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PREFACE

The Navy Department through the Bureau of Ships is distributing this report
to those agencies and individuals who were actively associated with the research
work, This report represents a part of the research work contracted for under
the section of the Navy's directive "o 1nveatigate the design and construction
of welded steel merchant vessels," . y
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ABSTRACT

Strain gradients normal to frzeture surfaces were determined, These
fracture surfaces were developed under the following conditions of test:
(1) V=notch Charpy bars broken by impact at various locations within the
transition zone, {2) Venotch Charpy bars bent, but not completely broken,
by impact above the transition tempersture, (3) slow bend Schnadt type bars
broken below the transition temperature, and (4) 72=inch wide, center notch,
tensile specimens broken with ductile and brittle behavior.

The strain gredients were studied by means of hardness tests, metallo-
graphic methods and X-ray analysis.

Tt is concluded that true cleavage separation is not sccompanied by a
measurable sitrain gradient but most "brittle" or “cleavage" fractures, so

classified on the basis of gross appearasnce, contain some areas separated by

a shear mechanism,



- il -

'LIST OF TABLES

Table 1 = “Chemical Composition of the Steels

Table 2 - Fracture Phenomena in Charpy V-Notch
Test Bars
Table 3 - 'Fracture_Phenomena.in Lorge Plate

Specimens

18



Figure

Figure

Figure

Pigure

Figure

Figure

Figure

[

10

o
ot

12

13

1

- 1ii -
LIST OF PIGURES

TAraM 2 e n A Mo -
decerized DPOIm G

X-ray Pattcrns St

The Fracture Midw

JIGURES

f Strain Gradient.

cel A,

ay Through the Specimen Steel

Dr.

This is a fully ductile specimen. {cf. Figures 26 & 27),

The Fracture lidway Through the Specimen Steel U, This

is a fully brittl

Hardness Contours

energy absorption

Hardness Gradient-

Hardness Contours
energy abiorption
Hardness Gradient
energy absorption

The Character of

e‘speciﬁen. (of. Figures 5 & 6).
- Steel C. Tested at =-22°F;

3 ft. 1bs,

o
Steel C, Tested at -22 F;

ft. 1bs,

AW )
o]

Stoel E. Tested at 36°F;
7 ft. 1lbs,

Steel E, Tested at 36°F;

7 £t. 1bs,

the Fracture at the Base of the

Notch Steel E. {of, Figures 7 & 8).

The I'racture Midway Through the Specimen

Steal E, (ef, Figures 7 & 8},

ack of th

Steel E, (eof. Figures 7 & 8).

Hardness Contours
energy absorption
Hardness Gradient
energy absorption
Hardness Contours

energy absorption

- Steel Dr. Tested at =39°F;
10 ft, 1bs.

- Steel Dr, Tested at -39°F;
10 f{. lbs,

- Steel C. Tested at 50 F;

13 £t. lbs.

22

23

25

26

=7

28

»
~0

30

31

32



Figure

Figure

Figure

Figure

Figure

Figurs

Figure

Figure

Figure

15

16

17

18

19

20

21

D
[\ ]

23

24

25

26

27

- iy - "

Hardness Gradient - Steel C, Tested at 50°F;
energy absorptibn 13 ft., lbs.

Hardness Contours ~ Steel E, Tested at 75°F;

_ energy absorption 16 ft. lbs.

Hardness Gradient - Steel E. Tested at 75%F s
energy absorption 16 ft. lbs,

Hardness Contours - Steel Dr, Tested at 160F;
‘energy absorption 27.5 ft. lbs,

‘Hardness Gradient - Steel Dr, Tested at léoF;
energy absorption 27.5 ft. ihbs,

Hardness Contours = Steel Dr, Tested at 64°F;

energy aboorpiion 46.5 ft. 1bs.
Hardness Gradiont -.Steel Dr. Tested at 64°F;

energy absorption 46;5 ft. 1bs,

G
TTmandrm mmea M mande e = Qhma~T N ot ad A4 112 W
FEL USRS GULIWULLLY = auBTl W cobbu av 140 L0

o

energy absorption 52ft. lbs.

Hardness Gradient ~ Steel C. Tested at 1130F;
energy absorption 52 ft., lbs,

Hardness Contours - Steel E, Tested at 1700F;
energy absorption 54 ft. lbs.

Hardndss Gradient - Steel E, Tested at 170°F;

| energy absorption 54 ft. lbs,

Hardness Contours - Steel Dr. Tested at 126°F;

Hardness Gradient - Steel Dr. Tested at 126°F;

ehergy absorption 80,5 ft. lbs,

34

35

36

37

38

39

o~
o

41

42

43

44,



Figure

. Figure

. Figure

‘Figure

" Figure

Figure

- Figure

Figure
Figure

Figure

- Figure

Figure

- . Figure

Figure
Figure

Figure

28

29

30

31

32

33

34

35

36
37
38
39
40
41
4R
43

Hardness Contours’ -~ Steel C, Tested at 212°F;.
energy absorption 80 ft. lbs.

Herdness Gradient. - Steel C. Tested at 212°F;
energy absorption 80 ft. lbs,

Hardness Contours - Steel E, Tested at 212°F;
energy absorption 70 f£i, lbs.

Hardness Gradient - Stesl E, Tested at 212 F;
energy absorption 70 ft. lbs.

Hardness Contours — Steel C. Tested at 212°F;
angle of bend = 9°, no crack formed. Kinetie
Energy of Hammer = 13 ft. 1lbs.

Hardness Contours = Steel C. Tested at 2120F,
angle of bend = 22%, small crack formed.
Kinetic Energy of Hammer =-34 ft. lbs.

Hardness Contours - Steel G, Tested at 212°F, -

angle of bend = 38°, crack through 1/3 of section.

Photograph of Plate C=3, -
Line Drawing of Plate C=3,

Hardness Contours - Specimen No. 1, Plate C-3.

- Hardness Contours = Specimen No. 2, Plate C-3,

Hardness Contours = Spescimen No. 3, Plate C-3.
Hardness Contours = Specimen No. 4, Plate C=3,

Photograph. of Plate 22-1K.

.Line Drawing of Plate 22-1K,.

Hardness.-Contoura = Specimen No. 1y Plate 22-1K.

47

49

51

53
54

54

55

55

" 56

57
58
58



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figurs
Figure
Figure
Figure

Figure

Figure

Figure

Figure

L4
45
46
47
48
&9
50
51
52
53
54,
55
56

57

58

59

- vi -

Hardness Contours =~ Specimen Neo. 2, Plate 22-1K,
Hardness Contours - Specimen Vo, 3, Plate 22-1K.
Hardness Contours ~ Speeimen No. 4, Plate 22-1K.
Hardness Contours - Specimen Ne. 5, Plate 22-1K,
Photograph of Plate N=-1«A,

Line Drawing of Plate N=-1l-4.

Bardness Contours - Specimen Mo, 1, Plate N-l-4,
Hardness Contours - Specimen No. 2, Plate N-1-A.
Hardness Contours =~ Specimen No. 3, Plate N~-1-A.
Hardness Contours - Specimen No, 4, Plate N-1-A,
Deformation Twins in Steel C, Nital Eteh x 600,
Strain Lines in Steel Dr. Nital Etch x 600

The Fracture for Specimen No, 4 Plate 22-1K
showing Deformation Twins and Transition from
Erittle to Duetile Failure. Nital Etch x 500.
The Fracture for Specimen No, 5 Plate 22-1X
showing Brittle cracks of inter-and intra-granular
types. Nital Etch x 500,

Another Region for Specimens Fo. 5 Plate 22-1K.
Kital Eteh x 500, |

Character of the Fracture in Specimen FNo. 4

Plate 22-1K. Nital Eteh x 500,

60
61
62

63
63
&
65
66
67

68

69

70



L PURPOSE,

The purpose of this investigation was to determine the characteristics of

the strain'gradientfét‘britﬁle fractures and at ducfilé fractures.,

e AR T L O A

Ll ENJIUDULLIUN

A-Continuity

In the Progress Repor{:1 of Séptember 15, 1946 it was indicated that a
report was being prepared relating to the study of stfain grédients 88 re-
; he rious levels of
energy absorbtion. Thig initial work has been expanded to include (1) compar-
able tests on large fractufe§ plates (2) X-Ray analyses of strain at fractured

surfaces and (3) metallographic examination of fractured sections. A1l of the

- above work is reported here,

B - Theory

In attempting to rationalize the difference bétween brittle and ductile
behavior in steel, it has been suggested that importent information might be
gained by an extensive study of strain gradients normal to the fracture sur-
face, This suggestion is based on two facts (1) o ductile fracture is
assoclated with a much higher energy abmorption than & brittle fracture and
(2) the intensity and extent of plastic strain are indjces of the energy
absorption. Thus a study based on fact (2) could concgivably providerﬁata to
explain fact (1), which is
Since it is known that the energy absorbed by plawmtic straining increases

with both the volume of strained metal ahd‘thé intensity of the strain, it

(1) = Numbers refer to items in Bibliography
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follows that brittle behavior, as coﬁ%rasteédwith ductile behavior, must be
‘associated with either (1) a smaller voluiné of strained metal or (2) lower
strain intemsity. Figure 1 schematically i}lustrates these two possible differ-
ences between ductile end brittle fractures.

In Figure 1(2), the straiﬂ‘infeﬁeifﬁhef‘ﬁhe fracture surface is repre=
sented as being constant for all fractures, brittle and ductile, But the
ductile fracture is represented by the gradual strain gradient, and will, there-
fore, be associated with & large volume of strained metal and consequently :
steep
strain gfedieht and will, therefore, be associated with a small volume  of

" streined metal and consequently a smell energy absorption, Thus Figure 1(a)

illustrates alternative (1) above. Alternative (2) is illustrated by Figure 1{v).

Here, the strain intensity at the fracture surface is represented as being high
for ductile fractures and low for brittle fractures, Since energy absorption
increases w1th 1nten51ty of plastlc strain, it follows that the fracture T
associated with high streln intenS1ty will absorb a large amOLnt of energy and
will be ductile, while the fracture aSSOclated w1th the low strain inten31ty
.iergv rnd ”_ll be brlttle. | |

(Figure‘ (and the subseeuent data of thls repoff aseume efraiﬂ £o be &
11near functlon of hardness. Whlle thls is not strictly true, it is & satls-
factory approximatlon, and straln gradlents are represented in this report by

hardness gradients)..

C_- Historical
The extent of plastic strain in the impact test has been studied by

Sauerwald and Wielandz, loser> and others® 5+ 6, Reviews of the notch impact
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test have been made by Fettweiss7 and MacGregor and Fisherg. A study of these
works reveals the followings

(1) Wo extensive analysis of straining hos been undertaken by methods
of high sensitivity. Thus details zbout the volume of strained metal
may have escaped detection,

(2) No corrclated analysis of the volume of strained metal developed at

various points in the transition region has been published. This is

|

The present work is intended to supply data on both of these points.

D_- Facts Bearing on the Problem
Due to the character of matter, any substance, to a greater or less extent,

1T Smatansasa Af A4 Prana
odeade L AIMD WLERhdA L] o e ek ke e Sl

-
-
£ .

tion, the same fundamental factors are operative, but optimum‘éénditions obtain
when tne material to be investigated hgg a well developed space lattice, When
such is the case, and disregarding the effects of grain size, well defined maxima
in the diffraction spectra ariée for a given type of space lattice at rigor-
ously defined diffraction angles. Many factors contribute to the final appear-
ance of the individual speétral lines, but those factors which alter the appear-
ance of a given line as a function of plastic strain are somewhat limited. This
would serve to decrease the uncertainty in the evaluation of a given pattern
except that, unfortunate
tained as existing between any of the factors measured and the degree of plastic
strain. For instance, the obtaining of diffused lines which is frequently

taken as indicating a state of plastic strain can result from chemicel composi=

tion gradients, elastic strain gradients, particle size and, certainly not leas?t
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important, external geometry of the diffracting surface. In the examination
of a fracture surface this last factor may be a most imﬁortant factor, which
usually cannot be modified, The effects of elastic strain gradients are most
certainly present in a plastically deformed metal, while particle size may well

be important,

E - Personnel

The staff participating in this work consisted of:

LT o oy - gy 2mrnl Dasrseaawmd
JUFS U'Ullbulﬂt‘.'i’ J.Ub.lu-l..l.bu.l. nepresent

E, Po Klier Investigator

Js L, Fisher Investigator
F.C.Wagner Investigator
J,0:Mack Investigator
M.,A.Bishop Rescarch Assistant
Selma Krause Drafting

Mina Moecssen Technical Labor

P,Vonada Technical Labor
H, Colver Technical Labor
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111 NATERIALS
Detailed information on the stecls used will be found in earlier reportsl’gﬂ
Chemical analyses are contained in Table I,
Three sections of 72-inch wide plates which had been broken by the center
noteh tensile test in the course éf previous investigation39 are shown by

Figures 35, 41 and 48, Specimens from these piates were used for hardness

contour surveys.

LV METHOD OF TEST
A-Hardness
Standard LH {longitudinal specimens with the notch perpendicular to the
plate surface) V-notch Charpy bars were broken at temperatures selected to -

cover the cntire transition zone. Temperatures, cnergies and fracture



After fracturing, the bars were nickel plated to preserve the fracture
surface and wers sectioned on the center plane perpendicular to the notch,

The half specimens were next mounted in a plastic whigh set at room temperature,
and were polished. Finally, a regular pattern of indentations was made on the
polished surface using a Vickers diemond and a 100C g, load on a Tukon hard-
ness testing machiné; Preliminary tests had shown that these conditions of
test would eliminate any effects of grain orient:
approach to the fracture closer than 0,01 inches. This degree of sensitivity
lis adequate to reveal macroscopic detail of the strein gradient. Preparation
.qnd testing of specimens from the large fractured plates was done in like
_WANneT,

These hardness data wers plotted on a scaled likeness of the specimens
and lines connecting points of equal hardness were drawn. This process gave
a hardness contour map and, consequently, an approximate strain contour map.
In order to ferﬁit reﬁresentation of thélhérdness'gradient in a more easily
‘visualized manner, the linear hardness gradients at the bagse of the ﬁotch aﬁd
" at a point midway through the fracture, were determined and plotted,

l'Three Charpy'specimens of'éteel C were tested in thé conventional mahner
except that the hammer wes not raised to its full height, but rather to a
height insufficient to cause complete fracture of the bars. The hommer re-
bounded after striking the baf, but was arrested before it could strike theA

bar a second time, - Conditions of test were as follows:



Temperature F 212 | 212 212

X, B, of Hommer 13 34 54

Bend Angle ‘ 9° 22O 38° )
‘Crack None Very Shallow 1/3 through Bar

‘These specimens were sectioned, mounted, polished and tested as described above.

B-lietcllography

Microsections were made of all specimens, and photomicrographs of the impact
specimens were taken at the notch, midway through the bar and at the back side.
Microstructursl evidence of Neumann Bands, strain lines and grain deformation

was observed and recorded.

C=X~Roy Analysis

Specimens of steel C representing the virgiﬁ metal, a1Bfittlé frdcture sur-
face and ductile fragture surfeces were used. In order to insure a clean and
complete break at thé‘ffactﬁre éﬁrfaces; the Schnadt type Bar:ﬁas used and was

broken by the slow bend techniQﬁé. A Sachs type camera with both cassette and

V = BRESULTS AND DISCUSSION

A = X-Ray Tests
The X-ray date are presented in Figure 2, Pattern (a) is for the virgin

g to two llnes
L~}

[=

n

the pattern 0(1 ando(z), These lines are typical and are usoed as reference
lines. Patterns (b), {c), (d), and (e) were token on ductile fracture surfaces.
From the lack of resolution of the doublet it may be stated that extensive strain

exists at the fracturs surfsce. Finally in pattern (f), taken on a brittle
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fracture surface, the doublet is resolved as in pattern (a)., This means that
the strain, if it exists for the brittle froeture, was inéufficient to be picked
up by this X«ray diffraction technique. Since it is estimated thot the X-ray
procedure used will reverl = étrain gradient of 0001 irch thickness, it is
indiceted that a strain gradient, if it exists adjacent to the brittle fracture
surface, must be no thicker than 04,0001 inch. A gredient of this exteut could,
under no circumstences, lead to high energy absorption in its development. From
this it follows that for practical pufposes, the strain gradient construction
presented in Figure 1b conforms witl tle erperimental results,

Additional information in terms of metallographic data pertain to this point.
Thus, in Figure 3, the fracture surface is typical of a ductile failure. The
metallographic structure shows a highly torn and deformed zone at the fracture
edge. This zone appears to be of the order of .01 inch thick. This region
rapidly passes into a zone of much lower plastic straig, a éone, however, in
which plastic strain is still appreciable, as indicated by the distorted grains.
«In Figure 4 the fracture presented is o brittle fracture. There is no evidonee
of plastiec strain aééoﬁp;nying this frocture. The metallograpﬁic date, there-
fore, are in full agreement with the X-ray data for the conéjdération of tﬁe
"ideal" brittle and ductile typos of failure. Additional data éoncerning the -
metallography §f whaftmighﬁ be eonsidered intermediate types of faillure arc |
presented in subsequént sections, “

The Xeray and metailographic data which have been presented argﬁo against
acceptande .of the strain gradient type precsented in Figure la. Bf elimination
the strain gradient type presénted in Figure lb appears to describe the condi-

tions at the fraocture surface,
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BsHardness Gradients of Broken Charpy Bars
Hardness gradient data are presented in Figures 5 to 8 and 12 to 34, in
the forme of contour maps and linear gradients at the notch and at the center
of the Charpy specimens, These data will be considered in groups bhased on sim-
ilarity of energy absorption and position in the transition zone.
Group 1 - Low Energy Absorption, (&7 ft, lbs.) Figures 5,6,7, and 8, The

specimen of steel C ( Figures 5 and 6) with an energy absorption of 3 ft. 1lbs,

would be considered "100% granular® by conventional usage, The hardness contour

indicates very slight strains at the notch and under the tup, but the crack
itself was not accompanied by strain which was d#iscernible by the hardness meas-
uring technigque used. These same remarks apply to the specimen of steel E
(Figures 7 and 8), with the exceptions that this fracture. showed slightly more
shear under the tup and greater strain at this location. Phetomierographs of
this spe¢imen ( Pigures 9, 10,.and 11) are in agreement with the hardness data,

It 1s evident that the crack in this specimen was completed before the major

. ‘part of the straiming occurred. This follows from the fact that it would not be

“pbssible to stidin an.uncracked specimen at the tup without causing a ccrresponds

ing strain at the notch, Hence, most of the strain at the tup must have resulted
from bending of the specimen after completion of the brittle portion of the crack.
Group 2 - Medium Low Energy Absorption {10-16 ft. lbs.) Figures 12-17. - The
hardness contours of this group are similar to those of group 1 with the excep-
tion the strain at the notch and the tup is greatsr, and consequently the length
of the brittle erack through unstraihed metal is shorter, The same.analysis of
straining prior to, and after, formation of the brittle crack applies. Notice

that the brittle portion of the crack is still not zecompanied.by a macrescopic

strain gradient.
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Group 3 ~ Medium High Energy Absorption (27.5 = 54.0 ft, 1lbs.) Figures
18-25, The hardness comtours of this group are simiiar to those of groups 1
and 2 with the exceptions that the zones of strain at the notch and the tup
are still greater and are extended suffieicntly, at 450 to the specimen axis,
to contact each other benesth the crack. (e.g. Figure 18)., There still exisﬁ
regions of brittle fracture, however, showing n9_mac;oscopic strain gradient,
with the possible exceptions of ecurves B in Figures 16 and 23, These slight
strain gradients likely result from the appreciable bonding which occurred-prior
to the formstion of the erack rather thean from a mechanism accompaning the
brittle crack. Note the marked rise of the B curves, which obviously reflects
13 v\d +un -

Group 4 - High Encrgy Absorption {»70 f£t., 1bs,.) Figures 26-3_1e These
fractures were fully ductile ones. The hardness contours show that the region
of no strain at the center of the bars has vanished, However, the_intensity‘of
the s*train at the center of the bars is still much lower thén it is near the
notch and tup.

These strain gradient studies of broken Charpy bars lead to three observn;
tionss

a - A ductilé crack in a Charpy ber is not accompanied by a distinetive
and uniior@ macroscopic strain gradient, for if it Wefe, the & and B curves of
the totelly dﬁctile fractures would bc alike,

| b - A brittle erack in a Charpy bar can be propagated through either strain-’
free,lér glightly étrained material, without imposition of o macroscopic strain

gradieﬁf. | |

¢ - The macrosconic strain grédiénts of a broken Charpy bar largely refleds
the atrain resﬁlting from bending actions rather than any crack propagation

phenomena.
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C-Hardness Contours of Bent Charpy Bars
" .The hardness contours of the three Charpﬁ'ssrs whish were struck by a
Charpy hammor possessing energy inSufficiésﬁ to cause complete fracture are
shown in Figures 32, 33, and 34,
Figure 32'illustrates'the'disfribution of.the strain priocr to crack forma-
. tion for conditions of test under which ductile fractufs sould occur if energy
“sufficicnt to effect fracture were availabls. Notice the stesp strain gradient
- mder the noteh and, to a lesscr degree, at the tup, and the strain free metﬁl
- near-to the neutral axis,
‘Figure 33 differs from Figure 32 in degree Snly with the exception that a
shallow ductile crack extends from the notch. |

In Figure 34, the béhding action has pfoceeﬁed sufficiently to cause strain

i}
(=4

t the center of the bar, and the ductile crack is extonded further into the
material strained by bendlng. The strain distribution and intensity resemble
those of Figure 28, which represcnts the same steel testod at the same tempera=

ture but with energy which was sufficient to cause total fracture.

_in Large Fracturcd Plates.

It is ev1dont, from results prescnted above, that the strain gradients in
-broken Charpy bsrs ere largely reflections of the amount of bending prior and
subsequent to the formation of the crack. Consequently, it was realized early
in the course of_this investigation that fractures which had occurred ﬁnder the
action of.tshsile forces only should be included in the sirain gradient studies.

For this reason, gpecimens from 72~inch wide plates, which had been fractured

[l

n the center noteh tensile test, were examined,

Plate C-3 will be considered first. From the chevron marks (Figure 35)
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it is evident thet thls plate failed with a "brittle" crack terminating at the
notch., Figure 36 indicates orientstions and locations of the hardness survey
specimens. Figures 37-40 show the hardness contoﬁrs,'from which two significant
obaarvetions can be made:

(1) Some portions of this "brittle" ereck arc not accoupanied by 5 dis~-
cernible macroscopic strain gradient,i.e., the base hardness of the plate ex-
tends unchanged to the crack surface,

(2) Some portions of this "brittle" crack are accompaniedt by fairly steep
and shallow strainlgradients, which can occur in the-conter of the plate (e.g.
Figure 39) but vhich are especially marked at the plate surface (e.g. Figurc 40).

Thesc obscrved facts compel the conclusion that tﬁose lncations oﬁ the
crack which are unsccompanied by a strain gradient were éracks indeed prior to
the separation of the material at those locations on the crack which arc accom-
panied by a strain gradient. The most obvious of the possible'explanations for
this marked varintion in the strain gradients at differcnt locations on the
seme "brittle" crack is that the reduced constraint reéulting from the érowth'
of the crack allowed appreciable plastic strain at the ioéations which were
last to separatc, But in any event, these specimens indicate that o creck,
which would be classificd as "brittlce™ by conventional criferia, may or may not
be accompanied by a macroscopic strain gradient.

Plate 22-1K is shown in line_dr;wing by Figure 42. From its photograph,
TFigure 41, it is cvident that the crack was "ductils" from the notch to the
locetion of spoeimen No. 4, thence "brittle" to the pldte odge., With the addi-
tional observation that the ductile portions of this crack show the expected
strain gradient, (Figures 43-47) the remorks pertaining to plate previously

discussed apply.
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Plate N-1-A is shown in line drawing by Figure 48, TFrom its photograph,

Figure 48, it is evident that the crack originated at the notch and extended
in the "ductile" modc for approximately 1/2 inch before changing to the "brittle"
mode. Tt should be noted’ thot this plate was umusual in that it absorbed
approximately 1/3 of the maximum energy observed for a totaliy Tduetile" sﬁeci-
ﬁén of the same materiél. The stréin grédients of those specimens near the
' noteh, Figures 50, 51, and 52, closél& resemble findiﬁgs from-fhe previous two
- plates. Figure 53, however, which represcnts “bfittle“ behavior, differs
markedl& from the other ¥brittle" contours in its demonstration of dofinite and
ﬁniférmly de&eléped ﬁueroscopic strainrgradient. In this respect, Figure 53 is
nét.unlike previously discussed contour mops wﬁich repreéeft “ductiie“ behavior
'(cf. Flgurc 43), with tho exceptlon that the gradient slope does not sharply
“_ngrecse in st.ecpnesq near to t_h_ fracture, It is suggested that the "hrittle
gradlent" of Flgure 53 might be related to the unusually high energy qbscrptlon,
in that it covld be reflecting generul stralnlng in a zone betwecn the notch
and the platc edge rathcr than @ strain 1nc1dontnl to, or necessary for, propa-

gation of the crack.

E -= dMetollogihaphy -

Results .of metallographic examination are prosented in Tables 2 and 3,
and in Figuvres 3, 9 to 11, and 54 to 59,

In the fables, fracture types arc listed as "brittle," "ductile," and
Tprittle-ductile,® The last mentioned designation indicates uncertainty as to
the type of behavior. ‘It should be emphnsized that these classifications are
based .on metallographic data only.

Figures ¢, 10, and 11, respectively, 1llustrate the microstructuros of

sdetions which intersect the crack at the basc of the notch, midway through the
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bar and at the back of the bar, of a "brittle" specimen (steel E s 360E.). The
strain gradients of this specimen are'represented by Figures 7 end 8, It can
be seen that the hardness date and microstructures are in agreement, with the
oxception thaet microstructure (Figure 9) shows evidence of considerable plastic

strain in a vory restricted zone at the base of the noteh, which strain is not

evident in the hardness contour
reflecté the greater gsensitivity of metallographic examination, as compared with
the hardness tests, and strongly suggests that the strain gradients at ductdile
fractures are actunlly much steeper ond reach much higher strgin volues very
~ near {£ 0,01") to the erack surfree thon is indiecated by the hnrdness contours.
Figure 10 clearly demonsfrates the total lack of any metallographic manifesta=
tions of strain ot a clean cleavage separation.

Figufes 54 and 55, respectively illusirate deformation twins and strain

1lines, not necessarily typiecal, occourring in broken Charpy bars,

changodf;om<the’"ductile" to the "brittle" mode. Wote the typlcal evidence
6; éﬁ ﬁpbpééi;ble strain gradiepthqdjacent‘to the ductile_part and the clean,
strain-freé cleavagé adjacent t6 the Brittle part of the crack,
Figure 57 represents a "brittle" location of the crack in plate 22-1-K.
The previously mentioned characteristics of o cleavage fracturd arc illustrated,
Wote also the typical trans~-crystalline path, which is interrupted by a very
short inter-crystalline separation at the pearlite grain near crack midpoint,
Figurc 58 1llustrates the cbove mentioned characteristics of a cleovage
erack and in addition, revenls intercsting behavior of the orack in the ferrité
grain near its midpoint. Notice how the crack branch wns arrceted within the

ferrite gruin,
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. Figure 59 prepresents a cleavage crack. Of interest.is the deformation

of the ferrite fragments which evidently suffsred considerable strain,

although the crack caused no discernible strain in the main body of the ferrite

or pearlite grains.

1 -

i

i-X-ray or metallographlc tests.'

: 2.—-.

VI GONGLUSIONS
| The straln gradlent at some locatiors on any “brittle“ crack, if it

exlsts indeed is so reetrlcted as to depth that it is not deTectable by

<¢\

The strain gradients at some locatlons on moeﬂ “brlttle" cracks is

' not characterlstlcally different frOm the straln gradients of & riductlle"

3..

4 “..

RIS

crack.

LT
5

Fractures which would be classified as "br1t+le“ by conventaonel usage,
esg., tw'gnss eppearance, generally dlsplay both of the above two types of

Straln gradlents.
et ~ . .
Flgure 1(b) schematlcally represents the dlixerence between separa-
oy Tt

tion by shear and separation by cleavage with respect to straln gradlents,

except that the crogs=hatched area should be 1mmeaqurably small.
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Fracture Phenomena in Charpy - V-Notch Test Bars -

Frzeture Type and Location -

Steel Test _ E.A.'# ° "Noteh
Temp, F .o

Dr -0 10 - .BY
Dr -9 27.5 e
Dr 18 46.5 D
Dr 52 20.5 D
c -30 3 B
c 25 34 D
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Fracture Phenomena in Large Plate Specimens

Spec. Temp. °F Fracture Type & Location6 Deformation Structure & Location
1. 2. 3. 3, 2. 3.

wa(1)° ~55 pt D D » _ .
NIA(2) %o D D ) A S.L. L.
FTA(3) -51 D D D
WIA(ZL) 52 B 0 - — -
¢-3(1) 101 B B B-D . . S.L.
c=3(2) to B B B _ 1.8.% & S.L.(r) N.B.
C~3(3) 104 B B B-D _ H.B. = M.B, & S.L.(r)
C-3(4) B B B .1, W.Bo S. 5. |
22-1K(1) D D D 5.1, S.L. S.La.
22-1K(2} D D D S.L. S.L. S.L.
22-1K( 3} D B~D B-D S.Le 4 -
22-1K(4) B~-D B B S.L.(1) Tears
22-1K(5) B B B . _ ¥.B.

1 -D = Ductile

2 - B = Brittle

3 = 8,1, = Strain Lines

PR L.(r) Strain Lines highly restrlcted

5 - N,B., = Neumann bands (deformation twins

6 - Specimen number and location may be taken from appropriate :

line drawing (figures 35,42, arnd 49). Locations 1, 2, and

3 are left, center and right portions offtransverse specimens
looking in direction of crack propagation; they denote left,
center and right portions of longltudlnal specimens with the
notch to the left.

..-8'[-
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Fig. 8 - X~ray Petterns Steel A
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Fig, 3 - The Frecture Midway Through the Specimen Bteel Dr.
This te & fully ductile specimen. (Cf. Fig. 26 & 27)
Nital Etch x 600,
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Fracture Midway Through the Specimen 8teel C.
is a fully brittle specimen, (Cf. Fig. 5 & E€)
Etch x 600,



120+

IR0+

0.0

~/18

w7

O;z

5

/

3.5

Wits

195

0./

J
0.2

DPH CONTOURS

11145

WA

v 1195

CH/oas

WIDTH-INCHES

ENERGY ABSORPTION

FIG. §
STEEL C

V=-NOTCH SPECIMEN
TESTED AT -22°F
3 FT.-LBS.

O /0=

ola 014

€C



DPH—-IKG LOAD

220

200

180

160

140

I20

100

FIG. &

V-NOTCH SPECIMEN

TESTED AT —22 °F

HARDNESS GRADIENT STEEL C

ENERGY ABSORPTION 3 FT -LBS,

CURVE A

DEPTH BELOW FRACTURE -INCHES

0.2



25

=R 2
Q
S

S3IAHONI-HLJIM

€0 20 10

toL]
oc/

./

¥

N

\O —_—

Q9
\
NEE

.

o

¥ ©

X N

<
N
by
o
)
3
P

I

]
@

S

‘ $02l -02/{ )+0¢/0 92/
. _ \QM\!/\
09/ g -ozr 62/ % LOE/ Rﬂw. \‘—/
e~ O % £
\').ll./ 0270 -0/ O a/w ﬁv\
I/\/\.rla\/\/.l.\l/\

‘Sg81-14d L NOILJYOSEY ADHINS a v

40 9€ 1V 431531
N3NID3dS HOLON-A

3 7334S SHYNOLNQD HAJ
£L Old



DPH-IKG LOAD

220

200

180

160

140

120

|00

26

FIG. 8

HARDNESS GRADIENT
V-NOTCH SPECIMEN
TESTED AT 36 °F
ENERGY ABSORPTION 7 FT.-LBS.

STEEL E

CURVE A |
/ // h\o

. O\\°J—‘374\°
\\
~NCURVE B o

Q.1

0.2

DEPTH BELOW FRACTURE —INCHES



27

Fig. 9 - The Character of the Fracture at the Base of tihe
Notch Steel E. (Cf. Fig. 7 & 8). Nital Etch x 600,
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Fig, 10 - The Fracture Midway Through the Specimen Steel E,
(¢cf. Fig. 7 & 8). Nital Etch x 600.



Fig. 11 - The Frecture at the back of the Specimen Steel E,
(cf. Fig. 7 & 8). Nital Etch x 80C.
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FIG. 17
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FIG. |9
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FLATE €-3
LOCATION OF SPECIMENS

T i -— FRACTURE— -y

S

———— ——18 S/Bf_—E-u———-—r-

@

-t —5 % i

D —

-~ 36 ~—%

NOTE A SPEC 1,23 TESTED ON PLANE PARALLEL TO PLANE OF PLATE, AY
If2 THICKNESS
A SPEIC 4 TESTED ON PLANE. PERPENDICULAR TO PLANE OF PLATE.

Fig. 36 - Line Drawing of Plate C-3,
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Fig, 37 - Hardness Contours — Specimen No. 1, Plate C-3.
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Fig. 38 - Hardness Contours
Specimen No. 2, Plate C-3
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"Fig. 39 = Hardness Contours
Specimen No. 3, Plate C-3
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DPH CONTOURS
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SPEC NG4
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Fig. 40 - Hardness Contours
Specimen No. 4, Plate C=3



Fig. 41 - Photogreph of Plate 22-1K.
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PLATE 22 - IK
LOCATION OF SPECIMENS

—.-— BRITTLE FRACTURE ———

e CYT ————+ e DUCTILE e
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NOTE: A SPEC. {345 TESTED ON PLANE PARALLEL TO PLANE OF PLATE,
AT 1f2 THICKNESS.

8 SPEC. 2 TESTED ON APLANME PIRPENDICULAR TO PLANE OF PLATE,

Fig. 42 - Line Drawing of Plate 22-1K,
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Fig. 43 = Hardness Contours
Specimen No, 1, Plate 22-1K.
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Fig. 44 = Hardness Contours
Specimen No, 2, Plate 22-1K,
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Fig., 45 - Hardness Contours
Specimen No. 3, Plate 22-1K,
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C.P.H CONTOURS
| KG. LoD
PLATE 22-1K
SPEC. NO4
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Fig. 46 - Hardness Contours
Specimen No., 4, Plate 22-1K.,
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wig. 47 - Hardness Contours
Specimen No., 5, Plate 22-1K.
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NOTE: A

Fig.

SPEC. 1,3,4, TESTED ON PLANE PARALLEL TO PLANE OF PLATE,
AT 1/2 THICKNESS

SPEC. 2 TESTED ON PLANE PERPENDICULAR TC PLANE OF PLATE.

THE FRACTURAE I3 OF DUCTILE NATWRE FOR APPROXIMATELY /2"
FROW CUT. BALANCE BRITTLE.

49 = Line Drawing of Plate N-l-A.
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Fig. 50 - Hardness Contours
Specimen No, 1, Plate N-1-A
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Fig. 51 - Hardness Contours
Specimen No. 2, Plate N-1-A
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Fig, 52 « Hardness Contours
Specimen No. 3, Plate N-1-A
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Fig. 53 - Hardness Contours
Specimen No. 4, Plate N-l-A
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Fig. 54 - Deformation Twins in S8teel C, Nitel Etch x 600,
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Fig, 55 - 8train Lines in Steel Dr. Nitel Etch x 600.
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Fig. 57 - The Fracture for Specimen No, 5 Plate 22-1K showing Brittle Cracks
of inteér-end intra-granular types. Nitael Etch x 500
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Fig, 58 - Another Region for Specimens No, 5 Plate 22-1K.
Nital Etch x £00
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Fig, 59 - Character of the Fracture in Specimen No. 4
Plate 22-1K. Nitel Etch x 500.



