0,40	1300	1500	1 3L	-
4	Í	0.42	400	1100	9	-
5		0.43	600	1300	14	1
6		0,43	1350	1350	31	-
1	Į	0,43	3700	3700	/8	-
8	Ì	0.45	100	1600	3	-
9		fi,46	700	900	10	-
10		0,48	908	1000	22	1 1
11	1	0,50	300	810	0	1 1
12	1	0.52	100	1306	3	1 1
13	1	0,54	100	1500	2	
14	1	0.54	200	1100	,	

+ No fracture occurred up to a load of 5000 lb., corresponding to a stress larger than 78 kmi.

TABLE VI. REVERSED BEND TEST. INITIAL TABLE VIII. REVERSED BEND TEST. INITIAL BENDING AT 450-600 F. TESTED AT 75 F. BENDING AT 200-400 F. TESTED AT -16 F. E-STEEL.

Rar	INITIAL	BEND	APPLIED LOAD,	LB.	STRESS (4M/bd	²)ksi
Nυ.	femp.	Strain	First Crack	Fracture	First Crack	Fracture
	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
1	450	0.20		-		:
2		0.25	[+		-1-
3		0,27		F		+
4		0,30		1		1
5		0.30		+		+
ŧ.		0.31		+		+
7		0.33		·+		Ŀ
8		0,33		+		+
9		0.03		1		+
10	1	0.33	1900	1430	24	-
11		0.36	2200	9200	5.5	-
12		0.37	700	1.00	17	-
13		0.37	900	2000	22	
14		0.37		1		+
15		0.40	700	1300	17	-
16	ł	0.43	1000	1600	24	-
17	i	9.40	700	1500	1.7	-
18		0.43	800	1200	19	-
19		0.46	700	1500	17	-
20		8.50	150	820	ć.	
1	509	6.33				
÷	1	0.3				
3		0.37	200	309		
6		0.37	1300	1600		
5		0.40	1200	:500		
Ű.		0.40	300	200	• • •	
7		0.40	1600	1500	47	_
8	!	0.43	1(0)9	1000	24	
9		0.42	1900	1900	44	_
10		0.42	600	:800	16	-
31	ł	0.44	100	1700	3	-
12		0.56	500	1500	16	_
13	í	0.46	800	1600	19	1.
14		0.48	600	1900	14	-
	<pre>/:</pre>	0.21			t	
;	1 000		50	1/4/00		+
ā	i	0.37	50	1400	:	
,	1	0.40	10	1500		-

E-STEEL.

Бат		INITIAL SEND APPLIED LOAD, LB. STRESS (STRESS (4M	M/hd²)ks:		
Ke.	Temp. o	Strain	Arrested Crack	Practure	Arrested Crack	Fracto	re
L 2345678	200	0.30 0.35 0.35 0.40 0.40 0.45 0.50	 4600 300;700	+ + 3300 2000 2700 1400 1400	 10 8; 18	+ + 50 68	Ctaged
1 2 3 4 5	300	0.27 0.30 0.35 0.40 0.46	600	+ + 1700 1300		+ + 43	Aged
12345078	150	0.25 0.36 0.30 0.32 0.32 0.32 0.32 0.33		4850 + + 2000 1760 3000	 39 	+ + + - 50 79	Uraged
9 10 11 12 13		0,20 0,22 0,25 0,27 0,30		- - +		+ + + + + + + + + + + + + + + + + + + +	Aged
1 2 3 4	400	0.25 0.30 0.32 0.35	1000	+ + 1900 1200	25	- 1 18	Unaged
5 6 / 8		0.25 0.30 0.32 0.35	1000 700	÷ 1500 1400	25 18	+++	Aged

• No fracture occurred up to a load of 5000 fb, corresponding to a stress larger than 76 ksi.

TABLE VII. REVERSED BEND TEST. INITIAL E-STEEL. BENDING AT 700-900 F. TESTED AT 75 F. E-STEEL.

Sor	INITI/	L BEND	APPLIED LOAD,	LB.	STRESS (4M/bd	²)ksí
No.	ο _γ	Strain	First Grack	Fracture	First Grack	Fracture
1	- 200	C. 32		_		
2		6.33	2900	29nc	64	
5		6.35	: 900	2900	64	
4	i	0.37	1400	1400	57	-
5	ĺ	0.40	-800	2200	48	
6		0.40	3600	1600	80	
7		0.40		-		+
ŝ		0.40	3100	3100	71	
9		0.42				+
10		0.70	: <u></u>	i 1		4
11		0.46	· 1400	1600	34	-
12		0.46	·	4		ь
13		0.48	1/10	1800	41	-
14		0.50	1300	1500	1	_
15		0.50	600	1500	16	
16		0.50				
1.7		0.51	1500	1800	36	-
18		0.52		F		ŀ
:	800	0.15	;	+		+
2		0.40		+		+
1		0.46		+		i
4		0.50		+		+
5		0.57		+		i
6		i 0.57				+
7		0.60	Inc	1100	3	-
8		0.60	50	1,200	1	
:	900	0.42		+		+
2		0.48	2700	2700	υ5	-
3		0.50		+		+
4		0.54		+ [+
s,		0.58	1 400	1,00	10	

+ No fracture occurred up to a food of 5000 lb., corresponding to a stress larger than 78 ksi.

-

TABLE IX. REVERSED BEND TESTS. INITIAL BENDING AT 450-600 F. TESTED AT -16 F.

Bor	TN IT 3	AL REND	APPLIED LOA	D, 1.3,	STRESS (4M/1	a ²)ksi	
No.	Temp.	straiu	First Crack	Fracture	First Crack	Fracture	
1	450	0.15 0.20		-		· · ·	
1 4		0.20	2800	2800	70	+	
5 6		0.23		-+		- +	yed
7 8		0.25		، 1000	8	+	B12.
10		0.27 0.30	1200 100	1200	30 3	-	
12		0.11			/8	· ·	
10 14		0.15 0.20		+		- +	7
15 16 17		0.25		+		+	Åg(
1	500	0.15				+	
2 3		0.17 0.20		+		+++++++++++++++++++++++++++++++++++++++	
4 5		0.20 0.22		+ +		+ +	Led.
6 7 8		0.22		+ -		+ 	Ura
9		0.37	400	1400	:0		
1	600	0.20 0.22		2500		+ 03	
4		0.22		2900		+ 72	
6		0.25	4760	4400 4700	. 75	1	aça d
, 90 a		0.25		2900		72	ä
10 11		0.30		1500 1600		- 14 40	
12		0.40	150; 500; 500	1200	4: 13: 15		
13		0.20		++		+	boge
16		0.23		4100		+ /:	thu

No tractice occurred up to a load of 5000 15., corresponding to a stress larger from 78 kpi.

TABLE X.	RE	VERSED I	BEND	TESTS.	IN.	LTLA.	L
BENDING	AT	700-110	0 F.	TESTED	ΑT	-16	F.
E-STEEL.							

Ват	INTEL	AL BEND	APPLIED L	DAD, LB.	STRESS (4M/	iul ²) ks1.	
No.	Peop.	Strain	First Crack	Fracture	First Grack	Fracture	
1	700	0.15		4	1	•	
2	1	0.20		+		+	
3		0.20		+		+	
4		0.22		4500		÷.	1
5		0.22		-		+	
6	Ļ	0.25		3600		+	.
2		0.25	·	19(10		48	59
8		0.27		L +	1	+	20
9		0.27		3200		•	51
10		0.27		5000		+	
11	1	0.30		3700		+	
12		0.32	1200	1400	1 30		
13		1.0.35		1 1 100	41	+	
14		1 0.37	2000	2000	20		
15	-	0.47	1200	2000	μ,	50	
1.6		0.43		2000			1
, .		0.15		1 +		+	
10		0.15		1 1		+	
10	ļ	0.20		1 :		-	-
20	i	0.22	1			÷	1 20
21		1 25		4900	1	+	1
22		0.28		4100		1	
1	800	0.20		+		+	
2		0.25		+			8
3		0.30		+		÷	8
4		0.35		+		+	1 8 1
5	ł	0.40	1	+		+	1
6		0.45		2400		1 60	1 1
2		0.54	1300	1500		<u> </u>	
1	900	0.40		+		+	1 23
2	1	0.48	[2900		1 75	
3		0.50		1 4		+	a l
4		0.54		2800		70	2
5		0.58	400	700			-
1 1	1100	0.30		+		+	
2		0.35		1 +		1 *	1.0
3		0.40		+		+	1 20
4		0.45		+		1 👘	1 E
5		0.50		+		+	

 No fracture occurred up to a load of 5000 lh., corresponding to a stress larger than /8 kai.

the initial bending of bars of the reversed bent test (section 3). The bars were heated at the required temperature for a period of 45 to 90 min., then given the initial four-point bending (Fig. 3a). After reheating for about 30 min., they were bent (Fig. 3b) to various radii and left to cool. About one day later they were finally tested in reversed bending (Fig. 3c) at 75°F, or at -16°F. The results of 122 tests at $75^{\circ}F$ and of 84 tests at $-16^{\circ}F$ are shown in Figures 9 and 10 (10), and in Tables IV to X. The last two columns give the nominal stress at the first crack or at fracture for an assumed fully plastic stress distribution. The influence of the prestrain temperature is quite marked. Already at 200 to 250°F, the transition occurs at lower prestrains (the embrittlement is stronger) than at room temperature. The lowest transition limit occurs at the blue brittleness range around 450°F for reversed bending at 75°F, and around 600°F for reversed bending at -16° F. The transition prestrain for bending at 450 to 600° F is almost half as big as at room temperature. As expected, the transition prestrains are lower for -16°F than for 75°F. The lowest transition prestrain is only about 0.20, which is less than half the value found with bending at 75°F. The damage diminished when the temperature of prestraining was raised above 600°F as is obvious from the increasing transition prestrain. Above 900°F the effect of prestraining was smaller than at room temperature. Tests were made up to 1250°F where no reduction of ductility by prestraining could be detected. Similar tests were made with an ASTM A-7 steel. It was found_again that precompression at about 600° F was far more damaging than at $75^{\circ} F$ (10).

Tests in small numbers were also made to study the effect of hot extension on the cold ductility (10). For this purpose after initial hot bending and cooling to -16° F, the bars were subjected to a continued bending in the same manner as during Because of initial bending (Fig. 3b). shortage of E-steel, only bars of A-7 steel were used. It was found that embrittlement could be induced with extensional prestrains of the order of 0.35. In cold continued bending, these bars fractured at the extrados at additional extensions of 0.02 to 0.03. However, the scatter of the results was considerable.

The effect of hot straining had been studied by Körber, Eichinger, and Möller (21), and by several other investigators (35),(38)-(40). The embrittlement caused by relatively small strains at medium high temperature is of great significance because it appears to be the cause of the frequent service fracture initiations which are traced to defects close to welds.

6. RESTORATION OF DUCTILITY BY HEATING

6a. Purpose and Method of Testing. Work hardened steels, as e.g. by forming or spinning, are made again ductile by heating close to the annealing temperature. Lagasse and Hoffmans (30) have recently shown that considerable ductility may be restored after a heat treatment at about 1100°F. The present tests with bars of E-steel are a first attempt to determine the relation between time and temperature needed to restore ductility. More detailed results obtained with controlled heat treatment of prestrained bars of ABS-B steel are reported separately (66.).

The previously developed method of controlled embrittlement and testing by reversed bending proved very useful in this investigation. Three steels were tested: E-steel, ABS Class C, and an A-7 steel (Table I). All three have been used extensively in earlier tests, and their exhaustion limits when prestrained at 75° F or 450° F, or tested at 75° F or $-16^{\circ}F$ have been reported (9)-(10). In the present tests the bars were prestrained beyond the exhaustion limits for the conditions under investigation, and were then heat treated at various temperatures between 1050° and 1500° F for various lengths of time. After cooling in air to 75° F, the specimens were tested in reversed bending in the usual way. Some specimens, however, were aged by heating to 300° F for $1 \frac{1}{2}$ hours before heat treating. Their results are identical with those of bars which did not receive any separate aging treatment.

The heat treatment was done in an oven, which is not an ideal method for this purpose as the gradual heating obscured the exact time-temperature relationship which was sought. Nevertheless, with an identical temperature rise in all similar tests it would still be possible to get a close approximation of the time needed at each temperature for the restoration of sufficient ductility. In effect the time probably varies almost exponentially with the temperature, so that only a small temperature range close to the highest in each test should have a significant influence. Unfortunately the time spent in this range was unavoidably influenced by many factors such as position and number of bars in the oven, variations in circulation, etc. Thus the present results are only of a preliminary nature. In addition the number of tests was limited by the short supply of E-steel, but is sufficient to show the general trend of the heat treatment.

Typical heating curves of the bars are shown in Fig. 11 for oven temperatures

FIG. 11. TYPICAL HEATING CURVES.

of 1050, 1200, and 1380°F, as measured with thermocouples placed inholes drilled in the bars. In view of the uncertainty inherent to heating in an oven, no attempt was made in the present tests to determine the effect of a constant heat-treating temperature. Only the total time in the oven is reported for each bar. The temperature history may then be judged from the curves of Figure 11. Complete curves of heat treating time vs. prestrain for

TABLE XI.	REVERSED-BEND TESTS OF
BARS HEAT	TREATED AFTER HOT INITIAL
BENDING.	E-STEEL.

	HEAT T	REATMENT	INTT	LAL BENDING	RE	VERSE B	END
Bar	7	T:mo	Temp	Compressive	Term	Lot	ad (15.)
Ко.	°F	(min.)	°F	Prestrain	°₽	First Crack	Fracture
EA3	850	5	450	0.46	75	100	1400
EC27	1050	15	450	0.44	75	2000	2000
EC15	1050	15	450	0.44	75	1300	1300
EC10	1050	30	450	0.44	75		+
EA1/	1100	5	450	0.43	75	200	1400
EA19	1100	10	450	0.48	75		+
EA6	1100	15	450	0.46	75		+
EA5	1100	60	450	0.43	75		+
EAS	1160	12	450	0.43	/5		+
E9	1160	19	45D	0.43	75		+
£10	1160	21.5	450	0.43	75		+
E11	1160	25	450	0.43	75		+
E12	1160	29	450	0.43	75		-
EC14	1200	8	450	0.45	/ 75	1400	1400
EC26	1200	8	450	0.48	75	1300	1300
EC13	1 200	10	450	0.48	75		+
EC25	1225	15	430	0.50	75)	+
EC12	1225	15	450	0.50	75	2200	2900
ECII	1375	63	450	0.50	/5	2100	2100

+ No fracture up to a load of 5000 1b.

FIG. 12. EXPLORATORY HEAT TREATMENT OF PRESTRAINED STEEL.

FIG. 13. EXPLORATORY HEAT TREATMENT OF PRESTRAINED STEEL.

various heat treating temperatures were determined in later extensive tests of ABS-B steel bars heated rapidly to the final temperature (60).

6b. Bars Prestrained Hot. As described in section 5, precompression by bending at about 450°F was found to be more damaging than at 75°F. The exhaustion limit for bending of E-steel at 450° F and reversed bending at 75° F was $0.35 \pm$ 0.02 (Fig. 9). For the present tests the bars were bent at 450°F to prestrains in excess of the exhaustion limit by 0.05 to 0.15, so that without heat treatment they should all be brittle. The results are given in Table XI and are indicated by the letters H.B. in Figure 12 and 13. A period of ten to fifteen minutes in an oven heated to 1100°F restored the ductility of all hot prestrained bars. The amount of prestrain did not appear to influence the duration of the necessary heat treatment.

6c. Bars Prestrained at 75° F. The results obtained with E-steel prestrained at 75° F beyond its exhaustion limit, heat treated, and tested at -16° F and 75° F are given in Tables XII a.b. Similar results with ABS-C and A-7 steels are given in Tables XIII and XIV. Figure 13 shows the length of heat treatment at 1100° and 1500°F versus the excess prestrain (for aged specimens) of various bars, and indicates whether the bars were ductile or brittle. It appears that the minimum time needed to reductilize the bars at about 1100° increases with the excess prestrain. At 1500°F the necessary heat treatment was much shorter, down to 3 minutes in the oven for the smaller prestrains, and probably 10 for the higher, though some of the most severely prestrained bars remained brittle. It is obvious, however, that short heating times did not ensure either that the specimen had reached the oven temperature or that the temperature was uniform throughout the cross-section of the bars.

6d. <u>Conclusions from Heat-Treating</u> <u>Tests. The present preliminary tests</u> are insufficient for drawing exact conclusions, but they do indicate the following trends:

-17-

TABLE XIIa. REVERSED-BEND TESTS OF BARS TABLE XIII. REVERSED BENDING TESTS OF HEAT TREATED AFTER INITIAL BENDING. E-STEEL.

	HEAT T	REATMENT	LNKI	TAL BENDING	R	EVERSE B	UND
Bar	Temp.	Time	Temp.	Compressive	Temp.	ໄມລ	d (15.)
No.	F	(min.)	°F	Prestrain	F	First Crack	Fracture
125.0	1100						
R5 7	1100	2	/5	0.54	-16	100	300
EAH	1100	ĺ ć	75	0.54	-10		
656	1100	1.0	/3	0.54	-26	600	600
126-2	1100	10	75	0.54	-10	300	900
1.1.4	1100	1.5	15	0.54	-16	200 1	900
1.22	1100	20	75	0.54	-10		+
E2.0	1.00	20	15	0,54	-1ú		+
817	1100	30	75	0.54	-16		1
2.31	1100	35	75	0.54	-16		÷
8.35	1100	40	75	0.54	16		+
63	1100	3	75	0.57	-16	100	900
55	1100	5	75	0.57	-16	100	1100
56	1100	5	75	0.57	-16	300	1300
64	1100	10	75	0.57	-16	300	1300
18	1100	12	75	6.57	-16	300	1600
45	1100	10	25	0.58	-16	50	1200
81	1200	3	25	0.57	-15	50	1.00
79	1200		25	0.56	- 16	200	1500
61	1200	å	75	0.57	-10	100	1000
39	1200	10	75	0.54	-10	200	1050
60	1200	12	75	0,54	- 16	200	1050
84	1200	15	25	0.10	-10	200	1050
41	1200		<i>,</i> ,	0.50	-10	700	1 100
	1360	- 3	-16	D.52	-16	100	1100
	1380	5	-16	0.52	-16	100	1100
	1380	8	- 16	0.52	-16		
	1380	15	-16	0.58	-16	700	1300
£19	1380	20	-16	0.52	-16		1
637	1380	25	-16	0.52	-16		÷
F:2	1380	30	-16	0.52	-16		

No fracture up to a load of 5000 16 .

TABLE XIID. REVERSED-BEND TESTS OF BARS HEAT TREATED AFTER COLD INITIAL BEND-ING. E-STEEL.

	Heat T	reatment	lnit	ial Bending	F	teverse B	end
Har	Temp.	Titine.	Terap.	Compressive	Temp.	Load	(1b.)
Kσ.	0.E	(min.)	٥f	Prestraio	ק ^{נו}	First Crack	Fractur
36	1100	20	75	0.54	-16	Brittle	Fractur
33	1100	25	75	0.54	-16	1700	1700
73	11.00	30	15	0.54	-16	1000	1000
39	1100	30	75	6.54	-16		
32	1100	45	75	0.54	-16		i.
82	1100	20	75	0.57	-16	500	1300
2.7	1100	25	75	0.57	+10	600	700
43	1100	30	75	0.57	- lù	2800	2800
22	1100	30	75	0.57	-16		+
39	1100	30	75	0.57	-16		i i
40	1100	35	15	0.57	-16	• /	4990
18	1100	35	75	0.57	-16		+
25	1100	40	75	0.57	-16	1920	2360
21	1.100	45	75	0.57	-16		+
38	1 1100	45	15	0.57	-16	3100	3100
-	1100	45	75	0.57	-16		+
26	t 1100	70	15	0.57	-16	1830	307
7	1100	100	75	0.57	-16		+
42	1100	20	25	0.58	- 16	200	1001
68	L100	25	75	0.58	-16	500	800
44	1100	30	75	0.58	-16		+
41	1100	45	75	0.58	-16		i
83	1500	5	15	0.61	75		4180
69	1500	8	75	0,61	75	1270	2400
30	1500	10	75	0.61	/5	1410	2370
5	1500	10	75	0.61	15		
6	1500	10	75	0.63	75		+

4 No fracture up to a load of 5000 fb. or more

- 1. Heating to 1100°F for 30 minutes appears to restore sufficient ductility to all but the most highly strained bars.
- 2. The necessary duration of heat treatment shortens as the temperature rises above 1100°F. At 1500°F a few min-

BARS HEAT TREATED AFTER COLD INITIAL BENDING. ABS-C STEEL.

Bar	HEAT TF	TEATMENT	זיזאו	IAL BENDING	R.	EVERSE B	END
	Temp.	Time	Temp.	Compressive	Tetap.	Lua	d (16.)
NO.	°F	(min.)	$^{\rm o}{}_{\rm F}$	Prestrain	°F	First Crack	Fracture
D12	1100	7	75	0.57	- 16	500	1600
D11	1100	8	75	0.57	-16	300	1350
D74	1100	L5	75	0.57 -	-16	3600	3600
19	1100	15	75	0.57	-16		+
15	1100	20	75	0.57	-16		+
13	1100	25	75	0.57	-16		4
2	1100	30	75	0.57	-16		+
D58	1100	З	75	0.58	-16	300	1400
D39	1100	5	75	0.58	-16	200	1450
D27	1100	8	75	0.58	-16	600	1000
DLS	1100	15	75	0.57	1 /5		- ⁶⁴ *
D65	1100	20	75	0.57	75		+ 1
D7	1100	5	75	0.58	75	300	1350
09	1100	10	75	0.58	75		$4800^{\circ \pm}$
031	1380	5	15	0.61	75	400	1700
D69	1380	8	75	0.61	1 75		4500
D3	1380	10	75	0.61	75		4350
D6	1380	12	75	0.61	75		4100**
D73	1380	15	75	0.61	75		+
D14	1380	20	75	0.61	15		+
D13	1500	Э	75	0.57	75		+
D52	1500	5	75	0.57	75		4000
048	1500	8	75	0.57	75		+
D/2	1500	10	75	0.57	75		+
D28	1500	12	75	0.57	75	İ	+
D2 /	1500	15	75	0.57	75		+
D29	1500	20	75	0.57	75		+
D34	1500	25	75	0.57	/5		+
5	1500	10	75	0.61	75		+
6	1500	10	75	0.63	75		+
D11	1500	15	75	0.65	/5		4.380

+ No fracture up to a load of 5000 1b. or more.

Specimen behaved in ductile fashion initially, then failed in a brittle manner.

Failure by gradual ductile tearing.

TABLE XIV. REVERSED BENDING TESTS OF BARS HEAT TREATED AFTER COLD INITIAL BENDING. A7-STEEL.

			tar senoring	кс	verse Ber	nd
Pemp.	Time (min.)	Temp. oF	Compressive Prestrain	Temp. F	Load First Crack	(lb.) Fracture
1500	15	75	0.58	75		+
1500	15	75	0.60	75	[[+
1500	3	75	0.61	75	7.00	700
1500	5	75	0,61	75	870	870
1500	8	1 75	0,61	75		2730
1500	10	75	0.61	75		+
1500	1.5	75	0.63	75	1710	1710
1500	1.5	15	0,65	75		3870
	1500 1500 1500 1500 1500 1500 1500 1500	op (min.) 1300 15 1500 15 1500 3 1500 3 1500 8 1500 10 1500 15 1500 15 1500 15 1500 15	open (min.) open 1300 15 75 1500 15 75 1500 75 75 1500 75 75 1500 75 75 1500 75 75 1500 75 75 1500 15 75 1500 15 75 1500 15 75 1500 15 75	opp (min.) op Prestrain 1300 15 75 0.68 1500 15 75 0.61 1500 3 75 0.61 1500 5 75 0.61 1500 75 0.61 1500 1500 75 0.61 1500 1500 15 75 0.63 1500 15 75 0.63 1500 15 75 0.63	Ope (min.) Ope Prestrain Ope 1300 15 75 0.58 75 1500 15 75 0.61 75 1500 3 75 0.61 75 1500 5 75 0.61 75 1500 8 75 0.61 75 1500 10 75 0.61 75 1500 15 75 0.63 75 1500 15 75 0.63 75 1500 15 75 0.63 75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

+ No fracture up to a load of 5000 lb, or more.

utes appear to be sufficient for the medium and lower prestrains.

3. A few of the most severely prestrained bars (0.15 above exhaustion limit) remained brittle even after long heating at all the temperatures used. This may be a real irreparable embrittlement, or may be caused by a deterioration of the steel by the long heating.

- 4. Bars of E-steel embrittled by hot straining need a much shorter heat treatment than bars strained cold.
- 5. A-7 steel appears to require longer heat treatment than E or ABS-C steels.

These tentative conclusions indicate that the so-called "high-temperature stressrelieving" treatment may be an efficient method for restoring ductility and preventing fractures, particularly in structures which have suffered embrittlement by hot straining close to welds. The heat treatment would be less efficacious with structures containing cold worked regions, particularly when the work hardening is very strong.

7. AXIALLY COMPRESSED BARS

7a. Method of Compression. Once systematic low static stress fractures in unwelded steel were achieved in precompressed notched plates, attention was focussed on the relation between ductility and compressive prestrain. This relation cannot be easily studied in the strongly variable strain distribution around the notches of the compressed plates, but requires a uniformly prestrained volume where both strain and stress may be directly measured. Such a uniform state of large deformation has already been achieved in a preliminary series of tests with axially compressed relatively slender bars laterally supported against buckling (5). It should be noted that the frictional constraint to lateral expansion of the bar ends may cause a local non-uniformity of straining which may extend over a length equal to the bar thickness. In relatively long bars this is of no consequence as only the uniformly strained middle portion is measured and tested. When the height is small in comparison with the bar thickness the two end regions merge and the strains are nowhere uniform nor accurately known. In effect steel cylinders sufficiently thick to avoid buckling were compressed at the National Physical Laboratory in England (31)-(32). At first they showed an ordinary barreling, but

at higher prestrains deformed to a peculiar two-humped shape with a waist at mid-height. Considerable differences in strain could be inferred from polished and etched sections. The strain did show some uniformity over the central volume of the compressed cylinder, but varied considerably from the center to the circumference. The N.P.L. tests used specimens cut from the uniform central region, and were not concerned with the exact amount of the prestrain.

The buckling of axially compressed bars can also be prevented by using specimens with a reduced middle portion and guided longitudinal motion of the bar ends. Such specimens have also been used in tension (4). The strain distribution in the reduced portion of this specimen may be almost uniform in the elastic range. When yielding sets in, however, and especially at large strains, the constraining action of the thicker ends and the variation of thickness may cause a substantial variation of strain across the minimum section even when the change in sections is not very pronounced. Thus the overall change of diameter of the neck may not be an accurate measure of the maximum imposed strain.

In a first series of tests (5) cylindrical

FIG. 15. COMPRESSION JIG WITH GUIDING V-BLOCKS, PLUGS, AND TEST BARS (LEFT) AT VARIOUS STAGES OF COMPRESSION.

FIG. 16. COMPRESSION MACHINE.

bars of 0.75 in. diameter and 6 in. length were used. They were fitted in an axial hole bored in a plastic cylinder of 5 in. diameter. Bar and plastic cylinder were of equal length and were compressed together, so that the plastic buckling of the steel bar was prevented by the lateral elastic or viscoelastic support of the cylinder, Fig. 14. Compression was done in steps, large originally and smaller later, between which the bar was removed and the cylinder was machined to fit in the unstrained state the diameter and length of the compressed bar. The bar was also machined whenever the slightest non-uniformity was detected.

7b. The Compression Machine. The compression inside a plastic cylinder resulted in very lengthy delays for machining between compression steps and was abandoned in favor of a simpler method. Bars of a square cross-section were used and were laterally supported against buckling by two V-grooved blocks fitting over two diagonally opposite edges of the bar. This is shown in Fig. 15 where the Vblocks face each other and create a square hole. They are pressed on the specimen with a force of about 12000 lb, produced by a small horizontal hydraulic

UNDER TENSION.

SHOWING SURFACE LAYERS WITH THINNER BANDING. b. FIG. 17. ETCHED LONGITUDINAL SECTIONS OF BARS OF E-STEEL . a. VIRGIN BAR LEFT HALF OF END PORTION

cylinder placed in the cavity at the left of the V-blocks and operated with the hand pump shown on the right. The whole compression jig is placed in a 200,000 lb. compression machine, as shown in Fig. 16, Figure 15 shows (background) the array of hardened plugs used to compress the bars, and on the left four bars at various stages of compression from an unstrained 9 in, long bar down to 58% compression. Friction between bar and V-blocks, and between bar ends and compression heads is reduced with the help of a 0.001 in. thick Teflon sheet. This reduces appreciably the axial load needed to produce the same strain, and prevents the uneven lateral expansion (thicker at top) of the bars.

The uniformity of straining of the bars was checked on longitudinal sections polished and etched (50% hydrochloric acid at 80° C) to show flow lines. Figure 17a shows a section across the thickness of an unstrained 3/4 in. plate of E-steel, in the rolling direction. Figures 17b and c show sections across bars prestrained by 30% and 50% respectively. About one third of the width of the bars has been removed after prestraining (to the right of Figures 17b and c). All three photographs show a distinctly finer banded structure in two outer layers and a coarser at the interior. The bands remain parallel even at the higher prestrain, except at a small region at the ends of the bars, and within a distance of about half the bar thickness from the ends. No macroscopic variation of strain across the bar thickness is evident.

The compressed bars were stored in a freezer at -18° F to prevent unwanted aging, except for the few hours required for machining into 0.505 in. tension specimens. The machining was done under a coolant and with great care to avoid heating or straining. Standard 3/4"-14threaded heads were first made on all bars prestrained below 50%, but were increased to 1"-10 at higher prestrains, when some 58% tension bars broke at the threads.

7c. Aging Under Tension. Tests were made with unaged bars as well as with bars aged without load or under tension

up to 75,000 psi. Aging under tension was done in a special straining frame with a cylindrical three-zone oven and a hydraulic-pneumatic loading system which kept the load constant over long periods of time. Figure 18 shows the straining frame, oven, and specimen in its holders.

7d. Tension Machine with Cooling Bath.

Tension tests were made at 75° F and at -16°F. Almost all 75°F tests were done in an ordinary testing machine, at first with a dial extensioneter and later with an autographic extensometer, up to strains of a few thousandths so as to determine the 0.1% offset yield strength. Higher strains were calculated from the change of diameter which was measured with a dial gage. The bars to be tested at -16°F, however, would warm up before the test was finished. This was corrected with a specially constructed miniature testing frame which had narrowly spaced slender columns and could swing and be immersed into a cold tank bath at -16°F. Loading was done with a 21,000 lb. low friction hydraulic cylinder and pulling heads with spherical self-aligning seats. Figure 19 shows the testing frame swung out of the tank, with a specimen and extensometer held in place. A strain gage load cell in series with the specimen and a linear variable differential transformer type extensometer with associated demodulator provided the signals for plotting the load-elongation curve on an x-y recorder (right foreground). For each test the frame with mounted specimen was swung out of the coolant, the extensometer was attached and loading with autographic recording up to strains of about 0.010 was rapidly completed (less than 1 min.). The extensometer was then removed without interruption of the loading, the frame was swung into the bath and the testing was continued to fracture. No diameter measurement was taken during the test.

Use of the coolant was beneficial also for reducing the heating due to plastic deformation of the specimens which did not fracture at low strain. For this reason a pure water bath was used in the later tests at 75 °F.

FIG. 20. FRACTURE OF BAR E-146: $\epsilon = 0.61$, $\epsilon_f = 0.023$.

FIG. 21. BAR E-114 $\epsilon_{o} = 0.61, \epsilon_{f} = 0.021.$

FIG. 22. FRACTURE OF BAR E- 137a $\epsilon = 0.58$, $\epsilon_f = 0.04$.

FIG. 23. FRACTURE OF BAR E - 157 $\epsilon_0 = 0.61$, $\epsilon_f = 0.60$.

FIG. 24. FRACTURE OF BAR E - 111 $\epsilon_0 = 0.67, \quad \epsilon_f = 0.40.$

It is true that water as well as glycerine may affect the fracture strength. Water, however, is unavoidable, as it condenses and freezes on the cold specimens, but it is acceptable as reproducing standard service conditions. The corrosive action of glycerine on steel is not exactly known, but even if it differs appreciably from water, the effect should altogether negligible in the short be duration of a tension test. Even with an energy approach to fracture, the reduction of the surface energy due to either liquid should not be important. Even in the most brittle fracture the gross strains are of the order of 0.02 and the local strains are considerably higher. Surface energy is negligible in comparison with plastic strain energy. In addition, tests with and without a bath did not indicate differences which could be attributed to the surface effects of the coolant.

7e. Brittle and Ductile Behavior. Brittle fractures were achieved at the highest prestrains. Figure 20 shows a typically brittle fracture (prestrain ε_0^- 0.61;strain at fracture $\varepsilon_{\rm f} = 0.023$) which may have started at the center. Figures 21 and 22 show fractures which appear to have started at or close to the surface (prestrain 0.61 and 0.58; strain at fracture 0.21 and 0.04 respectively).

Ductile fractures showed an irregular, jagged cup-and-cone surface as in Figure 23 ($\epsilon_0^2 = 0.61$; $\epsilon_f = 0.60$). Some-

FIG. 25. BAR E - 117 $\epsilon_{\rm p} = 0.55$, $\epsilon_{\rm f} > 0.37$.

times bars fracturing at large strains (order of 0.50, with pronounced neck) showed a central irregular region with some fibrous appearance, surrounded by a flatter region with steps, similar in texture with the most brittle fracture surfaces, as in Figure 24 ($\varepsilon_0 = 0.67$; $\varepsilon_f = 0.40$). This pronounced difference from center to circumference raised the question of the uniformity of prestraining, and led to the macroetch studies (Figure 17), which indicated a high uniformity of macroscopic strain.

An interesting phenomenon appeared on the surface of ductile bars after the neck became evident, but well before fracture. A series of pinhole cavities with yield bands emanating from them at about 45° to the bar axis appeared and multiplied mostly along the same generator (Figure 25; $\epsilon_0 = 0.55; \epsilon_f = 0.37$) and grew with the load. On one occasion the generator with the pinholes was identified with the trace on the specimen surface of a plane in the banded structure (perpendicular to the planes of the macroetch surfaces of Figure 17). The bands at 45° do not appear to be intersecting slip zones causing the cavity, but rather yield zones caused by and starting at the circumferential extremities of the cavities. This conclusion is based on the observation that the parallel zones from opposite sides of a cavity are not aligned segments forming a shape like the letter X, but are offset by a length of the order of the width of the

-24-

FIG. 26. FRACTURE OF BAR E - 139 $\epsilon_0 = 0.58$, $\epsilon_f = 0.46$.

cavity as in the form $\rangle \langle$. The fracture surface usually contained one such cavity, which frequently appeared to be the surface trace of an inner earlier fracture, as is clearly shown in Figures 24 and 26 ($\varepsilon_0 = 0.67$; $\varepsilon_f = 0.40$). These interior fractures appear to produce the central region of different texture observed in some fractured bars, and also to be the cause of necking.

At the present no direct relation is found between these pinhole cracks or interior fractures which seem to occur at strains of the order 0.10 or more, and brittle fractures which occur at strains of the order or 0.01. It is surprising, however, how a series of local fractures, as indicated by the pinholes of Figure 25, not only fail to initiate a complete fracture in a severely work hardened bar, but even allow it to sustain an increased stress. Considerable ductility is present even after compressive prestrains as large as about 0.60, as is also evident from the large overall straining at fracture of such bars (0.60 to 0.80 or more).

7f. Test Results. The test results are given in detail in Tables XV a-d for bars tested at 75°F, and XVI a-c at -16°. They are tabulated according to increasing compressive prestrain, and show the 0.1% offset, the natural strain at fracture (equal to loger where r is the ratio of initial to instantaneous area at fracture), the true stress at fracture (based on the instantaneous fracture area), and the conditions of aging.

The natural strain at fracture plotted against the prestrain is shown collectively for all bars tested at 75 °F in Figure 27, and separately according to whether they are unaged; aged without load; aged under 15 to 50 ksi; or under 60 to 75 ksi, in Figures 28 and 29. Likewise collected results of all bars tested in tension at -16° F are shown in Figure 30, and according to aging group in Figures 31 and 32.

These results fully confirm the drop of extensional ductility at a relatively narrow range of compressive prestrains, and the amazingly small effect of prestrains of lower magnitude. The scatter of the results is greater than with the reversed-bend bars and does not permit as sharp a definition of the exhaustion limit (with reversed-bend bars this was possible to within strains of \pm 0.02). It is not possible to distinguish clearly between the effects of different aging procedures of bars tested at 75°. With bars tested at -16°F the exhaustion limit appears to decrease from about 0.61 to 0.50 as the aging load increases. The effect of a change of temperature from 75° to -16° F is more distinct. With few exceptions the exhaustion limit at 75° F lies between about 0.59 and 0.66, and at -16°F between 0.50 and 0.61. These are larger by 0.06 to 0.10 than the limits found with reversed-bend bars

FIG. 27. COLLECTED RESULTS OF PRE-STRAINED BARS OF E-STEEL TESTED AT 75 F. FIG. 29. NATURAL STRAIN AT FRACTURE VS.

FIG. 28. NATURAL STRAIN AT FRACTURE VS. PRESTRAIN OF BARS OF E-STEEL, UNAGED AND AGED WITHOUT LOAD AND TESTED AT 75 F.

FIG. 29. NATURAL STRAIN AT FRACTURE VS. PRESTRAIN OF BARS OF E-STEEL, AGED UNDER 15-50 AND 60-75 KSI AND TESTED AT 75 F.

FIG. 30. COLLECTED RESULTS OF PRE-STRAINED BARS OF E-STEEL TESTED AT -16 F.

-25-

TABLE XVC. BARS AXIALLY COM PRESSED AT 75 F. TENSION TESTS AT 75 F.

ч	μ.	ļ
n	ц,	i
-	벐	F
-	1	
ť.	ய்	÷
		1

 	Prus Louis	Screas Screas SA:	N.C. Strida	True Stread	
		::	· (8*1)	3	ц Ц
	ч. .?	١.		a: 	27.0
	0,55	:		ж —	a: J
a. 1	0.50	2		2	а. С.
	/0 1 1 1 1 1	- W		3.7	+)- !:
		: 10	5		0.40
		: ;	2011	1.0	1 60
	50.0	ŝ		22	
<	2 C . O	:		÷ ۱	ţ
4	20 E 20	ŀ			100 A. 100
- - g	20	15			
29		-			1.1
	13	a.	-	ŝ	
- a	14.0	12		3	
	0.61	у) 31		6.11 1	
~		·†	2 n n 7	:35	0
r	0.6	÷.	10.00	1.1	15/154
.r.	0,61	20	0.78	14.2	1.11
-	et	3	in de la companya de		
	ie C	200 30		M 1	1271
			- :1ec	rlaw	
ç	0.61	12	1010	100	11/12
-	0.èT	:*	- C. Z.	<u></u>	ii Si
4	0.01	1	1972	ų.	3 . 12
2	1	21	0.58	1	- -
a e	25	21		1	2 (2 5 1)
- 15	55	- 7- 	0		6
i e	-	12			$(2, \epsilon)$
-	- -	x	4 U	197 197	27.60
· 20	0.61	10	0.60	1.5	07-7
12		52	0.45	11:	
·••	59°4	:	:00 	601 - C	- - -
	2	;			000000
;		16	0 5 5 5 5	0 Z	3.6
		3			. '
: -			5		25

	j				
1922			10002		
E-Stev : Pre-	strute.		Stor Street	1997 - 51 1998 1997 - 51 1998 1997 - 51 1998	194 28
	-	94	91-0 91-0	53. -	Taiwad An
27) 	12	10.		1 7	3 10
	R	ŝ	12.2	5	Dis -ga d
0 0 191 191	53	13		33	bagad Sexect
00 N2	53	40 80	0.50	् १२२ १२२	\$
200 - 515 515	7.22	G B	192	13	- 1
176	9	5	62.1	75 .	150156
0	Ri	32		n:	9 7 9 7
	22	33.		11.	
0 0 	23	. 3	1 ~ ~ ~	0 42 24 11	0775 1775
-	131	19 C		57	17/30
	164	(56 (C	88	191	1.70
	:				
- ~ 	e in	14	e Parta	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
. (. जन	-	44	(< 9 . 1 -	955
. м	19	11	- - 		Canged
 	63	s a		5 (A	0 15 - S
9.1			7. 15 0	\$	19. T
	42	:2	0.07 0.70	14	99 12
	2		31 23	<u></u>	0
2 5	27	5.			
	3.00	s 53	0		Singer 1
1.00	00	ίΩ.	- 	2	,
- 	S, S	2 <u>1</u>			. : !
-	i i	5 S		19	19

611 100 100 111 111 111 111 111 111 111
0.56 9.47 6.66 9.47 6.2 2 0 2 4

-26-

TABLE XVd. BARS AXIALLY COMPRESSED TENSION TESTS AT 75 F. E-STEEL. AT 75 F.

.

Tensor Furit Astr Vat	
se true Scress	109 (118: 118: 126: 126: 126: 126: 126: 126: 126: 126
dractu	(0.73) (0.73) (0.73) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.10 Oursee Surase X	r. 1 - 6 - 8 3 - 1 6 - 1 - 3 - 8 5 - 1
e restrain	20002000300 899986693388 89986693386
Rar Stuel	

TABLE XVIa. BARS AXIALIY COM-TENSION TESTS AT -16 F. PRESSED AT 75 F. E-STEEL.

		0.17	Fract	ute	Lension During
	Frestrain	Seress kai	Kat. Strair	True Stress	Azir. kai
0		2		,	0
١ç		17	0.93	120	e
22		£	0.93	126	Ucayed
5 12	0	. £	0.9.1	120	Utaged
19	0, 20		1.05	331	Unaged
12	33	ŝ	L.0.	540	naced
24	0,10	7.5	. U.Še	- i	0
10	0.35	ŝ	0,610	120	୍
10	0.00	:0	0, 89	145	1//30/
2.97	0.20	60	0.97	153	27130

First remote denotes stress during first 1/2 hour when temperature rises, second number the stress at aginy temperature.

υ

LIN						នុន្តអភុគុនខេត្តខ្មុំ សំផុនសេកកម្មសំនី
	•	LTC LTCC SCCCES	<u>uerteraeet</u>	92312288922	<u> </u>	<u>18 66534978</u>
יאוריד לי אוב דו		Nut. Scratt		రాజరాగాలు రాజరాగాలు రాజరాగాలు రాజరాగాలు రాజరాగాలు	జర్శివడు చినిని చినిని సంఘర్థిన చినిని చినిని సంఘర్థిన చినిని చినిని చిని	NG 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
то 15 F 1973 Г	2			328-8830283	<u>20591122010</u>	······································
SED AT	EL.	Prostruct	84248888883 00048888883	8888984999 888898499977		
PRESS	E-STE	5.3r - 51.eci		2000 - 100 -		88182281728 11112

having as-rolled surfaces, which is not inconsistent with the increase of the exhaustion limit by about 0.05 found for bars with machined surfaces (67). The remaining difference may be attributed to the post-compression machining of the axially compressed bars instead of the pre-compression machining of the reversed-bend bars. Post-compression machining should eliminate any small surface irregularities developing during compression, and should increase the apparent overall ductility.

The 0.1% offset yield strength, the true stress, and the natural strain at fracture have also been plotted according to aging treatment, for compressive prestrains of 0.48-0.52, 0.54-0.58, 0.59-0.63, and 0.65-0.67 for tests at 75 F (Figures 33a and 33b); and likewise for prestrains of 0.50, 0.58, and 0.61 at -16° F (Figure 34). Contrary to earlier expectation it is not possible to distinguish any decisive trend, except a small increase of the 0.1% offset strength with the aging tension. The 0.1% offset strength is always appreciably higher than the aging tension. In unstrained bars tested at -16°F, however, aging has a considerable effect on the lower yield point. As shown by the first four lines of Table XVI, aging without load raised the lower yield point from 36 ksi to 46 and 51 ksi, but did not have a significant influence on the natural fracture strain or on the true fracture stress. All four bars showed an upper yield point. For better comparison aged bar A2 and unaged bar U4 were cut from a single 9" long bar, as also were bars A3 and U5.

8. CONCLUSIONS

A consideration of the relation between local strains at a crack and the behavior of a structure as a whole has led to a definition and a criterion of brittleness of failure for a structure based on the average net stress at fracture. It then became evident that mild structural steel has sufficient ductility to avoid brittle fracture under static loading even when it has the deepest notches and a low temperature, and that low stress fractures under static load should result

FIG. 31. NATURAL STRAIN AT FRACTURE VS. PRESTRAIN OF BARS OF E-STEEL, UNAGED AND AGED WITHOUT LOAD AND TESTED AT -16 F.

FIG. 32. NATURAL STRAIN AT FRACTURE VS. PRESTRAIN OF BARS OF E-STEEL, AGED UNDER 15-50 AND 60-75 KSI AND TESTED AT -16 F.

J.

FIG. 34. 0.1% OFFSET YIELD STRENGTH (0); TRUE STRESS (•); AND NATURAL STRAIN (+) AT FRACTURE OF PRECOMPRESSED BARS OF E-STEEL TESTED AT -16 F.

FIG. 33. 0.1% OFFSET YIELD STRENGTH (0); TRUE STRESS (•); AND NATURAL STRAIN (+) AT FRACTURE OF PRECOMPRESSED BARS OF E-STEEL TESTED AT 75 F. from a prior suitable reduction or exhaustion of the initial ductility of structural steel.

The tests which were then undertaken have demonstrated the important influence of the whole history of strain and temperature on the subsequent ductile or brittle behavior of steel. The magnitude of some of these effects had not been widely recognized. The extensive tests with notched plates, bent bars, and axially compressed bars of E- and other steels, subjected to various types of straining and heating history, have shown the following:

- A. Sufficient precompression at room temperature exhausts the extensional ductility to such an extent as to result in fracture after extensions of the order of 0.01 (1%).
- B. The reduction of extensional ductility is not proportional to the amount of precompression. A narrowly determined limit of compressive prestrain exists (the exhaustion limit) at which the ductility suffers a rapid reduction. Prestrains smaller than this limit have little effect on the extensional ductility. Larger prestrains cause complete embrittlement. The exhaustion limit was found to be about 0.5 (50%).
- C. The exhaustion limit is lower (easier embrittlement) when the final test is made at a lower temperature.
- D. The exhaustion limit is lower for bars which are subsequently aged (i.e. heated for 90 min. at about 300° F).
- E. Exhaustion of ductility by precompression and aging does cause brittle fracture in originally ductile plates. Notched plates sufficiently precompressed in their plane at right angles to the notch axis suffered such a reduction of ductility in the highly plastically compressed notch regions, so as to fracture or develop arrested cracks under static loading, at average net stress

levels as low as 10% of virgin yield. These tests duplicate service fractures insofar as stress level, fracture appearance and absence of plastic deformation are concerned.

- F. Exhaustion of ductility is highly anisotropic, as was conclusively demonstrated by Allen (31) and Rendall (32), and had been indicated by the transversely prestrained notched plate tests (2). Steel compressed to the extent to be brittle in tension in the same direction as the compression, was highly ductile in a transverse direction. Likewise cold rolled steel has much less ductility in the direction of the thickness than in the rolling direction.
- G. Localized residual stresses of yield intensity have no influence on the brittle or ductile behavior of the test specimens.
- H. An increase of prestraining temreduces the exhaustion perature limit (easier embrittlement) for subsequent tests at 75° or -16° F. The reduction is highest at about 500-600°F, where the exhaustion limit has about half the value for cold prestraining. Prestraining above 700° raises again the exhaustion limit, till at about 900° it is higher than at room temperature (more difficult embrittlement). Hot straining in extension can also exhaust the ductility in subsequent cold tension.
- I. Heat treatment at temperatures about 1100°F, of a duration dependent on the amount of prestrain, can restore sufficient ductility to prevent fracture at small strains. The effectiveness of the so-called "thermal stress relieving" operation in preventing brittle fracture appears to result mainly from the restoration of ductility than from the reduction of the residual stresses.

Exhaustion of ductility by hot or cold straining and aging appears as a fundamental cause of brittle fracture initiation. This is in agreement with the observation (65) that the origin of service fractures is usually traced to a coldworked region or to a defect close to a weld, where complex hot straining occurs during the welding cycle. It is quite likely that very local strains of the order of 0.50 may develop at a strain concentration or at a defect in such a

region, and more so in regions which have been work hardened by external means. It appears even likelier that local strains of the order of 0.20 develop at a defect close to a weld at temperatures around 500°F. In effect the weld zone is known to suffer a uniform stretching of the order of 0.02 during cooling, and the concentration due to a defect could raise this substantially. The straining of this region is quite complicated because longitudinal and transverse compression develops as the weld approaches. and is changed into tension when it recedes. However, there is no indication that the cold or hot straining now employed are the most effective methods of embrittlement or the closest to reality. A strain and temperature history causing easier embrittlement may exist.

It may also be found that prestrained steel which is still ductile in simple tension is brittle under the triaxial constraint of a notch. This shows how much has still to be learned about the strains developing at cracks or notches in materials of specific anisotropic strain hardening laws, and on the behavior of prestrained steel under the specific conditions of strain and constraint existing at a notch.

The present investigation, however, has clearly shown that the properties responsible for brittle fracture are those of damaged and not of virgin steel. It would appear then that tests designed to measure the properties of embrittled steel, or better, the ease with which steel is embrittled during some straining cycle, would give results more directly related to brittle fracture than tests of virgin steel. It is therefore suggested that tests of embrittlement by cold or hot straining be seriously considered as possible acceptance tests

for steel. The 'reversed bend test in particular provides a practical reproducible test for the study of the amount of strain which causes embrittlement, and of the effect of aging, of the temperature of straining or testing, of surface condition, etc. It offers real hope of becoming also a simple shop and field inspection test of direct and understandable physical meaning.

9. ACKNOWLEDGMENT

This report is based in part on earlier reports or experiments by D. C. Drucker, T. D. Brunton, L. Isberg, G. Lianis, J. H. Ludley, C. Mylonas, K. C. Rockey, and K. Satoh, during research sponsored by the Ship Structure Committee, under contracts Nobs-65917, Nobs-78440, and Nobs-88294 of the Bureau of Ships, Department of the Navy.

REFERENCES

- 1. Drucker, D. C., "An Evaluation of Current Knowledge of the Mechanics of Brittle Fracture," Ship Structure Committee Report SSC-69 (1954).
- Mylonas, C., Drucker, D. C., and Isberg, L., "Brittle Fracture Initiation Tests," Nobs-65917/2. The Welding Journal, Vol. 36, No. 1, Research Supplement, pp. 9-s to 17-s (1957).

- Mylonas, C., Drucker, D. C., and Brunton, J. D., "Static Brittle Fracture Initiation at Net Stress 40% of Yield," Nobs-65917/3. The Welding Journal, Vol. 37, No. 10, Research Supplement, pp. 473-s to 479-s, (1958).
- 4. Mylonas, C., "Prestrain, Size, and Residual Stresses in Static Brittle Fracture Initiation," Nobs-65917/4, The Welding Journal, Vol. 38, No. 10, Research Supplement, pp. 414-s to 424-s (1959).
- Drucker, D. C., Mylonas, C., and Lianis, G., "On the Exhaustion of Ductility of E-Steel in Tension Following Compressive Prestrain," Nobs-65917/5, The Welding Journal, Vol. 39, No. 3, Research Supplement, pp. 117-s to 120-s (1960).
- 6. Mylonas, C., "Exhaustion of Ductility as a Fundamental Condition in Static Brittle Fracture Initiation," Nobs-65917/6. Published in "Brittle Fracture in Steel," Proc. of a Conference sponsored by the Brit. Admirality Advisory Committee on Structural Steel, in Cambridge, England 28-30 Sept. 1959. H. M. Stat. Office 1962, p. 167-173.
- Ludley, J. H., and Drucker, D. C., "Size Effect in Brittle Fracture of Notched Steel Plates in Tension." App. Mech. <u>28</u> (1961) 137.
- Ludley, J. H., and Drucker, D. C., "A Reversed-Bend Test to Study Ductile to Brittle Transition," Nobs-78440/3, The Welding Journal, Vol. 39, No. 12, Research Supple-ment (1959).
- Rockey, K. C., Ludley, J. H., and Mylonas, C., "Exhaustion of Extensional Ductility Determined by Reversed Bending of 5 Steels," Nobs-78440/5, March 1961. Proc. ASTM, Vol. 62 (1962) 1120-1133.
- 10. Mylonas, C., and Rockey, K. C., "Exhaustion of Ductility by Hot Extension. An Explanation of Fracture Initiation Close to Welds," Nobs-

78440/6 of the Division of Engineering, Brown University, March 1961; published under the title, "Exhaustion of Ductility by Hot Straining. An Explanation of Fracture Initiation Close to Welds," The Welding Journal, Vol. 40(7) Research Supplement, p. 306-s to 310-s, July 1961.

- 11. Mylonas, C., "Static Brittle Fracture Initiation Without Residual Stresses," Report Nobs-78440/4, Welding Journal, Vol. 40, No. 11, Research Supplement (1961).
- Drucker, D. C., "A Continuum Approach to the Fracture of Solids." Chapter I in "Brittle Fracture" (D. C. Drucker and J. J. Gilman, Editors) Interscience, 1963.
- 13. Wells, A. A., "The Brittle Fracture Strength of Welded Steel Plates" Proc. Inst. Nav. Architects, (1956).
- 14. Griffith, A. A., "The Phenomena of Rupture and Flow in Solids," Phil. Trans. of Royal Society (London), vol. 221, p. 163 (1920).
- Irwin, G. R., Symposium on Fracturing of Metals of the American Society for Metals, Cleveland 1948; "Fracture Mechanics" Proc. 1st Symposium on Naval Structural Mechanics, pp. 557-591. Stanford: Pergamon Press, 1958.
- 16. Orowan, E., "Fundamentals of the Brittle Behavior of Metals," Fatigue and Fracture of Metals, pp. 139-167, John Wiley & Sons, 1950.
- Boyd, G. M., "The Conditions for Unstable Rupturing of a Wide Plate." Trans. Inst. Nav. Arch. <u>99</u> (1957), 349-58.
- Robertson, T. S., "Propagation of Brittle Fracture in Steel," Journal Iron & Steel Institute, <u>175</u>, 361 (1953).
 - Feely, F. J., Jr., Northup, M. S., Kleppe, S. R., and Gensamer, M.,

"Studies on the Brittle Failure of Tankage Steel Plates," The Welding Journal, <u>12</u> (34), Research Suppl., 596-s to 607-s, (1955).

- Hall, W. J., Rolfe, S. T., Barton, F. W., Newmark, N. W., "Brittle Fracture Propagation in Wide Steel Plates," Ship Structure Committee Report SSC-131, (1961).
- 19. Noren, T., "Den Nominella Klyvningshall Fastheten hos Stal", Jernkontorets Ann, <u>139</u>, 141, Almgrist & Wiksells, publishers, Upsala (1955).
- 20. Wells, A. A., "The Influence of Welding on Notch Brittle Fracture," J. West. of Scot. Iron Steel Inst., 60, 313-325 (1953).
- Körber, F., Eichinger, A., and Möller, H., "Verhalten Gestauchter Metalle bei Zugbeanspruchung," Kaiser-Wilhelm Institut f. Eisenforschung, part I, 23 (1941), 123-33; part II, 26 (1943), 71-89.
- 22. Osborn, C. J., Scotchbrook, A. F., Stout, R. D., and Johnston, B. G., "Effect of Plastic Strain and Heat Treatment," Welding Journal, 28 (8), Research Supplement, 337-s to 353-s, (1949).
- 23. Polakowski, N. H., "Restoration of Ductility of Cold Worked Aluminum, Copper, and Low Carbon Steel by Mechanical Treatment", Proc. ASTM 52 (1952) 1086-97.
- 24. MacCutcheon, E. M., Jr., and Wright, Willard A., "Transition Characteristics of Prestrained Notched Steel Specimens in Tension," David Taylor Model Basin, Report 767, January 1952.
- Ripling, E. J., and Baldwin, W. M., Jr., "Overcoming Rheotropic Brittleness: Precompression vs. Pretension," ASM Trans., <u>44</u>, (1952), 1047.
- 26. Lankford, W. T., "Effect of Cold Work on the Mechanical Properties

of Pressure Vessel Steels," The Welding Journal, 35 (4), Research Supplement, 195-s to 206-s (1956).

- 27. Parker, E. R., <u>'Brittle Fracture of</u> Engineering Structures', Wiley, New York, (1957).
- Lagasse, P. E., and Hofmans, M., "L'aptitude des aciers au profilage a froid," report CNRM F/c/7-RA6, Nov. 1958.
- 29. Lagasse, P. E., and Hofmans, M., "Effets thermiques sur la fragilité des aciers doux," report CNRM F/ c/7-RA101, Aug. 1959.
- 30. Lagasse, P. E., "Sur la Fragilisation des Aciers Doux par Formage à Froid", report CNRM RA-198/62, July 1962, Liège, Belgium.
- Allen, N. P., "The Mechanical Properties of the Ferrite Crystal," Eleventh Hatfield Memorial Lecture, Journal Iron & Steel Inst., Vol. 191, Part I, pp. 1-18, Jan. 1959.
- 32. Rendall, J. H., Discussion in "Brittle Fracture in Steel," proceedings of a Conference sponsored by the British Admiralty Adv. Committee on Struct. Steel, Cambridge Sept. 1959, HM Stat. Office 1962, p. 103. Also private communication.
- 38. Srawley, J. E., and Beachem, C. D., "Crack Propagation Tests of High Strength Sheet Materials, Part IV-The Effect of Warm Prestraining" NRL Report 5460, April 1960.
- 34. Frost, N. E., "The Effect of Cold Work on the Fatigue Properties of Two Steels," Metallurgia, <u>62</u>, No. 371, p. 85-90 (Sept. 1960).
- deKazinczy, F., and Backhofen, W. A. "Influence of Hot Rolling Conditions on Brittle Fracture in Steel Plate" Jr. Am. Soc. Met. <u>53</u> (1961) 55.
- 36. Tipper, C. F., "Effects of Plastic Strains on the Mechanical Properties of Five Steels," Brit. Weld. Journal (1961) 278-281.

- 37. Tipper, C. F., "The Brittle Fracture Story", Cambridge Univ. Press, 1962.
- 38. Terazawa, K., Otani, M., Yoshida, T., and Terai, K., "Effect of High Temperature Prestraining on Notch Toughness of Steel," Kawasaki Dockyard Co., Kobe, Japan (1961). Presented as document IX-286-61 at the Int. Inst. of Welding, New York (1961).
- 39. Terazawa, K., Otani. M., Yoshida, T. and Terai K. "Effect of High Temperature Prestraining on Retained Ductility of Steel", Kawasaki Dockyard Co., Kobe, Japan (1961). Presented as Document IX-285-61 at the Int. Inst. of Welding, New York (1961).
- Brothers, A. J., and Yukawa, S. "The Effect of Warm Prestraining on Notch Fracture Strength" Trans. ASME, <u>85</u> (1963), Series D., J. Basic Engin., No. 1 (March 1963), 97.
- 41. Yao, J. T. P., and Munse, W. H., "Low Cycle Fatigue Behavior of Axially loaded Specimens of Mild Steel," Report No. SSC-151 of the Ship Structure Committee, June 1963.
- 42. Allen, D. N. de G., and Southwell, Sir Richard, "Relaxation Methods Applied to Engineering Problems; XIV. Plastic Strain in Two-Dimensional Stress-Systems." Philosophic Transactions, Royal Society of London (Series A), Vol. 242 (1949).
- 43. Jacobs, J. A., "Relaxation Methods Applied to Problems of Plastic Flow;
 1. Notched Bar under Tension," Philosophic Magazine, vol. 41 (1950).
- 44. Hult, J. A. H., and McClintock, F. A., "Elastic-Plastic Stress and Strain Distributions around Sharp Notches under Repeated Shear," 9th International Congress for Applied Mechanics, Brussels, Vol. 8, pp. 51-58, 1957.

- 45. McClintock, F. A., "Ductile Fracture Instability in Shear," Journal Applied Mechanics, Vol. 25, pp. 581-588, 1958.
- Drucker, D. C., "On Obtaining Plane Strain and Plane Stress Conditions in Plasticity," Proc. 2nd U. S. Congress of Appl. Mech., ASME, 1954, 485-488.
- 47. Sternberg, E. and Sadowsky, M. A., "Three-Dimensional Solution for the Stress Concentration around a Circular Hole in a Plate of Arbitrary Thickness," Journal of Applied Mechanics, March 1949.
- 48. Barton, F. W. and Hall, W. J., "A Study of Brittle Fracture Initiation in Mild Steel," Ship Structure Committee Report SSC-147 (1963).
- 49. Drucker, D. C., "Review of Jacobs" paper in Mathematical Reviews," 11, 1951, p. 703-4.
- 50. Lee, E. H., "The Theoretical Analysis of Metal Forming Problems in Plane Strain," J. App. Mech., <u>19</u>, (1952) 97-103.
- 51. Lianis, G., and Ford, H., "Plastic Yielding of Single Notched Bars Due to Bending." J. Mech. of Phys. of Solids, 7 (1958) 1-21.
- 52. D'Agostino, J., Drucker, D. C., Liu, C. K., and Mylonas, C. "An Analysis of Plastic Behavior of Metals with Bonded Birefringent Plastic", Proc. SESA, Vol. 12, No. 2, pp. 115-122, 1955.
- 53. Gensamer, M., Klier, E. P., Prater, T. A., Wagner, F. C., Mack, J. O., and Fisher, J. L., "Correlation of Laboratory Tests with Full-Scale Ship Plate Fracture Tests", Ship Structure Committee Report SSC-9 (1947).
- 54. Turner, C. E., "A Note on Brittle Fracture Initiation in Mild Steel by Prior Compressive Prestrain," Journal Iron & Steel Inst., Vol. 197, No. 2, pp. 131-135 (1961).

- 55. Osgood, W. R., editor, <u>Residual Stres</u>ses in <u>Metals and Metal Con</u>struction. Rheinhold, New York 1954.
- 56. Soete, W., "Aspects Mechaniques de la Rupture Fragile des Aciers," Houdremont Lecture of IIW, 1959, Revue de la Soudure, Vol. 16, No. 2, Brussels, June 1960, 165-194.
- 57. Greene, T. W., "Evaluation of Effect of Residual Stresses," The Welding Journal, <u>28</u> (5) Res. Supplement., 193-s to 204-s (1949).
- 58. DeGarmo, E. P., "Preheat vs. Lowand High-Temperature Stress Relief Treatments," The Welding Journal, <u>31</u> (5), Research Supplement, 233-s to 237-s (1952).
- 59. Weck, R., "Experiments on Brittle Fracture of Steel Resulting from Residual Welding Stresses," Welding Research, <u>6</u>, 70-r to 82-r, (1952).
- 60. Wells, A. A., "The Mechanics of Notch Brittle Fracture, Welding Research, <u>7</u>, 34-r to 56-r (1953).
- Kennedy, R., "The Influence of Stress-Relieving on the Initiation of Brittle Fracture in Welded Plate Specimens," Brit. Welding Jnl., <u>4</u> (11), 529-534 (November 1957).
- 62. Kihara, H., and Masubuchi, V., "Effect of Residual Stress on Brittle Fracture," The Welding Journal, <u>37</u> (4), Research Suppl., 157-s to 168-s (1959).
- 63. Hall, W. T., Nordell, W. J., and Munse, W. H. "Studies of Welding Procedures" The Welding Journal, <u>41</u> (11), Research Supplement, (Nov. 1962).
- 64. Videon, F. F., Barton, F. W. and Hall, W. J., "Brittle Fracture Propagation Studies," Ship Structure Committee Report SSC-148 (1963).
- 65. Shank, M. E., "The Control of Steel Construction to Avoid Brittle Frac-

ture," Published by Welding Research Council, New York, (1957).

- 66. Mylonas, C., and Beaulieu, R. J.
 "Restoration of Ductility of Hot or Cold Strained ABS-B steel by Heat Treatment at 700°F to 1150° F." Report Nobs-88294/2 of the Division of Engineering, Brown University, January 1964.
- 67. Satoh, K., and Mylonas, C. "Reversed Bend Tests of ABS-C steel with As-Rolled and Machined Surfaces". Report Nobs-88294/3 of the Division of Engineering, Brown University, February 1964.

SHIP HULL RESEARCH COMMITTEE

Division of Engineering & Industrial Research National Academy of Sciences-National Research Council

Chairman:

RADM A. G. Mumma, USN (Ret.) Vice President Worthington Corporation

<u>Members:</u>

Mr. Hollinshead de Luce Assistant to Vice President Bethlehem Steel Co. Shipbuilding Div.

Professor J. Harvey Evans Professor of Naval Architecture Massachusetts Institute of Technology

Mr. M. G. Forrest Vice President - Naval Architecture Gibbs & Cox, Inc.

Mr. James Goodrich General Manager Todd Shipyards, Los Angeles Div.

Professor N. J. Hoff Head, Dept. of Aeronautics & Astronautics Stanford University

Mr. M. W. Lightner Vice President, Applied Research U. S. Steel Corporation

Arthur R. Lytle Director

R. W. Rumke Executive Secretary