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~ ABSTRACT

Strains and displacements in the plastically
yielded region generated ahead of a machined notch and
a crack were detected with an interferometric technique.
The measurements were performed on-Fe-35i steel sheets
after unloading and reflect local yielding under plane
stress conditions. The results show that notch acuity
within the limits examined has little effect on the
strain-distribution. Measured displacements are qual-
itatively in accord with the theoretical expectations
of the DM (Dugdale-Muskhelishvili) model. Quantitative
agreement is not obtained and this is attributed to work
hardening and the Bauschinger effect, complications
that are neglected in the calculation. The work also
draws attention to a parameter -- the width of the
plastic zone at half maximum strain -- useful for
connecting displacement with maximum strain.
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INTRODUCTION

Crack extension in metal sheets and plates is usually preceded by local-
ized yielding and plastic flow. The character of the flow within the plastic zone
is important because it influences the stresses and strains generated near the
crack tip and, in this way, modifies the conditions for crack extension. Recent

studies of an Fe-35i steel by the authors(l’z)

, exploiting an etching technique,
have revealed the three-dimensional shape of plastic zomes. As shown in Figure 1,
the plastic zones consist of two intersecting regions of shear that are

wedge-shaped and inclined at 45° to the tension axis. This type of relaxation is

observed when the length of the plastic zome is substantially greater than the

13.5X

13. 5%
a. Schematic c. Sheet Midsection

FPig. 1. Views of the Plastic Zone Generated under Plane Stress Conditions
(Fe-351 Steel, t=0.128 in., T/¥=0.80): Plastic Zones Revealed by
Etcehing Sheet Surface (b) and the Sheet Midsection (c).
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plate thickness.t Since the regions of shear completely penetrate the plate,
relaxation through the thickness direction is not constrained, o, ~ 0, and a
state approaching plane stress prevails.

Under these conditioms, the DM (Dugdale-Muskhelishvili) model(l_B) --
crack with a single non-inclined wedge-shaped plastic zone -- simulates the local
stress-strain enviroomment. The model offers mathematical expressions of the
plastic-zone length, the crack=-tip displacement, and the (ductile) crack-extension
stress. These have been tested in some instances, and are in reasonmable accord
with experiment. However, more data are needed to establish the generality of the
model and define its limitations. This paper presents more-complete displacement

(1)

measurements than have been reported previously. The measurements are similar

to those of Bateman, et 31(4), on aluminum alloys. However, both their results

(5)

and those of Dixon and Strannigan reflect local yielding with a strong planpe
strain component and are not comparable with the DM model. The present results

agree qualitatively with the DM predictions, and are roughly within a factor of 2

of calculated values. In part, the deviations stem from work hardening and the
Bauschinger effect -- complications which are not taken into account in the present

calculations.

EXPERIMENTS AND CATCUIATIONS -

The experiments were performed on annealed Fe-3Si steel¥ (Lower yield
stress 62,400 psi) in the form of rectangular coupons (8 inches long by 2.5 inches
wide) in 3 thicknesses: 0.200, 0.058, and 0.017 inch. The test coupons were pre-
pared with two centrally located edge motches, either a 1/4-inch-long x 0.006-inch-

wide machined slot or a 1/4-inch-long fatique erack. The notched coupons were then

T

o | -1
+ When %-> 4 (sec 2y " 1) where 2c is the crack length, t is the plate thick-
’ ness, T is the net section stress, and Y is the

yield stress of the material.
% This méteriai, which was selected because of its unique etching characteristics,
displays a_ stress-strain curve whose shape is very similar to plain carbon
stee1.¥1’2)
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Fig. 2. Interferometric Fringe Pattern of a Plastic

Zone in Machine-Notched Fe-35i Sample (t=0.058in.,
T/¥=0.78).
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a. Machine Slotted b. Machine Slotted

10 X
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c. Fatigue Cracked d. Fatigue Cracked

Fig. 3.

Influence of Notch Acuity on the Strain Distribution in the
Plastic Zone (Fe-38i Steel, t=0.050 in., T/¥=0.78): Plastic
Zone (a and ¢) Revealed by Etching, and Transverse Strain Field
(e;) (b and d) Derived from Interferometric Fringe Pattern.
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slowly loaded to various peak loads in a tensile-testing machine. This load was
maintained for 4 minutes and then gradually releagsed. Stress levels are reported
either as T, the net section stress, or as T/Y, the ratio of net section stress to
yield stress.
After unloading, residual strainst normal to the sheet surface (e;, see
Figure la) were detected and recorded with the aid of an interference micro-
scope.cl) An example of an interferometric fringe pattern is reproduced in
Figure 2. The iso-strain contours derived from typical fringe patterns are shown
in Figure 3. These contours reflect the residual transverse-strain field
e; (z =0) . A series of vertical sections through the strain field (see Figure
3a) are presented in Figure 4. To the extent that the plastic deformation is con-
fined to shear within the 45°-inclined wedge and is large compared with the
elastic strains, the approximations e; e e; and e; ~ 0 are valid. In that case,
v;, the residual displacement in the longitudinal direction (arising from plastic

deformation within the zone) can be obtained from the interferometric measurements

of the transverse strain:
v =-1/2 [ezay . &)

The quantity v; is important because it is defined by the DM model, and thus
serves as a link between theory and experiment. The value of v; at any distance
(x-¢) from the crack tip is simply 1/2 the area under the appropriate e; - y curve

of the type shown in Figure 4. The value of v;(X c) E‘v; is referred to as the

residual crack-tip displacement.

The simple DM formulations describe a crack under load; expressions for
vy and v, are given in the Appendix. However, the theory can be extended to take

into account the relaxations accompanying unloading. If this is accomplished by

t To differentiate between "on-load" values of strain and displacement, and the
residual values ex1st1ng'after the load is released, the latter are designated by

prime marks, i.e., €,, Vys Voo The change in dlsplacement during unloading is
denoted by a double prime mark, i.e., v = v-v .
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removing the stress singularity at the plastic-zone tip, then:

Longitudinal
Sections A, A',
B, C, D, and E
[see Figures 3(b)
and 3(d)] Through
the Transverse
Strain Field.
Note: Different
Origing used in
Order to Separate
Curves.

v, = 1/4 v, (2)
at low values of the applied stress.(l) An alternate derivation by Hult and
McClintock(G) -- more consistent with the superposition principle -- removes the
singularity at the crack tip. The calculation, recently discussed by'Rice(S) and
outlined in the Appendix, describes the entire displacement gradient. It yields
larger residual values; at low stresses,

v, = 1/2 v, 3)
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Experimental support for Equation (3) has been reported in austenitic steel and

(5)

copper by Dixon and Strannigan

(%)

under conditions of plane strain and by Bateman,

et al* ™, in aluminum under conditions of mixed plane strain and plane stress.

(5)

Dixon and Stramnigan's results on brass (v;;a 1/6 vc) are closer to the pre-
diction of Equation (2).

In addition to displacement, it is important to know the strains within
the plastic zone and particularly at the crack tip, since any criterion for ductile
fracture is likely to be phrased in terms of the local strain. Strain values can
be calculated from the width and cross section of the plastic zone., A simple model
representing the cross section of the zone as a double trapezoid has been described
by Rosenfield, et al‘?). They have shown that

_ 4y

€ —EZ s (4)
where € is the maximum value of true strain at any distance (x~c), y > 0 from the
crack tip, v is the displacement at that point, and d is the zone width. As a
practical matter, it is often inconvenient to measure d, since the zone boundary
is not sharp. The problem is further complicated if the sample bends. For sym-
metrical zones such as observed in Fe-38i, it is more convenient to measure §, the

width of the zone at half-maximum tramsverse strain., According to the earlier

4

2 and Equation (4) becomes

model, & =

ZH"’T" ] (5)

Other descriptions of the zone cross section lead to about the same numerical term
of Equation (5). For example, use of a Gaussian curve will change the numerical

factor in Equation (5) from 2.0 to 1.89.

RESULTS AND DISCUSSION

Results obtained for the fatigue crack and the more blunt machined slot
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are summarized in Figures & to 8. Both the etch patterns (Figure 3) and the inter-
ferometric measurements show that the two notches generate plastic zones nearly
identical, in terms of shape, size, and the strain distributiom within. Some
differences in the strain distribution persist at distances very close to the
notch root, e.g., distances éomparable with the notch root radius. Unless the
notch is very blunt, this region will not interact with the 45°-inclined wedges.

It seems likely that the shear within the 45°-inclined wedges is crucial in ductile
crack extenmsion. Consequently, if the results obtained here are general, then
notch acuity (within the limitation mentioned) may have only a minor effect on
crack extension under plane stress.

Figures 5 and 6 illustrate that the residuai displacement gradients and
crack-tip values are qualitatively in accord with the DM model. The residual
crack-tip values (Figure 7) are described very well by Equation (2), as found
previously(l), and while this expression is therefore useful, the agreement is
probably fortuitous. A closer examination of the problem reveals four complicat-
ing features which lead to an overestimation of v; by the calculations and an
underestimation by the measurements:

1. Work Hardening. The present calculations do not take into account the
work hardening accompanying plastic deformation., Work hardening alone, in the
absence of a Bauschinger effect, progressively increases the resistance to flow
within the zone both during the loading and the unloading cycle. This has the
effect of reducing plastic-zone length and the displacement values Vy and v;'.

In this way, work hardening can account fo?_large discrepancies mnear the plastic-
zone tip (see Figures 5 and 6). Its effect near the crack tip is difficult to
evaluate because the residual value is the difference of the two diminished dis-
placements, vi=v v’

y y ¥y
2. Bauschinger Effect. Another complication neglected in the calculations

is the Bauschinger effect, whereby the resistance to flow is diminished after a

revergal of the loading. In the face of a Bauschinger effect, the calculations
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overestimate the value of Y appropriate for the unloading cycle, underestimate

v;' (see Equation A-5), and thus overestimate v .

3. Residual Stresses. One of the assumptions implicit in the DM model is

that the material within the plastic zone is rigid plastic. Calculated values of
vy, v;',.and v; reflect only those displacements arising from plastic deformation;
the eontribution of elastic strain within the zone is neglected. This is a reason-
able assumption because the DM zone is very mnarrow; the stresses acting on it are
comparable to the yield stress, and the elastic displacements are therefore small.
Real plastic zones.tend to be much wider than the DM zone, and the elastic contri-
bution can become a significant part of the total displacement across the plastic

zone.
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The longitudinal displacements quoted here were obtained from measurements of

the transverse strains near the crack tip. The transverse elastic contribution is

approximately

» Y vd
Vo(e) ® T E ’ (6)

where v is Poisson's ratio and E is the modulus. For the Fe-35i samples, d ~ 1.7t,
and the resulting displacements are v;(e)au -0_2-10-4 inch and V;(e)ﬁw - 0.7-10_4
inch for the 0.017-inch- and 0.( o-inch~thick samples, respectively. Together

with Figure 7, these results indicate that this elastic contribution is negligible

at all but very small stress levels.

4. Plane-Strain Relaxation. The analysis of the measurements depends on the

assumption that none of the plastic deformation is in the plane of the sheet --

but this is only an approximation. Near the crack tip and to a lesser extent else-
where, some flow in the plane of the sheet is likely, and this is not detected by
the interferometric technique. For this reason, the measurements tend to under-

estimate the residual displacement values.

It is difficult to gage the cumulative effect of these errors at this
time; however, a rough estimate suggests that work hardening alone can probably
account for a large part of the discrepancy between the measured values and the DM

(6)

calculation employing the Hult-McClintock analysis. The Hult-McClintock treat-

ment, therefore, appears to be sound. It can be improved by correcting for work
hardening and the Bauschinger effect along the lines already proposedgz) In this
form the analysis may offer a useful description of the residual displacement gra=
dient under plane-stress conditions, not only after ome cycle, but aftfer repeated
cycles of loading and unleading. These possibilities are now being studied.

The correction for work hardening and Bauschinger effect would be
facilitated by a simple relation between strain and displacement. Equation (5) -

could satisfy this need, but only if the quantity & -- related to the work harden-

ing rate -- is a materials constant, or provided § is not a sensitive function of
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stress level and geometry.

The results of Figures 8 and 9 show that at least for Fe-35i 6 is essen-
tially independent of distance from the crack tip, that it can be correlated with
thickness, and that it is not a strong function of stress. Since § = 0.85 t,

where t is the sheet thickness, as shown in Figure 9, Equation (5) becomes:

. 2.3 »
e ="y . 7
vy~ Tt Yy )]
This gives hope that the appropriate § value for different materials can be

established with a small number of measurements.
CONCLUSIONS

1. Residual displacement values in advance of notches and cracks arising
from localized plastic deformation under plane stress conditions are described
qualitatively by the DM model, together with the Hult-McClintock method of treat-
ing unloading. Quantitative agreement is not obtained and this is attributed
mainly to work hardening‘and the Bauschinger effect, complications that are

negiécted in the calculations.

2. Notch acuity, within the narrow limits examined here, has relatively
“little effect on the strains and displacements generated under plane stress con-
ditions. The expectation is that notch acuity, under the same conditions, exerts

a minor influence on crack extension.

3., The plastic zone width at half maximum strain, appears to be a useful
parameter for relating the maximum strain with the displacement under plame stress
conditions. The present measurements show that for Fe=-3Si, this quantity varies
linearly with plate thickness independent of stress level, and is fairly constant

along the length of the plastic zone.
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APPENDIX

CALCUIATION OF RESIDUAL DISPLACEMENT

According to a procedure originally discussed by Hult and Mc01intock(6),
and employed by other authorg5’7), unloading can be represented by application of
a compressive stress to a material with a yield stress equal to twice the initial
yield stress. According to the DM model, the on-load displacement at the crack

tip, Vo is given by

4¥c
o wE n sec B , A-1)
where Y is the yield stress, 2c 1s the crack length, E is Young's modulus, and

= g—YI'" , with T the applied stress. Using the Hult-MeClintock procedure, the

change in crack-tip displacement on unleoading, v;', is found by replacing Y in

Equation (A-1) by 2Y,

.o _ Blc B )
V. = OE In sec 2 . (A-2)

L

The residual crack-tip displacement, v;, is then equal to v, "V, ’

¢ = 4Yc in 1l + sec B . (A-3)
c mE 2

Simllarly, the' displacement at any point in the plastic zone, v(x), is

given by
2 {c +p)Y r P sin -8 P sin B + sinp 61 (A-4)

vix) = g cos B AN in @ re) o8BI - sine G-
h is the plastic-zone length, cos 6 = £ adcosB="'L'—=n—T'
where p is the plastic-zone length, G +p) » o° G +0) oY*
The change in displacement on unloading, v(x)“’, is found by replacing Y in
Equation (A-4) with 2Y. This gives rise to new values: B” = % ,
p” =¢ (sec B°" - 1), and cos 8°° = —E

¢+ p
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v(x) E [cos 6 in sin (B" + 0 +cos B Un 8™ - sin } . (A-5)

Equation (A-5) is valid in the range (c + p™) > x > c. Thus, reverse plastic flow

is confined to the small fraction of the plastic zone givem by

gec 2) -1
sec B -1"

zero at high stresses.

p"fp = The ratio p”/p =~ 1/4 at low stresses and decreases toward
As before, the residual displacement v(x)’ is equal to v(x) - v(x)".
Since v(x)” 1is a large fraction of v(x) close to the crack but falls off very
rapidly, a maximum will be observed in the curve of v(x)’ versus x.
The residual stress distribution after unloading can be calculated in a

similar manmer. The stress at any point in front of a crack, c&, is given by
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‘. 1 in 28
"%L=1+§arctan 2 s x > —=S

2
eza - cos 2B cos B
E] ' (A"'6)
o =1 ; £ x>ec
y cos B
where cosh & = §_g%§_§ . The stresses on unloading, 0;, can be found by substitut-

ing 2Y for Y and g— for B in Equation (A-6), as was done above. The residual stress,
cr;, is then the difference between cy and c; as is illustrated in Figure A--l for
T/Y = 0.8. The general features of the stress distribution are: a region very
close to the crack tip which yields in tension during loading and compression
during unloading, a regilon which yields during loading but strains elastically
during unloading (the residual stress varying from -Y to + %), a region of residual
tensile stress which strains elastically both during loading and unloading.

3)

Dixon's calculz:ions show similar results.

s
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