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ABSYRACT

The size of locally yvielded regions, the stress
distribution, and displacements attending a crack in
tension under plane stress have been calculated by ex-
tending the work of Dugdale and others. Methods have
been developed to take work hardening and unloading
into account. The displacements and plastic—zone sizes
measured in edge-slotted silicon steel coupons are
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obe in agreement with calculatio
under which plane stress or plane strain are dominant
in these edge-slotted specimens have also beendeter-
mined. Finally, Irwin's fracture-foughness parameter
and the conditions for crack extension are formulated
in terms of basic material parameters consistent with

experiment.
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INTRODUCTION

Progress in understanding fracture has been
handicapped by the fragmentary pictwe of stress
and strain in front of a crack. Experimental
measurements have proven difficult. The
elastic-stress-field solution of Inglisl or Trwird’
are not valid close to and within the very im-
portant vielded region generated at the crack
tip. The Irwin” and Wells” treatmont, which does
take viclding into account, is a reasonable up-
proximation only when the yielded region is
small relative to the crack length. At the same
time, the quasi-rigorous solutions of elastic-
plastic behavior' " are complex and unwicldy;
so far, practically no information on the stress
and strain within the vielded zone attending a
crack in tension has been developed in this
way. Thus, it may be useful to compromise
some rigor for a simpler tractable approach, par-
ticularly to deal with added complications, such
ag work hardening and rate-sensitive flow. For
example, Hult and McClintock's” solution for
a noteh subjected to torsion, a case which is
easior to treat, has shed useful light on the
situetion in tension.™  Knott and Cottrell™”
were able to exploit the idealized slip band
model of a crack under pure shear, developed
by Bilby, Cottrell, and Swinden, T intheir study
of notched bend specimens.

This paper extends the model of a crack in
tension under plane stress developed by Dug-
dale,*” and compares its predictions with ex-
perimental results. The model, based on a
mathematical development of Muskhelishvilil?®
embuodics the [ollowing assumptlions: (1) The
material outside the plastic zonc is elastic, {2)
The material within the zone is rigid-perfectly
plastic, (3) A Tresca yield criterion is cbeyed,
(4) Yielding is confined to a narrow wedge-
shaped zone.* Dugdale demonstrated that the
plastic-zone size predicted in this way is con-
sistent with the behavior of mild steel. Goodier
and rield®* used the model to calculate crack-
tip displacements, Results of further work des-
cribed in this paper show that silicon steel --
even in the form of rcasonably thick plates ~-
can exhibit & zone similar to that prescribed by
the DM (Dugdale-~Muskhelishvili) model. Meas-
urements of plastic-zone size and the crack-tip
displacement both on-ioad and after unloading
#This may be a consequence of the Tresca
criterion.

are shown to be in accord with theory. The re-
sults also provide insight into the mechanism
and conditiong favoring the DMzone. The stress
gradient in front of the plastic zone is calculat-
cd and methods of treating work-hardening and
unloading are explored. Finally, implications
of the DM model with respect to fracture, parti-
cularly crack extension and fracture toughness,
arc discussed.

PROFPERTIES OF THE DM MODEL

Uniform Internal Tension

The DM model is illustrated in Figure la. It
consists of a slit with an initial length 2c re-
presenting @ crack in & semi-infinite plate of
thickness t., Under the action of the nominal
stress T, the slit extends to a length Za and
ocpens , but is partially constrained from extending
and opening by a uniformly distributed internal
tension of intensity S acting only on parts of the
slit, fromx = +¢tox = ta, and p = {@ - ¢), *%

Y
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FIG. 1. MODEL OF DUGDALE-MUSKHELISHVILI
CRACK. {a) & {b) THE DM MODELL, (¢} THE
ACTUAL CRACK.

"3 is expressed as [orce per unit length corres-

ponding to unit plate thickness. It is analogousg
to enginecering stress, while Y is true stress.
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Dugdale's basic argument is that if § is equat-
ed with Y {the vield strength of the material},
the internal iension closely simulates the local
support derived from similarly shaped wedges of
vielded material, which are quite like zones ob-
served experimentally (Fig. 1. According to the
Dugdale hypothesis, Region 1245 (Pig. 1b) re-
presents the partially relaxed crack, and Regions
123 and 456 represent the atitending plastic
zones. Consistent with this idea, the plastic
zones cxiend as long as the stress at points 3
and 6 (the elastic-plastic boundary) exceeds Y.
By imposing this condition on the stress-field
solution {see Appendix, Section 1), Dugdale
was able to formulate the plastic-zonc size in
eguilibrium with the applied stress:

—%=2$in2-%— ) (1)
or
2 wesan L o

where 5 - wT/2Y. The same rclations have been
derived for the case of @ crack in pure shear'’
and torsicon.”

Although Dugdale derived the stress-field
solution {Equation A-1), he did not publish the
result or evaluate it numerically, Wo programm-
ed this equation for a computer and found that
the stress gradient for a wide range of applied
strezs levels 15 described by the equation (Sce
Appendix, Section 23,

where ¢ is the stress in the y direction,

B = 7T/2Y, and & = arc cush »n/a . Specific
gradicnts are illustrated in Fig, 2. The DM plas-
tic zone extends farther than the zone derived
from the Irwin® and Wells” assumptions, and
about twice as far as the value given by the
Inglis elastic sclution (the x-¢/c valuc corres-
ponding to Y). It is one-fourth the size of a
completely relaxed circular plastic zone'® . The
DM elastic stress ficld is perturbed (relative to
the elastic selutions) a distance 20 in front of
the crack. Bevond a distance 20, the DM and
Inglis soclutions converge. The DM model gives
the steepost stress gradient near the plastic
zone, approaching infinity as x = a., It would
appear that material just ahead of a moving
crack is subjected to stress rates approaching
shock loading.

=1‘+§ arctan —'Sin—z‘@——-) s {3

- cos 28

e

— Inglis (slit)
----— Irwin Approximation(slit}

T : [
Elastic-Plastic Solutions

— DM Mode!

—-— Irwin-Welis Assumption

‘ ___ Girculor Plastic Zone
{ Assumption

J
h
|
|
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riG, 2.
IENTS WITH OTHER SOLUTIONS.

The on-load displacement of a peint on the
slit wall (see Fig. 1b) has been worked out by
Goodier and Field ** for the DM model,

. 2
V:i”%f cosem%i&_e) +
sin” (8 + 6)
sin f + sin 9)2 {4)
cos in :
B {sin B - sin EFZ

where v is the displacement in the y direction,
E is Young's modulus, 8 = arc cos %/a, and
Poisson's ratio is taken as 1/3. Fig. 3 shows

L]
o o
o ®

o
s

Relative Displacement{¥—)
(=]
IS

i ‘ _
06— oz o044 08 0B o

Relative Distance From Crack Tip(!f,i)

FIG. 3. NORMALIZED DISPIACEMENT-
DISTANCE CURVES FOR THE DM MODEL.



that normalized displacement-distance curves
for three widelv separated values of T/Y are
similar. Goodier and Field*® also derived an
expression for the displacement at the cracktip

{Fig. 11, o
v, = 4 Y ¢

C m E

in sec 8, {5

where v Y Equation (5), presented

(% -c)’
graphically in Fig. 4, is almost identical to the
analogous expression derived by Bilby et al, '
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FiG, 4. INFLUENCE OF STRESS LEVEL ON v,

AND v/THE ON-LOAD AND OFF-LOAD CRACK-

C
TIP DISPLACEMENT AND THE RATIO v’ /v _ .
(o) C .

for the case of shear., At low stresses
(T = 0 6), Equation {5) reduccs to
v .
2
_ g eI {6)

also be reversed to simulate unloading. Wh
the load is removed, the opened slit tends to
contract and closc in response to the internal
restoring stress field. But this is now opposcd
by the enlarged viclded region resisting with a
pressure, -Y, acting on the crack walls from

¢ < x < a, Under these ceonditions, the slit con-
tracts as long as the stress at x = | a excecds
Y

As a useful approximation valid in the vici-
nity of the crack tip, the restoring stress field

can be replaced by a uniform applied stress
~-T/R, such that T/R will produce in an uncon-
strained slit (i.e., S = 0} of length 2a the on~
load value of v/c given by Equation {5). As
shown in Appendix, Section 3,

"

2
Y = Ecotﬁl?m sec 8 . (7)
The cffect of superpositioning T/R on T is equi-
valent to a tension {T - T/R) acting on a virgin
slit, 2c, and this then describes the off-lcad
state in the vicinity of the crack tip:

E - 4n_sec ﬁf (8)
Ve In sec g7

where v /¢ 1s the off-load crack-tip displace-
ment, and 8= w (T - T/R) /2Y. Values of v7/c
and the ratio V'(;/VC calculated in this way are

reproduced in Fig., 4. The results indicate that
v(’:/vc approaches 0.25 at low stress and 1 at

high stress but is relatively invariant (e.g.,
0.25-0,40} in the range T/Y = 04,85,

Nonuniform Internal Tension

The calculations outlined so far are validfor
a uniform internal tension S (see Fig. 5a). This
is not an unreasonablce model for metals provid-
cd v/c 1s small and the rate of strain hardening
is not an important factor. Otherwisc, correcct-
ions must be applied for (1) the reduction in
sheet thickness consistent with plastic defor-
mation at constant volume® and {(2) strain hard-
cning. For example, if deformation is confined
to shear on a single 45° slip plane, displace-
ments in the v direction must be accompanied by
a reduction in the load-bearing cross section
of the shect given by 2v. Consequently, if Y7,

#In considering displacements and strains, the
following simplifyving assumptions consistent
with constant volume deformation and the DM
model arc made:

€ = &£
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FiG. 5. EXAMPLES OQF DIFFERENT DISTRIBU-
TIONS OF THE INTERNAL TENSION, 3.

defined as the true flow stress, is constant
{e.g., ¥ =7Y), the internal tensicn S, opposing
the opening of the crack, must diminish from a
maximum value Y at x - a,

2
S(X): Y[l—‘lt(&]' (9)
This is shown schematically in Figurce 5h. If

the material also strain hardens, then @ (1)

Y= Y/(c) where € i the strain and (2) the dis-
placement is distributed over a finite volume—
a spectrum of strains is now encountered, The

reduction in the load-bearing cross section is

{1 - €}, and the maximum reduction {aty - 0}
corresponds to the maximum strain €,

S(x) = Y (%) [1 - €%) {10)

Several points, therefore, emerde about the
variahle-internal-stress case:
(1) To establish S(x), the distribution of strain,
€ {y), must be known. The model can only pro-
vide displacements; strains must be infcrred
from other considerations or measured cxperi-
mentally. Tor example, the displacement can
be expressed in terms of 4 the width of the
plastic zone, and T the average strain:

v

=4 -€ . (11)
Experiments to be described indicate
7. ~1t, Since ¥ ~€%/2,
L EE (12)
Voo~ 4 >

to a first approximation, and since v and x arc
related by an eguation analagous to Cquation(4),

¢
t
If the internal stress distribution can be defin-
ed, then, as shown in Appendix, Section 4, the
corresponding p, 0(x}, and v(x) can be calcula-
ted.

(i1) Equations (10) and {13} show that the form

of §{x) is similar to & load clongation curve.,
Since strain hardening and the variation of v
with % are essentially parabolic, the initial

part of S5{x} is linear {sec Fig. 5c). A two-

step function (see Fig. 5d) is thus aconvenient
approximation of small yielded zoncs. This ap-
proximation, together with Equation {13), was
used to estimate the influence of work harden-
ing con plastic-zone size for silicon stecl (sec
Appendix, Section 5). The results, preosented
graphically in Flg. 6, indicate thatthe influencc
of strain hardening becomes significant for long
cracks and high strcss levels.

S(K)N‘f(v)[i- (13)

Another simple approximation, which takes
into aceount the eifect of work hardening on
v’ /¢, is to modify the definition of 8 in Equa -
tion (8) by teplacing ¥ with 8/¢ = 8 /{x = <),
the flow stross corresponding to the maximum
strain ot the crack tip. This simplc approxi-
mation neglects the Bauschinger cffect.

The form of S(x) at high stress levels is il-

lustrated in Pig. 5e. In this casc, the instan-
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(1} Uniformly Distributed Internal Tension

{2) Two-Step Distribution (SC/Y = 1.20,

Py = 0.5 pp)

(3) Two-Step Distribution (SC/Y = 1,33,
P o= 2.0 p2)

{4) Varying Distribution Simulating Work Har-
eRInG? 0y o/t = 6.25, (b} o/t = 25.0

tanecus average S can serve as a useful approxi-
mation of the distribution, e.g., Eduation {2},

£ . 7l .
T = sec - 1 R {2A)
where
T o UFF {14)
S 7 s

and U and F are the ultimate tensile strengthand
fracture strength, both cxpressed in terms of
engineering stress.

(iii} The shape of the plastic zZone consistent
with the mechanism of deformation will not ne-
cessarily correspond with the shape prescribed
by the DM model. This could be taken into ac-
count by modifying the geometry of the DM

A T o e o
TepLacing

the slit by soine other
shape — but the refinement may not warrant
the added complications.

[ |
Hjogcel

The main problem, to be resolved by experi-
ments, is the extent to which approximations
inherent in the DM model impair the accuracy of
its predictions. Dugdale™® has already shown
that the model gives a rcasonable picturce of the
plastic-zone size in mild stecl, The experi-
ments described in the next two sections show
that mcasurements of plastic-zone size and
crack-tip displacements for silicon steel are
also in accord with the theory.

EXPERIMENTAL PROCLDURE

Studies of locally vielded zoncs were carried
out on large notched test coupons fabricated
from 3% silicon steel (81 3,31, C 0.04}. The
coupecns {over-all length 8 inches, with a 4 %
2.5-inch gage section, and with centrally
located edge slots Q.25 inch deep and 0,006 in.
wide), derived from 1/4-inch-thick plate pre-
vicusly warm rolled 40% and stress relieved,
were machined to thicknesses from 0.232 to
0.017 in. After machining, the coupons were
recrystallized at 875 C and slowly cooled., The
test specimens were loaded to various stress
levelsg, held at maximum load for about five
seconds, unloaded, and later aged for 20
minutes at 150 C to decorate the dislocations.
The stress-straln characteristics of this mat-
crial in the annealed condition are shown in
Fig. Al. The shape of the stress-strain curve
is similar to that of a mild structural steel, but
the strength level is higher, the lower vield
stress Y = 62, 400 psi. A compliete summary of
tests performed is given in Table 1.

Two different techniques were amployved to
reveal the plastic zone and the strain distri-
bution within the zone. The ofi-lcoad transverse
strain field was photographed on an interference
microscope., The interference pattern with isc-
strain contours and the corresponding strain pro-
file for Sample 3-56 are shown in Figs. 7 and 8.
The strain profile was used to calculate

a OO
0-] ez dy) .

v' (v

Tollowing thisg, the surfaces of the test
pieces were electro-polished and etched, utili~
zing the Morris procedure, *® to reveal the plas-
tic zone, and then were rcground to various
depths, polished, and re-etched to delineate
the zone on various interior sections. This
method of etching, based on the preferential
attack of individual dislocations, results in a
gradual darkening of the surface as the strain
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TABLE 1. SUMMARY OF NOTCH TESTS PERFORMED.

Specimen  Thickness, Zone P -Measured, p-Calculated (b) , P —Calculated(c) y
Number inch T/Y Type inch inch inch
{d)
§-57 0.200 0.52 Hinge (97 pE = 0.072 0.12 --
5-60 0.195 0.8l Transition pH = 0.54 p = 0.28 0.58 .40
8-58 0.232 0.90  45° -Shear  pil > 1.40(8) p = 0.60 1.35 1.20
5=-47 0.165 0.75 Transition
5-48 0.128 0.90  45% -gShear
5-53 0.060 0.78 45" -Shear p = 0.38 0.48 0.4
5=55 0.017 0.52 45” -§hear p = 0.10 0.12 0.19
5-56 0.017 0.8l 45° -3hear p = 0.39 0.58 0.40

(a) Although,in this sample,yielding was predominantly of the 45° -ghear type, traces of plastic
deformation of a hinge character werc cbserved to the distance indicated.

(b} Caleulated from Equaticn (1) assuming no work hardening.

(c) Calculated taking work hardening into account (Figure 6 and Appendix, Section 5.

(d) See Figure 11 for definition of pl.

.'-.
1

ric3., 7. INTERFERENCE PATTERN WTITIl [SOSTRAIN CONTOURS (TOP LEFT CCRNER)Y AND THE COR-

RE:/SPONDING PLASTIC: ZONE ROVEOALLD BYETGHING, BOTH FOR SAMPLE §-56 (1 = 0.017 Inch,
T/Y - 0.81). 20X
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FIG, 8. CRACK-TIP STRAIN PROFILCS DETER-

MINED FROM INTERFEROMETRIC MEASUREMENT,

increascs to 1-2%. Bevond 2% strain the etch-
ing response diminishes, and above about 5%
strain the material studied here was not attack-
od, probably because decoration was incomplete.
Conscquently, the technigue revealed both the
extent of the plastic zone and, to some degree,
the distribution of strain within the zone. The
change in ctehing responsc is illustrated in
Fig. 7 which shows a highly strained but unetch-
ed region close to the notch tip. A digplace-
ment v/e can be calculated from {/e, the width
of the etched rcgion, and €/e, an average
strain, deduced from the etching response, sec
Equation (11}. Since v/e = v+ (v - v’), the sum
of absolute values of displacement incurred
when the load is applied plus the reverse dis-
placcment produced by unloading, it can be com-
bined with v’from the interferomeiric measure-
ment to give v, the on-load displacement,
ve + V‘

2

(15}

LXPERIMENTAL RLSULTS

The interpretation of plastic zones revealed
by ctching is complicated by the fact that vield-
ing concurrent with loading is superimposed on
reverse flow during unloading. 35till, a reason-

able picture emerges of the effect of stress and
plate thickness on the character of the plastic
zone. Three types of plastic Zones are cbserv-
ed (see Figs. 7, 9, and 10):

1. Hinge~Type Zone. At low-stress levels the
zone extends normal to the plane of the crack,
and its form is essentially the same on all in-
terior sections (see Figs. 9a and 9b). The shape
of the zone is consistent with the idea that yield-
ing occurs essentially by flow about hypothetical
plastic hinges'” {(see Fig. 1I}. The hinge-type
zone is also qualitatively in accord with Jacobs
zone-shape calculations for plane strain.”

2. 45-Degree Shear-Type Zone ., At high-stress
levels the zone is projected in front of the crack
in the direction parallel to the crack planc. As
shown in Figs. 7b, 9¢, 9f, 10d, and 10c, this
form bears a striking resemblance to the DM
model. Etching the interior scctions reveals
that the mechanism of yvielding in this case is
shear on slabs inclined ~45 degrees to the ten-
sile axis, similar to necking of unnotched sheet
coupong (see Fig. 11). As a consequence ofthe

45° —ghear nature of the yielding, the zone widcth
on the surface is

wile ouiralt o

plate thickness;this is shown in Figs. 10e and
llc.

3. Transition Zone, At intermediate stresses,
the zone appears in a state of transition between
the hinge type and 45° -shear type {see Figs.
9c, 9d, 10a, and 10b).

Measurements of the zone size (summarized
in Tabkle 1) are in accord with previous experi-

OaTien

Anaiotant writh Totalman
Ry A el

.
LAUTISAGLETIE Wanly pe2loainidll,
Fig. 11) for the hinge-type zone of Sample S-
57 is described by

L
2 ises

P

C

(16}

The extent of the 45° -shear-type zone of Sample
5-55 is in good agreement with Lauation (2).
Valucs for Samples 5-56, 8-63, 5-48, and 5-58
are somewhat smaller than predicted. Although
better agreement is obtained when work harden-
ing is taken into account {see Table 13, a dis-
crepancy remains., This could be related to de-
partures from the infinitc plate solution (likely
when the plastic zone covers more than 20-30%
of the sample cross-section area) and to the
fact that the DM model only approximates the
shape of real zones.

The results summarized in Table 2 rcpresent
the first attempt to check displacement values
predicted by the DM model. As shown, boththe



(a) 8§-57 Burface

{e) 8-58 Surface

FIG. 9. PLASTIC ZONLS REVEALED BY ETCHING
COUPONS:
(@) and (b) Sample 5-57 (t
(c) and (d) Sample §-60 (t

on-lcad and off-load crack-tip displacement
values derived from the etching response and
the interferometric measurements are in reason-
able accord with the theory. Work-hardening
corrections do not improve the agreement in v/c
values for Samples 5-53 and 8-55; in both cases
the maximum strain is small, andthe Bauschingsr
ciffect could be more important than strain hard-

0.200 inch, T/Y
0,195 inch, T/Y
{e) and (f}) Sample 8-58 {1 = 0.232 inch, T/Y

{d) &-60 Widsection

(£} §-58 Midsection

THE SURFACE AND MIDSECTION OF NOTCHED

0.52)
0.81)

0.90}) Oblique illumination., 2-% X

ening.

On the basis of these results, it appears
that the DM modcl offers a useful description
of (a) shape, (b) size, and (¢) displacements of
a 4h*=-shear~type plastic zone. Two points
bearing on the gencral applicability of the
model shiould be kept in mind:



{¢) 8-48 - Surface (d) S-48 - Midsection
FIG. 10. PLASTIC ZONES REVEALED RY ETCHING THE SURFACE AND THE MIDSECTION OF NOTCH-
ED COUPONS: {a) and (b} Sample 8§-47 (t = 0.165 inch, T/Y = i1, 7%)

{c) and {d) Sample S48 (t = 0.128 inch, T/% = 0.%0)
Oblique illumination  9,5X

A ‘ et B stress. Yielding at this distance first becomes
i possible when
g RN (1)
\j&‘\ B ‘ <
=0 o ! and this condition should approximately mark
? the beginning of the transition from the hinge-
A ' B type to the 45°-ghear-type zonc. The con-
(n_}'Hin;E_Type (b} 45% Sheor- Tyoe figuration begins to approach a narrow, tapered
) DM-model zone when
- o~ 4t , (18)
FIG. 11. SCHEMATIC DRAWING OF THE TYPE
OF DEFORMATION ASSOCIATED WITH {a} THE since the zone width is ~t. Limiting conditions
HINGE-TYPE AND (b} THE 45°-SHEAR-TYPE for the varicus types of zones, formulated by
PLASTIC ZONE. combining Equations {18} with (2} and (16) with

{17), are summarized in Table 3. These con-
ditions are consistent with the experimental

(i) Tirst, the state of sltress must be substanti- .
observations.

ally plane stress. The 45°-shear mode will be .. .
constrained until the stress acting on regicns a (1) The 45°-shear zone has, so far, onlybecn
observed in steel. In fact, the Stimpson and

distance t/2 above and below the crack center- Eaton® th "1;_' | caleulat] ; 1 - ”“é“
. . ) aton eoretical calculatio ane stress
line, v - 0 (see Fig. 11), exceeds the vield ns tor p
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TABLE 2.
THE DM MODEL.

COMPARISON OF MEASURLD CRACK-TIP DISPLACEMENT VALULS WITH PREDICTIONS OF

L . (a)
Derived irom Measurements ™ °

Caleulated
€ v v’ v v’ &) v’ (c) v {d
ce, <T@y ce, <y e, <, C, c,
Sample -4 A -4 -4 -G -4
Number T/Y inch % 10~ ipch 10 inch 10 " inch 10 " inch 10 ' dinch 10 " inch
§-55 0.52 0.026 3 -4 4 -6 a.7 2 -3 0.8 c.9 2.5
5-56 0.81 0.044 4 -7 10 - 14 3.4 6 -0 3.1 3.7 8.1
§-53 0.78 0.063 3 -4 18 - 24 z.1 6 - 7 2.6 3.1 7.0

(a) The quantities Ece, €

immediately in front of the slot as revealed by cteching.

o? and v are the average width, strain, and displacement, respectively,
ce

== -’
v =124 e . v
ce ce ce o

is derived from

N ) - .
the interference pattern as described in the text. v Is calculated from Vea and v, via
(e -

Equatiocn (i5)-
{b) Galculated from Equations (7) and {8) using:

Y = 62,400 psi, E = 30,000,000 psi, and C = (.250 inch.

(¢} These values of the off-load displacement were calculated taking work hardening info account as

described in paragraph {(ii) on page 12 and page 13.
(d) Caleculated from Equation (5).

Cenditim . _ Domizant Lo
: o %% 3 Minge Lvm

PR T
coon e

a9t oghear eype

do not predict a 45°-shear zone, but a shape
with much more *hinge® character. Even when
the bulk of the deformation is of the 45°-shear
tvpe, the silicon steel exhibits traces of defor-
mation at distances y > t/2 {see Fig, 7 and p"
for Samples 5-60 and 3-58 in Table 1), in keep-
ing with the calculations. The discrepancy be-
tween the Stimpson and Eaton calculations and
the behavior of steel mav be related to the
cheice of yield criterion (von Mises, as oppos-
ed to Tresca, in the casc of the DM model), or
to the vield point effect.” Until this point is
resolved, the safest assumption is that the 46-
degree-shear-iype zone is onec of scveral modes
of relaxation possible under plane stress.

IMPLICATIONS FOR FRACTURE

Since it is both quantitatively meaningful and
simple to handle, the DM model is especially
useful in dealing with fracture, It can approxi-
mate the stress- strain-rate environment in front
of a propagating crack.*® It may have applica-
tion to fatiguc, since it can deal with loading

and unloading. Finally, the DM model can be

mead +A trast Arasls
[EE=1unt

Arto
Lo Lo

crack extension. In this case,
the predictions of the model complement ac-
cepted theory and experiment and for this

reason are outlined below.
T risodd a4 LN i U JET T N, [ R [ S
Lyudirionl \Uf, 1O LI CraCKk—LLP u;spldceumnt
when T/Y < 0.6, can be written

2 vo YE 1/2

nC 3

(19)

and, in this form, compared with Irwin's basic
condition for crack extension,

™ = K A
we)>i<

In this case, T# is the critical stress for crack
cxtension, and K/¢ (the fracture toughness) is
an empirical measure of the material's resis-
tance to cracking.®”  The fact that Equations
{19) and (20} have the same form implies that K/
G is related to v/c and can be calculated
directly,

ke = @ vEypt? (21}
where v¥/c represents the crack-tip displace-
ment at crack extension. The connection be-
tween v#/c and K/c was first recognized by
Wells, °t and an cxpression similar to Equation
(21) has been derived by Bliby et al,1*

8ince K/c and Y are material constants, the
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quantity v#*/c must also be constant. The con-
stancy of v¥#/c can be related to invariance con
the part of €%/c, a critical maximum crack-tip
strain, via Equations (11) and {12). Two mech-
anisms of crack extension can be related to a
specific strain level:

1. Ductile Fracture. Ductiie fracture by the
process of voids coalescing 2 might be expect-
ed to cccur just in front of the crack tip when
the maximum sirain at this point reaches alevel

comparablc to the reduction in areca of anunnotch-

ed coupon,
* .
€c = RA (22)
The crack then grows a small increment, and
the maximum strain must increase further
*
3 ep
3¢

> 0,

see Equations {5) and (12}.

T,Y

Since the strain at the crack tip is already be-
yond the capabilities of the material, an insta-
bility is inevitable. Locally, the origin of such
failures is ductile fracture, but they arc frequent-
ly classitied as brittle when the failure stress

is below the stress level for general yvielding.

As shown in Table 4, K/c¢ valucs, calculated
directly from Equations (12), (21}, and (22), for
4330 steel and 2219-T87 aluminum arc reason-
ably consistent with experiment, %% considering
the approximations made. If the relation be-
tween viE/c and €% /¢ were known more precisely,

TABLE 4. COMPARISON OF MEASURED AND PRE-

K/c AND GROSS FAILURE STRESS T.

Critical
Crack 4
Length,

luch

oo &sl Sinch 7, psl

e R

Material Measure talenlate HMeasured °_ Galonlated

A. Low Slress Lewsis, 1/§ o 0.74%

£330t 2-u T hi

IPIFREL Ll

L7130 ) [ 205,40

ZZLDWTETYTT L BRI} eIk
" 1. L0 5500

G} AT steel darats
vos UL i, Bo= S0, 000000 pwi, T o= DRELO00 pxi, U EZ3,000 pai,
W = 200,000 psi, Fo= 178,000 pai, RA = AT, £, = 6E,

() 2219-1%7 aluminun daea$s’?
L= 0,100, B = LLLOD0,000 pai, ¥ - 29,000 pui, U = 68,000 pai,
S o oeh,000 pei, F o= 96,000 psi, HA = WE, ey = Tho

(¢)  Fruarions (121, €217, and {22).

() Tqualions (12), (23}, and (24),

- _ ¥X+u
(c)y 5 = 7

even better agreement might be obtained.

2. Plastic Instability. Anocother possibility is
that the plastic zone become unstable first, and
that ductile fracture (and crack extension)fol-
lows in the wake of the instability. This idea,
which was recently proposed by Krafft, ¥4 can
be formulated using the DM model. As shown
in the Appendix, Section 6, the instability con-
dition is approximately

5- 8¢l (23)
S
-1
e ) (o] o] ]|
i = ] L\""'i | I I | = lJ

Figurc 12, a plot of the criterion of Equation(23)
shows that considerable unloading is tolerated
at low stress levels (e.g., T/ < 0.7), but the
plastic zone becomes unstable as a result of a
small decrease in 5/¢ when the stress is high
{e.g., T/5> 0.7). Consequently, plastic in-
stability is the more likely mechanism of crack
cxXtension at high stress if the material is rea-
sonably ductile.

According to this picture, v*/c and €=/¢
assoclated with plastic instability (and failure)
decreasc as the stress is raised. Since Egua-
tion (21) is not valid at high stresses, a simple

. . ]
2.5
04 ‘ \
|
o3k :
o i
|l ;
2 :
02 Tt
|
Q. -
[+]
[+] 0.2 0.4 0,6 0.8 L.O
/8
FIG. 2. CRITERICN FOR PLASTIC IN-

STABILITY OF A DM ZONE.
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rclation among K/c, T#, and ¢ cannot be deriv-
ed. Howcver, the value of §+/c at instability
can be estimated (see Appecndix, Section 6},

E-S¢

(24)
3

€k ~ ¢y + H(

where

-1
2 U-F ;
= (€ gm€y) lT) , and Uandp

are the ultimate tensile stress ana racture stress
{enginecring stress), and €/u and €/f are the
corresponding strains (expressed as reduction

in area). Equations (24), (12}, and {23) togcth-
er fix the value of T at instability. As shown in
Table 4, failure stress values calculated in this
way are in good accord with actual measurements
and consistent with the apparent decrcase of K/¢
observed at high stress levels, i.e., T/Y >

0. 8-23

CONCLUSIONS

1, Por edge-slotted silicon steel, local
vielding is predominantly of the planc strain
plastic-hinge type until the extent of the yield-
ed zone 1s about equal to the sheet thickness.
Further deformation, under plane stress condi-
tions, proceeds by a 45-degree-shear mode.

2. The general shape of the 45-degree-
shear zone can approach that of the DM (Dugdale-
Muskhelishvili) crack model. Predictions of
this model are in agreement with mecasured zone
size and displacement valucs for silicon steel.

3. The DM model offers a relatively simple
expression of the stress gradient and can be
used to estimate cffects of work hardening and
unloading. Calculations and experiments indi-
cate that the off-load crack-tip displacement
approaches 25% of the on-load value at low
stress,

4. The DM model can be used to formulate
the conditions for crack extension. Tallure
stregs values and the fracture toughness, K/
calculated in this way from first principles, are
in accord with experiment.
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AFPENDIX

1. Previous Werk

Using Muskhelishvili's(13) method, the normal stress, g, in front

of a slit subjected to the stress system shown in Figure 1 is found to be

o 0 = (T - 2%!) cothao + T {1 - % arctan ‘-—-—*2'&—'- 9‘-—'} s (A-1)

y =
x> a cos 2B- e
where T = applied stress, Y = yield stress, cos B = c/a, cosh @ = x/a,
SA cosh o ! \
QqQ = —— 3[31nha’] + cosho sinhao -1
{sinh o) [
) R f 5 ¥ (2% - cos 28)
+ 6A {coth o) L1 - Sin 78
6; cos B
- (3 [sinh 0!] + cosh & sinh @ ~ [cosh ozj J
{sinh @)
Gé & cos B 65 - R [sin B]z)
S : B ,
(Sinh a)z L 2 sin B
8§ = 4sin~2ﬁea and 67 = 4 gsin B Q+e2dL
= , = .
A (&2 . cos 28)% + (sin 28)° B+ ¢®2 - @ cos p)?

The other terms of Equation (A-1) are defined in Figure 1. To avoid the

infinity at ¢ = 0 (x = a), the coefficient of coth @ mst vanish:

B =

NTE|

%= arc cos (c/a} . (A-~2)

2. Stress Analysis for Uniformly Loaded Slit

Equation (A-1) was programmed for a digital computer and o and Q

determined for 792 combinations of @ and B. It was found that @ was
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negligibly small, except for values of & so small as to introduce rounding
off errors in the computer (£ < 1.0002 and %< 0.006). It can also be shown
by series approximations that Q approaches 0 as « approaches 0. We have

concluded that @ can be ignored, and that

a4 / . an 3
g L ] sin £
== 1+ F arctan — 5 . A=)
T B ieZU - cos 2B )

3. Displacement

The displacement at any point on a slit under a uniform tension

when the slit is not restrained by an internal stress is

v = (k. + 1)43 T sin & , (A=)
k is the function of Poisson's ratio, v, where k = (3 - v)/(1 +v) for plane

stress. The displacement at a distance, ¢, from the center of such a slit is

- (k +1) ¢c T tan B

vc 4

(4-3)

since c¢/a = cos B, and 8 = B.
The displacement equations for the relaxed slit of the DM model

have been calculated by Goodier and Fie1d£l4)

and are found in the body of
the paper, In particular, the critical displacement for an internally

stressed slit (see Figure 1la) is

(k + 1) eY
= e - A=6
Ve e I sec B (8-6)
To determine the stress, Tr’ producing the same displacement in a slit of
the same length in the absence of an internal stress, (A-6) is substituted
intoe {(A-5)

\

==cot B In sec B . (A-7}

Iz
Y

d] r
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4, Stress and Plastic—Zone Size for Arbitrarily Loaded S§lit

Since all terms in the Muskhelisghvili formulation which involve
derivatives of GA and GB do not appear in Equation (A-3), expressiomns for a
slit subjected to any arbiltrary combination of internal and external loads
can be derived easily. For example, the stress distribution in front of the
slit of Flgure 5d can be found by the summetion of three solutions

{o=0, +0, + 03):

1 2
(L External tensile stress, o, =T coth o (A-8)
(2) Uniform internal pressure, -S,s applied to the regions
-Sc
Ia' >| xl >| c{ - 281 feoth o - 1] + 6A (Bl)} (A-9)
(3) Uniform internal pressure (SC - Y) applied to the regions
5 -v¥
i >ix] ( i) = = (28, [cotha - 1] + 5,(B.)} (a-10)
laj > xi> Ciej+ipjreo3= =742, L I+ 8,y )
gin 2
where § = -2arctan —sin 2B .

fe” - cos 23}

Setting the coefficient of coth & equal to 0, results in the restriction,

T
=B, -B)S_+B, Y (A-11)
and the solution
5, (8,) 6, (B;) S
g A "2 A 1l ¢ .
E_‘.=1+T(Sn 'Y) -T (A-12)

Keeping the same boundary conditions (S = Sc at B = Bl and

S=v ar a8 =20) w he an arbitrarv function of B.
at 8 Q) 7 be an arbitrary runction of b,

) tH

Equaticns (A-8) and (A-9) can he added to
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.

Y
1
9 = FJ {23 Leoth @ ~ 1] + 8, ®) 4 ® (A-10a)
]
c
to give ¢ and the restriction,

b4
Lops +] pas @ . (A-11a)

5
c

The displacements for an arbitrarily loaded slit can be obtained by replac-

=g

ing

5. A Method of Simulating the Effect of Work Hardening

Consider the material whose stress-strain curve is given by
Figure A-la. Assume that €. the strain at the crack tip, is 8§ per cent.

For a given value of t {0.08 inch), the displacement at the crack tip can be

€ t
calculated if it is assumed v, = ?4 = 1.6 x 10 3 in. For other points in

the plastic zone, the displacement can be found from Figure 3 and the

relation EIeC = v/vé. Since each strain will correspond to a flow stress on
Figure A-la, the tension-distance curve (Figure A-1b) can be calculated for a
given T/Y. For ease in further computation, a two-step stress distributionm,
which simulates the calculated one is found by matching areas A and B
(Figure A-1b) and the stress distribution in front of the plastic zone, the
plastic-zone size, and displacements found by the method ocutlined in

Section 4.

To determine the solid lines on Figure &, the displacements (vc)

corresponding to the various strains were calculated from Equations (11) and
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(12) with t = 0.08 inch. The two-step distribution was replaced by a uni-
form distribution and T/Y found from Figure 4. Although each solid line was
calculated for a specific crack lemgth and sheet thickness, it applies to
any specimen with the same c/t ratio [see Equatioms (11) and (12) and (A-6)].
Plastic-zone sizes for 1f4-inch cracks in thicknesses other than 0.08 inch
were found by determining c/t and interpolating between the curves of

Figure 6.

6. Plastic-Zone Instability

If the applied stress is held constant, but the tension 8 (reflect-
ing the yield stress of the material) is allowed to vary, the rate of change

of the equilibrium zone size is given by

° dn ¢l = - (sec al _ 11-1 (I sec ot tan ol | (A-13)
a,o,ns|T {sec 55 Y\ 25 3! a-13)

It is necessary to postulate a variable § when we consider a zone loaded

with non-uniform tension distribution, S(x), which is to be represented by a

_ (c+p)
uniform average temnsion 5 = 1/p 8 dx (see Figure 5e). If the tension at
c

the crack tip, Sc, changes, the corresponding change in plastic-zone size is

easily seen to be

2 inp -8 ;
e . A-14
din§ § -8 (
[
3s _
Tf the stregg=-strain curve ig falline, i.e. _—9-< 0, and &8 < 8. the rate
ess-strain curve 1s ralling, 1.e., F 4 » And = w2y rate

of increase in plastic-zone size predicted from Equation (A-13) may be
larger than can be tolerated by the conditions of Equation (A-14). Thus an

instability results when

5-3 .
£ {sec ol | 1‘ {H; sec I pan Egl . {A-15)
S \""2s 7 \2s 28 2s |
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The crack-tip strain at plastic instability can be estimated by noting
that the relation between Y'(true stress) and c* {reduction in area) is approx-
imately linear beyond the point of necking, Together with Equation (10), this
leads to a simple parabolic relation between €* and the tension S (S is equiva-
lent to the engineering stress in a tensile test). The equation of the para-

bola with a vertex at U, €,, and passing through F, €¢ is

€* = €, +\/H (U;US) , (A-16)

2
UEs - €)
(V- F)
strq}n at maximum load and fracture, respectively. The following approxima-

where H = , and U, €,> and F, €5 are the engineering stress and

tion

S U

is reasonable, particularly for high-strength materials exhibiting little

work hardening. GConsequently, the value of eﬁ corresponding to a critical

value of §f§—§5) is

8 -5
€~ ey + H,( ") . (A~18)
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