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While probabilistic methods have been applied extensively to quantify uncertainty of sea
environments and estimate reliability of naval vessels under normal seaway loads, their
extension to surface ships subjected to extreme dynamic loads due to collision,
grounding, and weapon effects has not been well explored. Under these extreme loads,
the structural response behaves nonlinearly. In addition, the complexity of fluid-structure
interaction phenomena may render the assumptions on the loading process (stationary
and Gaussian) invalid. In this study, we develop probabilistic analysis tools to assess the
response uncertainty and variance in vulnerability assessment due to known variability in
materials properties, geometric configuration, failure criteria, and loading parameters.
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INTRODUCTION

Current structural design of U.S. Navy ships is based
on deterministic analysis methodologies and design
rules/requirements, which are highly correlated with
test data and at-sea experience.  Experience exists
both for seaway loads as well as for impulsive loads
due to applied collision and wave slamming.  To
provide safe and strong ships for our fleet, the design
rules/requirements are conservative. The extent of
conservatism is, currently, not quantified.

Ship vulnerability assessment plays an important role
in identifying the levels of operational capability that
must remain after a ship is damaged under extreme
dynamic loads. Naval ships must be survivable under
a hostile environment and the ship survivability is
determined by the mathematical complement of
killability. The killability is defined as the product of
the susceptibility and the vulnerability.
Mathematically, the susceptibility is defined as the
probability of being hit (PH), while the vulnerability
is given by the probability of being killed if hit

(PK/H). The reduction of PH can be achieved with
excellent defensive weapons, sensors,
countermeasures, and reduced signatures; while the
reduction of PK/H can be obtained with the aid of
structural enhancement, advanced materials, and
increased ability to absorb damage. As indicated in
[1], at present, ship vulnerability reduction has not
been given the same priority as susceptibility
reduction, leading to unbalanced operational
requirements. In addition, the present vulnerability
assessment of surface ships is given in a deterministic
manner where the requirements stated in absolute
terms must be met to ensure ship survivability.

Naval ships are subjected to uncertainty in sea
environments, structural configuration, material
properties, and environmental and operating
conditions [2-3]. While probabilistic methods have
been applied extensively to quantify uncertainty of
sea environments and estimate reliability of naval
vessels under normal seaway loads, their extension to
surface ships subjected to extreme dynamic loads due
to collision, grounding, and weapon effects has not



been well explored. Under these extreme loading
environments, experimental observations have shown
that the loading process is non-Gaussian and non-
stationary and the ship structural response is
nonlinear. The nonlinear structural response is
induced by the initiation and evolution of multiple
local damages, such as local plastic deformation,
stiffener tripping, panel buckling, or fracture. The
complexity in fluid-structure interaction phenomena
will render the assumption on the loading process
(i.e. stationary and Gaussian) invalid. The
conventional approach [4] based on linear random
vibration theories and peak statistics is inapplicable
for the probabilistic vulnerability assessment of
surface ships subjected to a hostile environment.
Therefore, it is imperative to develop a generalized
simulation based probabilistic analysis tool such that
no limitation is placed on the nature of input random
processes (Gaussian, non-Gaussian, stationary, or
non-stationary) and system characteristics (linear or
nonlinear).

The inverse first order reliability method (IFORM)
has been developed and applied to the reliability-
based design of a civil structure subjected to static
loading [5]. However, its extension to a structural
dynamic system subjected to an extreme environment
is very limited. The application of the inverse
reliability method to a surface ship subjected to a
hostile environment is of crucial importance in terms
of 1) achieving a balanced design between structural
subsystems for a given threshold requirement; and 2)
identifying a key design parameter for retaining a
sufficient level of mission readiness after a hit.

The technical objectives of this research program are:
1) to assess the variance in vulnerability assessment
due to known variability in material properties,
geometric configuration, failure criteria, and loading
parameters; 2) to develop a simulation based
probabilistic analysis framework for a structural
dynamics with random variables and random
processes; 3) to develop an IFORM for a structural
dynamic problem with random variables within the
context of finite element reliability analysis; and 4) to
apply the developed probabilistic analysis modules to
a hull structure subjected to parametric dynamic
loading. To achieve these research objectives, a
general simulation based probabilistic framework
(SIMLAB) is developed first for a nonlinear dynamic
system by integrating 1) random variable generating
modules; 2) random process simulation modules; and
3) user selected deterministic solver and limit state
function. The great versatility of SIMLAB provides
us a solid foundation for the development of more
advanced probabilistic analysis tools such as IFORM

for reliability-based ship design. The computational
framework of IFORM is established by integrating a
modified HL-RF search algorithm, the active gradient
projection module, and a deterministic FEM solver
(DYNA3D).

In this paper, we will summarize our technical
approach in developing SIMLAB along with
demonstration of SIMLAB via two numerical
examples. A nonlinear structural dynamics code,
DYNA3D, has been integrated into the probabilistic
computational framework. A free-free beam with
uncertainties in strength variables subjected to a
random excitation is selected for tool validation and
model exploration. The development and application
of IFORM will be given in a forthcoming paper.

OVERVIEW OF A SIMULATION BASED
PROBABILISTIC ANALYSIS FRAMEWORK

(SIMLAB)

SIMLAB is a general probabilistic analysis
framework which can be integrated with user
provided solution modules to perform probabilistic
response analysis and failure prediction of a
nonlinear dynamic system subjected to a given
random loading. As shown in Figure 1, both random
sampling and Latin Hypercube sampling techniques
are implemented in SIMLAB for generating random
variables and random processes. Three solution
modules, namely, an input update module, a
deterministic solver, and a limit state function, are
defined by a user for his own analysis. Some of these
key components are described briefly in the
subsequent sections.

RANDOM VARIABLES AND RANDOM
PROCESS SIMULATION MODULES

All random variables with a given cumulative density
function F X( )  (CDF) are generated based on a
simulation of a uniformly distributed random variable
U ∈ [ , ]0 1  followed by an inverse CDF

transformation, denoted by )(
1

UF
− . The CDF can

be given either in an analytical form or in a table of
pairs of data ( ( , ( ))X F X . At present, the random
simulation module in SIMLAB can generate multiple
random variables with the following distributions:
uniform, normal, lognormal, linear, arbitrary
continuous, Gamma, shifted Beta, exponential,
Weibull, and shifted Rayleigh.



Figure 1.  Display of Key Components in SIMPLAB

A random process simulation module has been
developed to generate stationary Gaussian processes,
non-stationary Gaussian processes, non-Gaussian
stationary processes, and non-Gaussian non-
stationary processes. For a Gaussian stationary
process, the spectral representation method [6] is
employed. Given a spectral density function of a

Gaussian stationary random process ( )(tGSg ), and a

mean value of the process, g , we will first divide the

entire band of frequencyω ω ω∈ [ , ]
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intervals and the k-th discrete frequency can be
expressed as
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In Equation (4), Sg is the spectral density function of

the random process. The random phase angle ( Φ
k

)

given in Equation (2), is a uniformly distributed
random variable in the interval [0, 2π]. To simulate a
non-stationary process (gNS) from a stationary process
(gS), a time-dependent deterministic function u t( ) is
added to gS(t) as shown below:

g
NS

t g
S

t u t( ) ( ) ( )= + (5a)

)00cos(0)( φω += tAtu (5b)

where A0, φ0, and ω0 are constants. Note that
Equation (5a) represents the first order perturbation
from a stationary process in the sense that only the
first order moment (mean) is a time dependent
function.

Two approaches have been used in SIMLAB to
generate a non-Gaussian process (gNG) from the
corresponding  Gaussian (gG) process. In the first
approach, we use a single parameter (random phase
angle) based simulation model [7] along with a small
number of frequency discretization points, N, i.e.,
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It can be shown that gNG will approach to a Gaussian
process (gG) as N → ∞ . The functional relation
between the degree of non-normality and sampling
rate N is given in Reference [8]. In the second
approach, a nonlinear transformation is introduced to
generate a non-Gaussian process from the
corresponding Gaussian process [9], namely,
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where sgn(.) is the signum function [sgn(x)=1 for
x>0, 0 for x=0 and -1 for x<0), and n (>0) and β(>0)
are non-normality controlling parameters. The
parameter C is determined in such a way that the
derived non-Gaussian process has the same root-
mean-square as the original Gaussian process. The
expression for C can be found in Reference [9].
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SIMULATION BASED PROBABILISITC
ANALYSIS FRAMEWORK (SIMLAB)

The probabilistic simulation framework is formulated
in a way that a deterministic solver can be easily
integrated as a black box. The author has developed
several probabilistic fatigue/fracture analysis tools by
integrating a boundary element solver [10] and a
finite element solver [11] into a computational
framework. The similar approach has been used in
the development of SIMLAB.

The key components of the SIMLAB methodology
are shown in Figure 2. In a nested simulation, the
outer loop is applied to simulate all random variables
that are used to characterize basic structural strength
variables (material properties and geometric
parameters). The inner loop is used to simulate a
random process (seaway/slamming loading). After
selecting the material properties, hull geometric
parameters, and applied loads, a finite element input
file will be updated and a structural dynamic
response analysis will be performed via a FEM
solver. The maximum response variable over the
entire loading period at a critical location will be
stored and used in a limit state function. The first-
excursion failure event is defined as the crossing of
the critical response quantity above a safe threshold
during the loading process. The final probability of
failure will be calculated by the ratio of the total
number of failures to the total number of simulations.
By post-processing the simulation results, we can
determine the most probable failure location, peak
distributions, and extreme peak distributions.

EXAMPLE APPLICATION OF SIMLAB

To demonstrate the applicability of the developed
simulation-based probabilistic analysis tool and
validity of random process simulation modules, we
consider  a USCG Island Class Patrol Boat subjected
to seaway loads as shown in Figure 3.  A free-free
beam  subjected  to  a  distributed dynamic  load  is
used  to characterize the structural response of the
ship hull. A structural dynamics code, DYNA3D, is
selected as the deterministic solver in SIMLAB. The
safety margin for the n-th beam element is defined as

),(),( nxt
n
eff

n
ynxtnG σσ −= (8)

where n
yσ is the yield strength of the n-th beam

element and ),( nxt
n
effσ is the VonMises stress of the

n-th element at time t. The limit state function is
given by

{ } , T] [t<n<MnxtnGG 0;1;),(min ∈=        (9)

where M is the total number of beam elements and T
is the termination time of response analysis. Note that
the safety margin Gn defined by Equation (8) is quite
simple. However, the resulting limit state function
given by Equation (9) is highly nonlinear due to the
operator of minimization used. Since the first order
reliability method (FORM) is based on the linearized
limit state function at a design point, the direct
application of FORM will render the solution
inaccurate. The simulation-based tool provides us a
simple/direct way to calculate the first-excursion
failure probability.

Figure 2.  Overview of SIMLAB Methodology
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Figure 3.  A Free-Free Beam Representation of a Ship Hull under Seaway Loading

The free-free beam model shown in Figure 3 is used
to capture the primary hull girder response of a
USCG Island Class Patrol Boat subject to a seaway
loading. The hull girder is discretized into 24 beam
elements. At each nodal point, a nodal mass is
assigned to represent the sum of the structural mass
(Ms), and the added mass (MA). The structural mass
consists of both the material mass (MM) and the
equipment mass (ME). Based on Reference [12], the
key deterministic parameters and  mean  values of
random variables are listed in Table 1. The spatial

distribution of nodal mass weighting factor ( )(x
m
iw )

and nodal pressure load ( p x0 ( ) ) are shown in Figs.

4a, and 4b, respectively.

Table 1.  Deterministic Parameters
and Mean Values of Random Variables

( )E Pa Pa= × = ×2 07 1011 2 76 108. , .yσ

u Problem Parameters

Length Overall……………….. Ls = 33.51 m

Beam at Deck Amidships…. B = 6.42 m

Hull (Steel)…………

Added Mass (MA)……………..

Average Hull Thickness……..

Average Structural Mass……

Average Total Nodal Mass….

Average Pressure…………….

u Dynamic Pressure Load…….

u Discrete Nodal Mass………...
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M
S

M
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M
M
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M
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m M
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M str kg= 35389.
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In order to characterize the random temporal
variation of the applied nodal force, a random process
is used to describe the load amplification factor f(t)
(see Table 1). The two-parameter Bretschneider’s
model [13], which has been used extensively for
characterizing random seaway loading, is employed
in this study. Based on the two-parameter
Bretschneider’s model, the mean square spectral
density is given by

4)/(25.1
24

16

5
)(

ωω

ωω

ω
ω me

sHm
S

−
= 








(10)

where Hs is the significant wave height, and ωm is the
wave frequency at the maximum wave height. Using
Hs = 5.0m and ωm= 52.36 rps, the resulting spectral
density function is shown in Figure 5a. As shown in
Figure 5a, the band width of S(ω) is small compared

with the magnitude of the center frequency. Thus, the
process can be classified as a narrow band process.
By using the above spectral density function S(ω) in
Eq. (4), the time histories of loading curves with a
zero-mean can be generated as shown in Figure 5b.

In addition to the random process (see Figure 5b), a
set of random variables are also used to characterize
uncertainty in elastic modulus (E), yield strength (σy),

sectional thickness (t), and total nodal mass ( T
nodem ).

The statistical models along with model parameters
for these random variables are listed in Table 2. The
coefficient of variation (COV), which is a measure of
the degree of scatter of a random variable, is adopted
based on the published information (see Table 2).
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Table 2.  Statistical Models of Input Random Variables

Random Variables Distribution Mean Coefficient of
Variation (COV)

Sectional Young’s
Modulus E (Pa) LOG NORMAL 111007.2 ×

3% (SSC-351)
Reference [14]

Sectional Yield Strength
σy (Pa) LOG NORMAL 81076.2 ×

10% (SSC-351)
Reference [14]

Sectional Thickness
t (mm) LOG NORMAL 12.69

3.8% (White et al. 1995)
Reference [2]

Total Nodal Mass
T
nodem (lbm) UNIFORM 577.21 15%



RESULTS AND DISCUSSIONS

In order to demonstrate the validity and accuracy of
the developed simulation based probabilistic analysis
tool (SIMLAB) for the response analysis of a
uncertain dynamic structure, an elastic beam
subjected to a stationary narrow band Gaussian
process (see Figs. 5a and 5b) is considered first. For a
linear dynamic system subjected to a stationary
narrow band Gaussian excitation, the statistical
distributions of response and extreme peak values can
be described by a Rayleigh and a Gumbel
distribution, respectively [14]. These analytical peak
statistical distributions have been used extensively
for the present reliability-based ship design [2, 14].
Before the probabilistic analysis, a deterministic
analysis is performed first using mean values of all

random variables (see Table 1) and load curve 1 (see
Figure 5b). The stress is found to be maximum at the
mid-span of the beam (i.e. Element 13). The time
history of the beam axial stress at element 13 is given
in Figure 6. Both positive (negative) peak and the
extreme peak values are also shown in Figure 6. As
can be seen from Figure 6, the peak values in axial
beam stress for t>0.6 sec exceed the mean value of

yield strength ( yσ =2.76E+08 Pa). However, with

the use of elastic beam model, the effect of material
nonlinearity on the response uncertainty cannot be
characterized.
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In the probabilistic analysis, these positive (negative)
peak values are stored during the simulation and the
extreme peak value is searched for a given response
time history (see Figure 6). These data are then used
in a post-statistical processing module within
SIMLAB to determine their statistical distributions.
In order to quantify the response uncertainty, 1000
simulations are performed using SIMLAB. The
statistical distribution of positive peak values for the
present elastic beam model is shown in Figure 7
along with its comparison with an equivalent
Rayleigh distribution. The two parameters used in

Rayleigh distribution =+= 0 ,05013.2( xkPaEα

)05683.0 kPaE +− are determined by equating the
first two statistical moments (mean and variance) of
the Rayleigh distribution to the simulated statistical
moments. As shown in Figure 8, the statistical

distribution of positive peaks for the elastic beam
model agrees very well with the Rayleigh
distribution. This excellent agreement also holds for
the statistical distribution of extreme peak values (see
Figure 8). The two parameters used in Gumbel
distribution as shown in Figure 8

)/
2

0895.0,055.2( NmEnkPaEnu −=+= α  are also

determined by fitting the first two statistical moments
the Gumbel statistical model to the moments of
simulated data. The consistency between the
numerical simulation results and analytical statistical
models for a linear dynamic system subjected to a
stationary Gaussian process validates the
applicability and accuracy of the developed
simulation based probabilistic analysis tool
(SIMLAB).
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In order to investigate the effect of material
nonlinearity on the statistical distributions of peak
and extreme values, an elastoplastic beam structure
subjected to a stationary Gaussian process (see Figure
5b) is considered here. In addition to other random
variables used in the previous example, the yield
strength of the steel hull is assumed as a random
variable with a lognormal distribution (see Table 2).
The failure event is defined as the crossing of a
critical response quantity (the maximum VonMises
stress) above a safe threshold (yield strength) during
the process of the dynamic loading (see Equation 8).
A deterministic analysis using mean values of all
random variables and load curve 1 (see Figure 5b) is
performed first and the time history of the beam axial
stress in beam element 13 is shown in Figure 9.
Unlike the elastic beam model, the beam deforms
plastically after t=0.6 sec. The resulting maximum
stress is bounded by the yield strength

( Pay
8

1076.2 ×=σ ).

One thousand (1000) simulations are performed in
the probabilistic analysis. Using the limit state
function defined by Equation (9), the total number of
the first-excursion failure events among 1000
simulations is 448 and the resulting probability of
failure is 0.448. The statistical distributions of both
the critical response parameter (maximum VonMises
stress) and the strength parameter (yield strength) are
shown in Figure 10. The failure probability can be
directly obtained from the CDF of the VonMises
stress if the yield strength is a deterministic
parameter. For instance, by using the mean value of

the yield strength ( kPayy
5

1076.2 ×== σσ ), the

resulting failure probability is 0.27 (1-CDF
(2.76E+05)). Thus, we can conclude that the

introduction of uncertainty in yield strength will
increase the failure probability from 0.27 to 0.448.
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The comparison of CDFs of positive peak values
with an equivalent Rayleigh distribution is shown in
Figure 11. Unlike the case of linear material model,
the statistical distribution of positive peak values has
a large deviation from the equivalent Rayleigh
distribution despite that two distributions have the
same mean and variance. Similarly, the statistical
distribution of extreme peak values can no longer be
described by an equivalent Gumbel distribution (see
Figure 12).



0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.E+00 5.E+04 1.E+05 2.E+05 2.E+05 3.E+05 3.E+05 4.E+05 4.E+05

Positive Peak Axial Beam Stress (kPa)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n
s 

Simulation Results from an
Elastoplastic Beam Structure
(Mean=1.668E+05 Kpa,
COV=52.5%)

Equivalent Rayleigh Distribution
(alpha=1.337E+08, x0=-7.927E+05)
Exact Peak Distribution for a
Stationary Narrowband Gaussian
Process)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05

Extreme Beam Axial Stresses (kPa)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n
s 

(C
D

F
s)

Simulation Results from an
Elastoplastic Beam Structure
Mean=2.447E+05 kPa,
COV=18%)

Equivalent Gumbel
Distribution (Un=2.248E+08,
alphan=2.90E-08) Exact
Extreme Value Distribution
for a Stationary Gaussian
Process

Figure 11. Statistical Distribution of Positive Peak Figure 12. Statistical Distribution of Extreme Peak
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A common feature can be observed from Figures 11
and 12. In both the lower and the upper tail regions of
these CDF curves, the CDF obtained from the
simulated response data is larger than the one
predicted from the corresponding analytical model,
which is valid for a linear dynamic system subjected
to a Gaussian process. Since the small failure
probability of a structural system is governed by the
upper tail CDF curve of the critical response
parameter, we may conclude that the use of these
analytical peak distributions for a nonlinear system
may result in a conservative assessment of failure
probability.

CONCLUSIONS

In this study, we have shown the successful
integration of the DYNA3D code with the developed
simulation-based probabilistic analysis framework
(SIMLAB). The validity and accuracy of SIMLAB
have been demonstrated via its application to an
elastic beam subjected to a random excitation. With
the aid of an elastoplastic beam model, we can
conclude that the material nonlinearity has a large
impact on statistical distributions of key response
parameters, their peak values and their extreme
values. While the analytical statistical model of peak
and extreme values fully capture the response
statistics of a linear system subjected to a stationary
Gaussian process, its extension to a nonlinear
structural system may lead to a conservative
assessment of failure probability. The effect of a non-
stationary and non-Gaussian process on the response
statistics and failure probability is currently under
investigation. The great versatility of the simulation
based probabilistic analysis framework (SIMLAB)

provides us a solid foundation for the development of
more advanced probabilistic analysis tools such as
IFORM for reliability-based ship design.
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