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ABSTRACT

An experimental method of identifying the plastic constraint

ahead of a sharp crack loaded under plane-strain conditions is proposed.

The method is based on the idea that the cleavage stress--which can be

measured with unnotched bars--is the peak stress developed ahead of a

crack just prior to crack extension. Ways of calculating the strain,

strain rate, and yield stress appropriate for the plastic region just

ahead of the crack are developed. The ratio of the cleavage stress to

the local yield stress identifies the plastic constraint factor at the

stress level corresponding to crack extension. Experimental results

recently reported by Krafft are shown to be consistent with this inter-

pretation. With these data, the following expression for p.c.f., the

plastic constraint factor, is deduced: p.c.f. = 1 + 2 $ , where Y is

the yield stress, K the stress intensity parameter, and the numerical

-1/2constant, 2, has the dimensions inches . This result offers a way

of formulating KIC, the fracture toughness for crack extension by

cleavage, in more basic terms and sheds some light on the metallurgical

origins of KIC.
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IIJTRODUCTION

A crucial but unresolved feature of the crack extension problem is the

stress intensification and triaxiality existing ahead of a sharp crack loaded

under plane-strain conditions. Elastic stress-concentration Factors are not

meaningful once the peak stress exceeds the yield stress (for the case of a sharp

crack, this occurs at very low nominal stress levels) because further stress build-

up is cancelled by local plastic deformation, at least initially. However, the

plastic zone must be accommodated within an elastic matrix. This imposes a

continuity requirement difficult to satisfy under plane-strain conditions, and

8,lasti~ constraint”:is responsible for p triaxiality and stress intensification

above the level of the yield stress.
(1)

Stress intensification after the onset of localized yielding is usually

expressed by a plastic constraint factor (p.c.f.):

u
p.c.f. =~ (1)

where a is the maximum normal stress and Y is the yield stress.
max

There is an

upper limit for the constraint that can be estimated from slip-line field theory:

‘(1) This value corresponds to a plastic zone size cmnparable top.c.f. =257.

the dimensions of the sample (a condition referred to as full plasticity or

general yielding), and is not at issue. The essential problm is assigning p.c.f.

values for intermediate zone sizes: after the onset of local yielding, but before

full plasticity. So far, no calculations have been reported for a sharp crack

but Hendrickson, Wood, and Clark
(2)

and Barton and Hall
(3}

have calculated

p.c.f.’s for reasonably sharp hyperbolic notches under plane strain (see Figure 1).
o

The initial portions of their curves: O < ~< 1, reflect elastic behsvior (the

f This is based on a Tresca

Von Mises yield criterion

yield criterion. The corresponding value for a
is p.c.f. =2.82.



slopes of ~ and ~’ are the elastic
o
g>.l

Y’ the p.c.f. rises gradually

stress . For a sharp crack, one with

—, J

--2-

stress concentrations); in the plastic region:

with T/Y, where T is defined as the nominal

a

of AB” approaches infinity, but beyond

defined. The prevailing view seems to

crack increases much more rapidly with

root radius approaching zero, the slope

this the variation of the p.c.f. is not

be that the constraint factor for s sharp

stress level (see dashed line in Figure 1).

This paper describes an experimental method for measuring the plastic

constraint based on a special circumstance, namely: crack extension by cleavage

of mild steel at low temperatures obeys a maximum stress criterion. Experimental

(4)
results recently reported by Krafft are analyzed on this basis. The analysis

indicates that the p.c.f. for a sharp crack increases gradually, according to the

(1Krelation p.c.f. = 1 + 2 —~ , where Y is the yield stress> K is the stress intensity

parameter, snd the numerical constant,
-1/2

2, has the dimensions inche”s” . The result

is similar to that calculated for the hyperbolic notches. implications with respect

to the origins of cleavage fracture toughness are discussed.

METHOD OF ANALYSIS

The method of measuring plastic constraint, proposed here, takes advantage

of certain special properties of mild steel:

1. Cleavage Stress. The cleavage of mild steel

occurs at a relatively constant, reproducible value of

stress>’-’) symbolized here by cr~leav,which can be measured

by breaking unnotched bars at low temperature. Both theory

(see Appendix A) and experiments
(8)

agree that D* is sub-
cleav

stantially independent of temperature and strain rate.

ln the case of a notched sample, cleavage cracks will

be initiated when U;ax = o~leav. Since Umax is attained at a

‘2’3) cleavagepoint close to the elsstic-plastic boundary,

will tend to occur first in a region that has undergone little

prior strain. This means that the value of & corresponding
cleav
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to the virgin material is appropriate And the strain dependence
(9)

of C@ can be ignored.
cleav

2. Crack Extension by CleavaRe. The initiation of

cleavage cracks close to the elastic-plastic boundary in a sharply

notched or pre-cracked sample is not likely to be self-limiting.

The presente of cracks will not relieve the state of triaxiality

or lower U while the high speed with which cleavage cracks
max’

grow will enhance the local value of Y. For these reasons,

cleavage initiation is expected to trigger unstable crack exten-

(10)
sion and fracture; in fact, a slow growth stage is not observed.

For these special circumstances, the value of the constraint factor

can be calculated from O*
cleav:

‘hereK =5.
just prior to

stress at the

crack tip.

Ugleav
p.c.f. =—

‘e,k
>

K = KIC

L J.
signifies that the equations are only valid

crack extension and Y
o ,i

must be the yield

temperature and strain rate existing at the

(2)
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temperatures

-4-

The Yield Stress of Mild Steel. At the

and strain rates that favor cleavage fracture,

the yield stress of mild steel is strongly temperature and

strain-rate dependent. These dependence can be expressed

by the following empirical equation valid for fine-grained
-4

mild steels in the range 250 K < 6 < 77 K and 10 Der Sec
+3

<*<1O

Y(psi)

where Y is

per see: ‘g)-
=Ys(psi) + 195,000 - 11,10061’2 (0 Kelvin)

+ 8,000 log k (per see) ,

the yield stress at the given @ (temperature)

and k (strain rate), and Ys is the yield stress at room
-3

temperature for t = 10 per sec. The strain rate at the

tip of a sharp crack can be estimated from the following

equation derived in Appendix B:

(4]

(5)

where E is the modulus, K ~ ~, K ~ ~, T the nominal

stressing rate, c $s efther the length of an edge crack or

the half length of a center crack, and J ~ 0.001 in. is the

extent of the plastic zone ahead of the crack.

Together, Equations (4) and (5) describe the yield

stress appropriate for the plastic zone ahead of the crack.

In principle, the influence of strain hardening on the yield

(or flow) stress must also be taken into account, but this

is beyond the competence of the present treatment. It should

be noted here that the strain-hardening contribution is

relatively small at temperatures close to 77 K, the testing

range exploited in this paper.

Plastic constraint can therefore be deduced from tests of pre-cracked

plates or bars of a mild steel

The tests must be performed at

loading rates that favor crack

whose @ and yield characteristics are known.
cleav

the relatively low temperatures and/or high

Textension exclusively by cleavage. By varying

the test ~emperature and loading rate, the value of Y in Equation (3) can be

T Instances where cleavage is preceded by fibrous fracture require an analysis
more sophisticated than the one offered here.
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systematically altered. Since the fracture stress is also modified in this way,

the relation

suitable for

sistent with

between p.c.f. and stress level can be mapped out. The method is

studying constraint in sheets or plates at the stress levels con-

(11)
plane strain relaxation:

K

)

2
Ic

8 t

T ‘7 > (6)

where t is the plate thickness. Stress levels that exceed this limit favor:

(a) deformation through the plate thickness (plane stress), (b) the 10SS of con-

straint, and (c) a decreasing value of Dmax-- circumstances that preclude cleavage.

Krafft(4) has recently reported tests of pre-cracked mild steel plates

that lend themselves to a p.c.f. analysis. His results, summarized in Figure 2,

were obtained on l/4-in. thick single-edge fatigue cracked plates machined from

line-pipe steel (API grade 5L-X52, C: 0.24%, Mn: 1.10%, Si: 0.01%,

+
s: 0.020%):grain diameter = 0.012 mm, Y$ = 52,600 psi, o~leav =

Reported values of k and K.. were converted into 2 values with the

P: 0.012%, and

200,000 psi.+

aid of Equation
Lc

(5), and these were used to calculate

an excellent description of the yield

Y with Equation

characteristics

(4). [This Equation (4) offers

of this particular steel.(9)]

Calculated plastic

RESULTS AND DISCUSSION

constraint values are plotted against stress
..

intensity expressed

parison with Figure

%c .
as $ (really T m these experiments) in Figure 3. com-

L L

2 shows that systematic changes with temperature and strain

t Measured at Battelle.

~ An x-52 steel having practically the same composition and grain size (C: 0.26%,
Mn: 1.15%, grain diameter: 0.012 mm) has been tested at Battelle.(9) I.Jnnotched
bars fractured by cleavage at 77 K at a strain rate of 102 per sec after strain-
ing, 13%. The yield stress under these conditions is 185,000 psi, the true-
fracture stress 2153000 psi, and the u~leav for-unstrained material somewhere

in between. On this 15asisa value C@leav = 200,000 psi is a reasonable estimate,

probably accurate to within 5%.
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,7

rate havtiall but disappeared, with normal test-to-test scatter the only vari-

ation remaining. It should be noted that this result is obtained in spite of

drastic changes of the yield stress; values employed in the calculations ranged

from 95,000 psi to 170,000 psi. The correlation is expressed by the following

t
relation:

p.c.f.
()

=1+2.0: ● (7)

The slight divergence from this trend evident when!< 0.2,fin.is thought to be

related to the relatively small zone size existing at these stress levels. One

T Note that the ratio ~ is= dimensionless and that the factor 2.0 is in
-1/2

units of (in.) .



possibility is that the cleavage

zone chat was introduced earlier
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process begins to feel effects of the plastic

when the samples were precracked by fatiguing

at room temperature: e.g., local strain generated in this way can enhance the

cleavage stress S9) Another possibility is that the small number of grains (or

portions of grains) highly stressed does not include grains that cleave easily

(a cleavage stress-size effect). In either case the p.c.f. will be under-

estimated.

The implication of the present findings is that the constraint factor

for a sharp crack is given by Iiquat:

materials as well since the elastic

least to a first approximation.
(1)

support the interpretation:

1. Substantial

on (7], not only for steel but for other

properties do not influence constraint, at

The correlation displays three features that

changes in K
Ic

occasioned by different

test temperatures and loading rates involvtng drastic changes in

Y are reduced to a single correlation.

2. The correlation extrapolates to p.c.f. = 1, when
K
- = O, consistent with expectations for a sharp crack.
Y

3. The variation of p.c.f. with stress level is

very similar to that calculated by Barton and Hall (3) at the

higher stress levels, e.g., +> O.m.f (See Figure 3.)

This is to be expected since the relatively small volume of

material that must be added to convert a hyperbolic notch

into a sharp crack will not alter constraints radically once

the plastic zone is larger than the root radtus.

At the same time, it must be noted that the present findings depart

from the prevailing view of a p.c.f. that

value as pictured in Figure 1. The basis

Also, more experimental evidence, perhaps

rapidly approaches the upper limiting

for this view needs to be re-examined.

derived frmn other steels and metals

t Barton and Hall’s(3) calculations are for 0.5-in. deep hyperbolic notches.

These values of T/Y can be converted to approxhate~ f=~;byvalues:

the equivalent c ~ 0.5 in.
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that undergo cleavage, is needed

In the meantime, it is

respect to the fracture

cleavage. Equation (7)

or

to buttress the correlation offered here.

useful to note some of the implications with

toughness when crack

can also be wrftten:

extension is exclusively by

U*

( )
K

cleav
Y

=1+2+ (7a)

(8]

and this is valid when plane strain prevails, e.g., K~c < ]m (t is the plate

thickness). Under these conditions, raising the cleavage stress relative to the

yield stress improves the toughness. Crack extension by cleavage IS not possible

when @ B-J2.7Y
cleav 9,2’

irrespective of plate thickness, since the value of

p.c.f. cannot exceed M 2.7. However, it must be remembered that Y
e,k

refers to

the yield stress of the

the crack tip, and this

standard tensile tests.

material at the temperature and strain rate developed at— —

can be substantially greater than the value ob~ained from

At low stress levels complications associated with

precracking or a size effect may come into play, and the extent of this could

depend on microstructure, the material, and the fatigue stress intensity. Finally,

it should be noted that a good deal is known about the effects of a variety of

metallurgical factors on the @ and Y of mild steel (see Reference
cleav

review}, and this knowledge can now be translated into KIC predictions

aid of Equation (8).

CONCLUSIONS

9 for a

with the

d:

1. There are special circumstances when the peak stress ahead of a

sharp crack can be identified with the cleavage stress derived from unnotched

bars: (a) when localized yielding is predominately plane srrain and (b) w~en,

the mode of crack extension is by cleavage.
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2. With this interpretation the plastic constraint factor can be

[1
deduced from crack extension experiments; the relation p.c.f. = 1 + 2 ~ is

derived from the measurements of Krafft.

3. The results obtained indicate the KIC for the cleavage mode can

;.
be expressed in terms of unnotched strength values: KIC = 0.5(u~1eav - Y), ex-

) K

cept possibly for very brittle conditions: ~ < 0.2, where the interpretation

may be complicated by prior fatiguing or by a cleavage stress-size effect.

this

(1)

(2)

(3)

(4j

(5)

(6)

(7)

(8)

(9)
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APPENDIX A

TEMl?EIWNJREDEPENDENCE OF THE CLEAVAGE STRESS

Experimental evidence indicates that the cleavage stress is, at most,

only slightly

range 123-173

and less than

as large as ~

temperature dependent. For example, Knott’s(s) experiments in the

K display a total dependence of about -5 percent per 100 K in one case

-1 percent in the second. In view of the fact that corrections”

10 percent per 100 K do not change the present results signifi-

cantly, no corrections are applied to the data in Ffgure 3.

This lack of temperature dependence of-the cleavage stress is con-

sistent with theory. It is customary to represent the cleavage process by an

idealized model such as a simple pile-up. Consequently, two temperature correc-

tions must be considered. The first is derived from the model itself which

yields a slightly temperature dependent cleavage stress, about -4 percent per

100 K in the range 77-300 K. The arigin of the first correction is described

in detail in the following paragraph. When the correction is applied to the

calculations presented in Figure 3, the result is not altered significantly.

Secondly, the degree to which the model approximates the real array may be

temperature dependent, but this correction cannot be evaluated theoretically.

The authors have recently modified the Cottrell treatmenk of the

double pile-up model of cleavage, and this provides a basis for estimating the

first correction. The various equations in Reference 12 can be reduced co the

following formula for the cleavage stress:

quantity L, the length of dislocation arrays is governed by ‘themicrostructure

can be regarded temperature insensitive. The termy is the surface energy:

2000 ergs/cm2 for iron. Measurements at high temperatures
(13-15)

indicate
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surface energy temperature dependence of about -50 ergs/cm2 per 100 K or about

-2.5 percent per 100 K. At low

smaller and closer to the shear

per 100 K in the range 300-77 K.

ness coefficients:

D’=&
TIJ2

and displays

-1.9 percent

shear stress,

temperatures this dependence is likely to be

modulus temperature dependence, about -1 percent

(16) me quantity D’ is a function of the stiff-

{
[

C44(c11 - Q 1]
1/2

+ 0.50(Cll-1-C12)0.25C44 (A-2)
c~lwll+ C12+ 2C441

a temperature dependence of -1.2 percent per 100 K [equivalent to

per 100 K for (D’)1’56] in the “range 300-77 K.(16) The effective

T*, is formulated:

T*=TO-T , (A-3)

where To and T are the applied shear stresses identified with Vo, the average

dislocation velocity, and ? a fixed

of dislocations in pile-ups. Since

lower value related to the average velocity

velocities are proportional to strain rates:

?1/<2 = ~o/?, and since T =; in k in the range 200-77,(9) the effective shear

stress is:

Experimental results for Krafft’s steel show that m is independent

(A-4)

of temperature

to

to

within 2 3 percent in the range 200-77

support a systematic variation in this

2 percent per 100 K is possible, and this

K (9)
. While there is not enough data

temperature range a slfght change, about

would reinforce rather than cancel the

temperature effects on y and D’ . Taken together, a cleavage stress correction

of from -3 to -6.5 percent per 100 K is indicated.
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APPENDIX B

THE STRAIN RATE IN THE PLASTIC ZONE AHEAD OF A SHARP CRACK

Solutions for the strains and strain rates generated ahead of a

crack during loading have not yet been worked out. However, displacement

sharp

values

have been calculated, and when these are ccmbined with the dimensions of the

plastic zone, then strain and strain rate values can be estimated. For example,

at low stress levels,Vc, one-half the crack tip displacement andp, the plastic

zone length for the DM+ model
(11,17,18)

(see Figure B-la) are:

[

()172C g
2

P=yy or (B-2)

2

()

~=$$ (B-2a)

where K ~ = is the Irwin stress intensity parameter, T is the nominal stress,

c the crack half-length, Y the yield stress, and E is Young’s modulus.

While the DM model is only meaningful for plane-stress conditions, e.g.,

thin

with

take

sheets, Bilby and Swinden(’g)

relaxation confined to two 45

the same form:

report that values for a crack under plane strain

degree-inclined slip planes (see Figure B-1b)

v
c (plane

= 1/2 v
strain c (Dll)

(B-3)

4;0 relaxed)

a (plane strain = a (DM)
(B-4)

45° relaxed)

=1.4P (D~) “or
p (plane strain

(Ih.4a)

45° relaxed)

t Dugdale-~uskhelishvili
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Plastic zones revealed by etching (see Figure B-2) show

plastfc zones display an inclination closer to 75 degrees (Figure

not confined to a single slip plane but spread out (Figure B-Id).

expect that these features would alter V~ orp radically, and, in

strain-type plastic zones revealed by etching can be approximated

p (plane strain) = l/2p (DM) ,

that real

B-lc),and are

One would not

fact, plane-

by the relation: ’11)

(B-5)

and this is supported by the data in Table B-1. Although a factor of 3 discrepancy

between theory (Equation B-4) and experiment (Equation B-5) is evident, the zone

size measurements do support the idea of a close relation between the DM

(a) DM model (b) Crack with relaxation confined
to two slip planes inclinedat

.~, -f(-

C) Crack with relaxation ( d ) Schematic of a real crack with
confined to two slip relaxation in two 75°-inclined

planes inclinedat 75° regionsof finite width.In
shaded volume shear strainof
two regions is superimposed

Fig. B-1. Models of a Crack with a Plastic zone.
(a) Mod@l ofwlma$ion undm phm s-tzwss
(b),(e),and (d)Mo&Ls valid undqx plane strain
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Fig. B-2. Plastic Zone Gene~atied
in a Fatigue-C~aeked
Fe-3Si Plate and
Revealed by Etching.

The plate thickness is
0.060 in., K/Y= 0.266
(see Table B-1 for mom
details).

MagnificationXlSO.

model and real plane-strain zones. Consequently, the following relation

v
c (Plane strain) % ‘C (DM)

should give a valid estimate accurate to within a factor of 3-4. In terms of

calculating strain rate effects, this uncertainty is allowable and does not

introduce significant errors.

.
The average crack-tip shear strain, y:, associated with one inclined

region, is:

v
Y:=& (B-7)

where J, the width of the region (see Figure B-id) , can be estimated from the

etched zone in Figure B-2:
.1

A ~

[

- .
Y

Since the region closest to the
)
=0.001 in.

0.26 ~in.
(B-s)

crack tip--the shaded region in Figure B-ld--
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TABLE B-1. COMPARISON OF PREDICTIONS WITH MEASUREMENTS DERIVED
FROM PLANE STRAIN PLASTIC ZONES IN AN Fe-3Si STEEL
(Y = 62,000 PSi ) AS REVEALED BY ETCHING

P 6
c ~o.3 p

&
mea sured calculated(a) measured(b) calculated(c)

Y
measured(b) calculated(d) ‘

0.266(e) O .008 0.014 >37. 7 .3% - 1% o .9%

0.532(f) 0.042 0.056 -- -- .- --

(a)

(b)

(c)

(d)

(e)

(f)

Equation B-5.

Measured values derived from the intensity of the etching response (see llefereme 11 for details) .
At the crack tip the value is corrected for reverse plastic deformation accompanying unloading.
The “on-load” value is taken as 2/3 of the strain existing after loading and unloading.

Equation (B-1O) , J = 0.001 in. (see Figure B-2), E = 30 . 106 psi.

Equation (B-11) , J = 0.002 in. (see Figure B-2) , E = 30 . 106 psi.

See Figure B-2; fatigue-cracked rectangular plate coupon 2-1/2 in. wide by O .060 in . thick with

0.25 in. long edge cracks .

Rectangular plate coupon 2-1/2 in. wide by O.4o6 in. thick with 0.25 in. long edge slots, O .006 in.
wide with a root radius - 0.003 in.

represents the superposition of the two inclined

E= here is:

Combining Equations (B-9), (B-6), and (B-1a):

(B-9)

regions, the tensile strain

(B-1o)

Similarly, E , the strain at some fractional distance @ along the inclined region,
P

can be estimated in the same way:

Y
2

-()()

L !
‘P ‘4APE Vc Y ‘

(B-n)

wher~ the ratio V /V has the same significance as the ratio V/Vc calculated in
p c

Figure 3 of Reference 11, and ~ can be estimated from etched zones. As shown in
P

Table B-1, strain values calculated with these equations are consistent with strain
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indications derived from the intensity of the etching response of etched plastic

zon,es,

Finally, the crack-tip strain rate, $ can
c’

Equation (B-1O):

where

to kc

steel

and E

be

is

and provided ~ can be assumed to be constant.

at low temperatures: K (or K.-) = 40 ks~n.,

derived by differentiating

> (B-12)

yield stress corresponding

For values typical for mild

Y = 140 ksi, 4 = 0.001 in.,
J-L

= 30,000 ksi, it/k% 9.5 . LO-3(ksfi.)-1, and this is surprisingly close

to the value kc/k~ 2.41. 10-3(ksfln.)
-1

derived by Krafft
(4)

from elastic

considerations .

GPO 916.796
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