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ABSTRACT 
 

Recent advances in structural analysis technology such as the finite element method, 
improvements in the ability to model realistic sea loads, development of fatigue and fracture 
mechanics methods, development of reliability analysis methods, and the rapid advancements in 
computing technology, make it possible to develop methods to evaluate the structural strength of a 
ship, considering the requirements of its mission.   In assessing the life expectancy of a ship structure, 
one must consider the through life degradation of the structural system and its potential failure modes.  
This paper describes the fundaments of a reliability-based method for life expectancy analysis of ship 
structures, considering first-passage failure modes and fatigue failure mode, in an intact or degraded 
condition.  As for fatigue analysis, a method based on probabilistic linear fracture mechanics and 
capable of modeling the effects of the weld induced residual stress is presented.  The paper includes a 
detailed example of fatigue analysis of a typical ship structural joint using the probabilistic fracture 
mechanics method.  The effect of the residual stresses and corrosion on the joint reliability is 
evaluated through a parametric study. 
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1. INTRODUCTION 
 

The design of a ship hull structure needs to be 
performed within the framework of the ship system 
design.    In the conception and design stages decisions 
pertaining the form of the vessel and details of the 
structural systems are made.  These decisions are ideally 
based on the design life of the vessel and thus directly 
impact its life expectancy. 

 
The structural life of a system can be loosely defined 

as the period during which repairs are more economical 
than replacement.  When repairs are required in such a 
magnitude and frequency that running costs rise without 
any effective improvement of the vessel, the end of useful 
life is in sight. 

 
This method of quantifying structural life expectancy 

requires that there be a precise definition of the end of 
structural life.   

 

Traditionally, the design criteria of ship structures are 
typically codified in the form of simple equations or 
charts that are meant for a particular application or 
material. They usually contain some empirically derived 
factors of safety that may not be evident to the user.  
These factors of safety beyond others uncertainties related 
to ship structural design take into account the estimated 
life of the ship.  The use of these criteria can possibly lead 
to overdesigning the structure or, even worse, 
underdesigning due to improper estimation of safety, 
reducing the structural life expectancy. 

 
Consequently, improved design criteria and analysis 

methods need to be developed.  These methods should be 
capable of handling the new technologies and materials as 
well as existing ones.  Because the loading of a ship 
structure is mainly the sea, a truly random system, the 
most appropriate new method should be one that takes 
into account the randomness of both loading and 
structural properties uncertainties to estimate the risk of 
unacceptable response. 

Presentation
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Based on this need, in recent years, ship structural 
design has been moving toward a more rational and 
probability-based design procedure referred as limit states 
design, which are based on a reliability-based design 
philosophy.  The reliability-based design approaches for 
the ship structural system starts with the definition of the 
mission and the environment for the ship.  The general 
dimensions and arrangements, structural member sizes, 
scantlings, and other structural details must be assumed as 
known. 
 

Using a pre-defined ship operational profile, and 
considering the sea states that might be acting on the ship 
according to this operational profile, the time dependent 
wave induced loads acting on the ship structure can be 
defined according to analytical techniques, such as the 
one proposed by Sikora et al (1983).  The resulting load 
profiles can be adjusted using modeling uncertainty 
estimates that are based on any available results of full-
scale or large-scale hull testing. 

 
The reliability-based design procedure also requires 

defining performance functions that correspond to limit 
states for significant failure modes.  A limit state may be 
viewed as the boundary between acceptable and 
unacceptable structural behavior.  The failure of the 
structural component occurs when its strength is less than 
the loading acting on it.  The reliability of the component 
is achieved when the strength is greater than the load.  
Engineering models comparing the applied load effect (S) 
and the structural strength or resistance (R) are used to 
develop algebraic performance equations of the form: 

 
             Z = R – S                                 (1) 
 
where Z = limit state function, R = structural strength, and 
S = loading acting on the structural component.  The 
failure of the component occurs when g<0. 
 

Uncertainties in the limit state model are modeled in 
terms of the mean, the variance, and the probability 
density and distribution functions of the structural 
strength and loading.  Due to the variability in both 
strength and loads, there is always a probability of failure 
that can be defined as  
 

         ( ) ( )LRP0ZPp f ≤=≤=     (2) 
 

As the probability of failure for structural members is 
small, the safety of a structural component under a given 
external loading is expressed in terms of a reliability 
index, that reflects the probability of failure of the 
structural component.  The higher the reliability index, 
the greater the structural safety.  The required level of 

structural safety for the structural component is expressed 
in terms of a target reliability index. 

 
The reliability index associated with a given 

structural member can be defined in terms of time, 
considering the exposure of the ship to a loading 
condition.  The end of the structural component life, in a 
simplified point of view, corresponds to the instant of 
time where the reliability index associated with the 
member is lower than the target reliability index. 

 
Therefore, a reliability-based procedure is adequate 

to estimate the life expectancy of a vessel, once it deals 
with the uncertainties in the variables that affect the ship 
operational life, such as the structural strength and 
external loading, and allows the modeling of progressive 
degradation mechanism, that can affect the structural 
strength. 
 
1.1. Structural Limit States 
 

In order to examine the safety of ship structures, it is 
important to identify the major modes of hull failure. In 
general, these modes can be grouped as follows: 
 
a) Failure due to yielding or plastic flow of deck or 

bottom, 
b) Failure due to elastic-plastic buckling of deck or 

bottom panels, and  
c) Failure in a fatigue and fracture mode. 
 

When considering the primary hull structure, 
reference is usually made to the midship section, and 
checks on the capability of secondary structures were 
only made in some studies.  Basically the ship hull is 
considered to behave globally as a beam under transverse 
load subjected to the stillwater and wave induced load 
effects.  In general the governing variable is the vertical 
bending moment which will induce the bending of the 
hull.  The resulting stresses are distributed linearly across 
depth of the hull and their intensity at the bottom and 
deck is the ratio of the applied moments by the respective 
section modulus. 
 

The moment to cause first yield of the midship 
section either in the deck or in the bottom is a common 
limit state.  This moment is equal to the product of the 
minimum section modulus by the material yield stress.  It 
tends to be conservative in that typical ship structural 
steels have a reserve strength after initial yielding in terms 
of their ductility and related work hardening capabilities.  
In addition, when first yield is reached at one hull girder 
extreme fiber, the other likely has not yielded and the hull 
girder will remain in this partially plastic state until 
plastic collapse. 
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Another limit is the plastic collapse moment, which 
is reached when the entire section becomes fully plastic. 
This moment is calculated considering that all the 
material is at yield stress.  Thus, the plastic neutral axis is 
in a position that the total areas of material above and 
below the neutral axis are equal. This limit state is 
generally unconservative because some of the plates that 
are subjected to compression may buckle locally 
decreasing their contribution to the overall moment. The 
ultimate moment will in general be between the first yield 
and the plastic collapse moments.  
 

The study of the ultimate resistance of midship 
section has been subject of study in many papers, such as 
those presented by Casella et al (1996), Ren et al (1996) 
and Mansour (1972). 
 

The buckling failure of bottom or deck structures is 
more complex. Bottom and deck structures are generally 
grillages stiffened longitudinally, but still presenting 
transverse structures, named frames, so that different 
buckling modes can occur: failure of plates between 
stiffeners, interframe flexural buckling of the stiffeners, 
interframe tripping of the stiffeners, interframe buckling 
of the panel and overall grillage failure, usually between 
bulkheads, involving deflection of both longitudinal and 
transverse stiffeners.  The elastic-plastic buckling strength 
of this type of structural elements is the objective of 
active research, and there are various adequate 
expressions to quantify their strength. Among these the 
methods proposed by Faulkner (1975), Adamchak (1975) 
and Hughes (1988) are oriented to marine structures. 
 

The failure of deck or bottom panels structures under 
compressive loads can affect such a large portion of the 
cross-section that it is sometimes considered equivalent to 
a hull failure mode, Mansour (1972), and can represent 
the loss of ship safety. 
 

The failure due to yielding, plastic flow or buckling 
of deck or bottom is associated with the failure of the ship 
under an extreme sea load to be faced during the 
operational life of the ship. So for the failure analysis it is 
often necessary to know the maximum of the combined 
value of stillwater and wave-induced loads effects.  There 
is some correlation between the two load process in that 
significant changes of deadweight may imply some 
changes in the wave-induced load effects. 
 

Although many reliability studies are related to the 
analysis of midship section, the ship transverse frame can 
also present yielding, plastic flow or buckling collapse.  
These failure processes were analyzed by Wang (1996) in 
a similar fashion as that used for midship section analysis. 
 

Fatigue damage accumulation is associated to the 
total history of the cyclic wave bending moment rather 
than just the extreme value of the moment per se; thus the 
random nature of this history needs to be considered. 
 

Failure by fatigue is a progressive cracking and 
unless it is detected this cracking can lead to a 
catastrophic rupture.  When a repeated load is large 
enough to cause a fatigue crack, the crack starts at the 
point of maximum stress.  This maximum stress is usually 
associated with a stress concentration (stress raiser).  
After a fatigue crack is initiated at some microscopic or 
macroscopic level of stress concentration, the crack itself 
can act as an additional stress raiser causing crack 
propagation.  The crack grows with each repetition of the 
load until the effective cross section is reduced to such an 
extent that the remaining portion fails with the next 
application of the load (fracture).  For a fatigue crack to 
grow to such an extent to cause rupture, it usually takes 
thousand or even million stress applications, depending 
on the magnitude of the load, type of the material used, 
and on other related factors.   
 

Usually, the fatigue life of a structural component, 
subjected to the action of cyclic stress, is defined as the 
total number of stress cycles required to initiate a 
dominant fatigue crack added to the number of stress 
cycles required to propagate this crack until the final 
failure.  This total life, in a simplified view, is a function 
of the geometry of the structure (local and global), 
applied stress range, the mean stress and the environment 
where the structure is located. 
 

The stress-based fatigue analysis methodologies, 
represented by the classical S-N diagram, embody the 
damage evolution, crack nucleation and crack growth 
stages of fatigue into a single, experimentally 
characterized continuum formulation.  However, it should 
be noted that the S-N curves are developed experimentally 
based on relatively small structures and their failure does 
not necessarily correspond to ship structural failure, 
which is based on the behavior of very large highly 
redundant structure. 
 

A detailed evaluation of engineering structures and 
their construction processes shows these processes can 
induce the presence of small flaws, despite structural 
inspection for quality assurance purposes.  Therefore, a 
modern defect-tolerant design approach to fatigue are 
based on the premise that engineering structures are 
inherently flawed, and the useful fatigue life then is 
determined by the time or number of cycles to propagate 
a dominant flaw of an assumed or measured initial size to 
a critical dimension.  
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Table 1. Classification of the Structural Failures as a Function of the Extension of Damage to the Ship Structure 
 

Failure Degree of Importance Failure 
Primary Secondary Tertiary 

Ultimate 1) Midship cross section plastic 
flow 

2) Buckling of panel structures 
3) Fatigue fracture. 

Stiffened panels buckling 
between frames. 

Unstiffened panel 
buckling. 

Serviceability First yield of the midship cross-
section. 

1) Cyclic load induced through 
thickness crack. 

2) Stiffened panel permanent set 

Unstiffened panel 
permanent set. 

 
 

Because of the limitation on the control of the 
properties of steel and other materials used in 
shipbuilding and because of limitations on production and 
fabrication of ship components, the strength of apparently 
identical ships will not be, in general identical.  In 
addition, uncertainties associated with residual stresses 
arising from welding, the presence of small holes, etc may 
also affect the strength of the ship.  These limitations and 
uncertainties indicate that variability in strength about 
some mean value will result.  This will in turn introduce 
an element of uncertainty as to what is the actual strength 
of the ship that should be compared with the loads and 
their uncertainties in order to define the reliability index 
associated with the structure.   
 

The foregoing brief discussion indicates that it is 
convenient to split the analysis of failure into: 1) ultimate 
failures that will represent the loss of the ship, and 2) 
serviceability failures that will decrease the operational 
performance the ship structure, perhaps making it 
unsuitable for service. 

 
Table 1 suggests a possible classification of ultimate 

and serviceability failures as for reliability analysis. 
 

According to this table, the ultimate failure modes 
include flexural strength and buckling, and the 
serviceability failure modes include permanent 
deformation and first yield. The fatigue failure is included 
in both modes, depending on the extent of fatigue 
damage. 

 
The importance of a failure is classified according to 

the degree of deterioration of ship safety or extension of 
the ship structure affected by a given failure mode.  For 
this study, the failures are classified as: 
 

a) Primary: a failure mode that may affect great part 
of the structure and cause the loss or great major 
degradation of the structure performance, 

b) Secondary: a failure mode that may affect a part of 
the structure and cause damage or degradation of 
the structure performance, and 

c) Tertiary: a failure mode that may affect a small 
part of the structure and cause minor damage or 
degradation of the structure performance. 

 
As for reliability analysis, ideally one could use 

different target reliability levels or margins of safety in 
the evaluation of the primary, secondary and tertiary 
failure modes, thus embedding a level of conservatism 
commensurate with their structural significance or 
consequence of failure. 
 
1.2. Ship Structural Degradation 
 

An ultimate strength failure of a ship structure is 
generally a result of an extreme load event and/or the 
reduction in structural resistance due to progressive 
degradation. For example, cumulative structural wastage 
due to corrosion will reduce local scantlings and thus the 
hull girder section modulus and render the ship more 
susceptible to local bucking or hull girder failure in 
response to an extreme loading event or fatigue crack 
growth will increase the risk (probability) of fracture.  For 
these reasons, one should consider the long-term effects 
of progressive degradation in design.  Design rules have 
generally incorporated corrosion allowances or the idea of 
net scantlings to preclude the deleterious effects of 
corrosion. 
 

In a reliability-based design approach it is necessary 
to express these degradation rates explicitly.  A 
reasonable amount of work has been conducted to 
identify degradation rates of ship structures.  Information 
is available to estimate corrosion rates based on the 
quality of the initial construction and protection systems 
as well as the vessel service and structural location.  For 
example the pitting corrosion of the bottom plating of a 
tanker structure has been expressed as shown in Figure 1.  
This type of information could be used to develop the 
statistical distribution necessary for reliability analysis. 
 

For fatigue damage, the crack growth rate is 
dependent on the vessel operational profile, since the 
crack growth depends on the wave-induced load.  
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Furthermore, the crack growth is dependent on the 
presence of structural defects, induced during the hull 
fabrication, including weld defects and stress raisers, such 
as misalignment between structural parts. 
 

 
 
 
Figure 1. Pitting Corrosion of Bottom Shell Plating under 

Bellmouth, in Cargo Tank. 
 
 

The quality of the fabrication and materials used in 
the construction of a vessel play a significant role in 
defining the life expectancy of a vessel.  Misalignment,  
poor weld toe profiles,  poor quality of paint application 
and cathodic protection systems,  amongst other factors,  
can accelerate the degradation of a structural system.  The 
degradation of the structural system can increase the 
probability of an ultimate structural failure, thus reducing 
the life expectancy of the structure, and consequently, 
reducing the vessel operational life. 
 
1.3. Objectives and Scope 
 

Time-dependent reliability assessment can be 
performed on new or existing ship structures when the 
structural resistance and the loads are described by 
probability distributions.  It is expected in general, that as 
the service life of a structure progresses, expected 
extreme loads effects increase and structural strength 
decreases.  For ship structures, the increase in load is 
based on the random nature of the wave loading.  The 
longer the period of exposure, the greater the expectation 
of a high wave load.  The decrease in strength is usually 
associated with the wastage of hull plating or stiffeners 
due to corrosion.   
 

The time-dependent failure modes of ship structures 
can be classified in two main categories: (1) the first-
passage failure modes, and (2) the cumulative failure 
modes.  The first-passage failure mode includes the 

failures due to yielding or plastic flow and due to elastic-
plastic buckling.  The fatigue failure is classified in the 
second category. 
 

The objective of this paper is to propose a 
methodology for reliability-based ship structural life 
assessment, considering both categories of time-
dependent failure modes above presented.  The 
methodology takes into account the stochastic nature of 
the loads acting on the ship structure induced by 
environmental conditions and ship operational profile, 
randomness in strength and degradation resulting from 
environmental action. 
 

Taking in view the great amount of fatigue failure in 
ship structures, the engineering models for estimating the 
fatigue resistance of ship structures are analyzed, taking 
in view the data requirements and relative level of 
approximation inherent in each approach.  The fatigue 
analysis of a typical ship structure welded joint is 
performed, considering the use of the S-N and Fracture 
Mechanics approaches for fatigue reliability analysis. 
 
 
2. RELIABILITY-BASED STRUCTURAL DESIGN 

AND ANALYSIS 
 

The reliability of an engineered structure can be 
defined as the likelihood of it maintaining its ability to 
fulfil its design purpose for some time period under 
specified environmental conditions.  The theory of 
probability provides the fundamental bases to measure the 
probability of satisfactory performance according to some 
performance functions under specific service and extreme 
conditions within the stated time period.  In estimating 
this probability, system uncertainties are considered using 
random variables with associated mean values, variances, 
and probability distribution functions.  Many methods 
have been proposed for structural reliability analysis, such 
as first-order second moment (FOSM) method, advanced 
second moment (ASM) method, computer-based Monte 
Carlo simulation (e.g., Ayyub and McCuen 1997, Ang 
and Tang 1990, Ayyub and Haldar 1984, White and 
Ayyub 1985), and conditional expectation simulation 
(e.g., Ayyub and McCuen 1997).  These reliability 
analysis methods may be used to estimate the time-
dependent or conditional reliabilities. 
 

2.1. Instantaneous Reliability 

 
The reliability of a structure may be estimated based 

on a limit state equation (or performance function) that 
can be expressed in terms of the basic design variables, 
some of which are represented as random variables (Xi) to 
express their perceived variability.  The limit state 
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equation, Z(Xi), defines the boundary between acceptable 
and unacceptable performance (safe operation and failure) 
and can be presented as: 
 
             Z(Xi) = Structural Capacity - Load Effects 

Unsatisfactory performance (or the occurrence of a limit 
state) is identified when the limit state equation is less 
than zero (i.e. Z(Xi) < 0).  If the joint probability density 
function for the basic random variables Xi’s is               
fX1, X2, …,Xn(x1,x2,…xn), then the unsatisfactory performance 
(i.e., failure) probability pf of a structure is estimated 
based on the convolution integral: 
 
    ∫ ∫= nnXXXf dxdxdxxxxfp

n
KKL K 2121,,, ),,,(

21
    (3) 

where the integration is performed over the region in 
which Z < 0.  In general, the joint probability density 
function is unknown, and evaluating the convolution 
integral is a formidable task.  For practical purposes, 
alternate methods of evaluating pf are necessary. 
 

One alternative is the use of a Taylor series 
approximation, which can express a first order (FORM) 
estimate of reliability by expressing the joint probability 
density function parameters (mean and standard 
deviation) as follows: 
  
                                UZ = Z(UXi)    and  
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where 
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∂=  ,  ρij is the correlation coefficient for 

variables i and j which can be assumed to be zero for 
independent variables (uncorrelated) and UXi and σXi are 
the random design variable means and standard 
deviations,  respectively.  With this information a FORM 
estimate of the reliability is developed using the concept 
of the reliability index (β) and its assumed relationship to 
the inverse standard normal probability distribution (Φ-1) 
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and the probability of failure is defined as ( )βΦ 1
fp −=  

As shown in Eq. 5, the reliability index may be 
expressed in terms of the structural resistance (R) and 
loading (S) distribution parameters for convenience.  
More advanced Taylor series expansion techniques such 
as that based on the work of Hasofer and Lind (Madsen, 

Krenk and Lind 1986) could also be applied, defining the 
Advanced Second Moment method (ASM). 

Simulation techniques offer a numerical alternative to 
the estimation of reliability or failure probabilities.  These 
approaches basically continuously select random values 
for each random design parameter from their respective 
probability distributions and evaluate the limit state 
equation.  The total number of limit state evaluations 
indicating unsatisfactory behavior divided by the number 
of evaluations is the probability of failure  
(=1 - Reliability).  This process becomes time consuming 
and computationally expensive for high reliability cases 
since the number of limit state equation evaluations 
required to converge on an accurate estimate of the failure 
probability is large.  Advanced more efficient simulation 
techniques including importance sampling or Latin-
Hypercube sampling (Dinovitzer 1992) may be used to 
reduce the computational cost and render simulation 
techniques viable. 
 
2.2. Time-Dependent Reliability 
 

The strength (or resistance) R of structural 
component and the load effect L are generally functions 
of time.  Therefore, the probability of failure is also  a 
function of time.  The time effect can be incorporated in 
the reliability assessment by considering the time 
dependence of one or both of the strength and load 
effects. 
 

Ayyub and White (1990a and 1990b) and White, 
Ayyub and Purcell (1989) developed a methodology for 
assessment of structural life of marine structures using the 
basic concepts of probabilistic analysis, and statistics of 
extremes.  According to these authors, it is expected in 
general, that as the service life of a structure progresses, 
expected extreme load effects increase.  Then the 
resulting extreme value probability distribution can be 
used in the reliability assessment.  These authors also 
considered that the structural strength decreases, usually 
due to wastage of the hull plating due to corrosion. 
 

The proposed reliability analysis is based on the 
determination of the probability of failure for a given time 
t.  On the basis of the time-dependent load effect L(t) and 
the structural strength R(t), the probability of failure for 
the time t is computed for a specified failure mode using 
one of the applicable methods described in section 2.1.  
These functions represent the instantaneous probability 
density function for the load effect and structural strength 
at a given time, considering both the extreme value 
distribution for the load effect and the degradation of the 
structural resistance at this time.  By varying the time 
period t from zero to the design structural life, a plot of 
the probability of failure as a function of time can be 
developed.   This probability of failure is defined as the 
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instantaneous probability of failure at time t, without 
regard to previous or future performance.  
 

This method is suitable for using in reliability and 
structural life assessment according to certain failure 
modes, for example, plastic deformation and buckling.  
For failure modes, such as fatigue, that the failure event 
occurs because of the accumulation of damage due to 
repeated application of cyclic loads of variable amplitudes 
with varying frequencies, the reliability is defined 
according to the methods described in section 2.3.2. 
 

Ayyub, White, Bell-Wright and Purcell (1990c) 
applied this methodology in a comparative analysis 
between two different patrol boats.  The comparison is 
based on the identification of two critical failure modes, 
plastic plate deformation and fatigue.  

 
Most of these concepts were reviewed by Ayyub and 

White (1995) in order to generalize them for any 
structural system. 
 

Also for marine structures, Soares and Ivanov (1989) 
discussed a model to quantify the time variation of the 
reliability of a primary ship structure.  The variation of 
resistance is assumed to be a decreasing function due to 
the corrosion effect. The basic equation is 
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where R(L) represents lifetime reliability, h(t) represents 
the hazard function which is the probability that the 
structure will fail during interval t and t + dt, to is the time 
at which the structure is put in service, and Ro is the 
reliability at that time.  For high levels of reliability 
another relation is suggested by Soares and Ivanov (1989) 
as 
                        )]R1(n1exp[R)L(R i0 −−=               (7) 

where the lifetime is equal to n years, and  
 
                                 fi p1R −=                                    (8)  

                               )(p f βΦ −=                                   (9) 

where Φ is the Gaussian distribution function. β  is the 
standard safety index.  The assumption in Eq. 9 of a 
standard normal distribution is not always true.  

Ellingwood and Mori (1993) developed a time-
dependent methodology for the deterioration of concrete 
structures at nuclear power plants.  This method models 
significant structural loads as a sequence of pulses which 
can be described by a Poisson process with mean 
occurrence rate, λ, random intensity, Sj, and duration, τ.  

Ellingwood and Mori (1993) define the limit state of the 
structure at any time as: 

 
                                      R(t) - S(t) < 0                           (10) 

where R(t) is the strength of the structure at time t and S(t) 
is the load at time t.  The probability of failure can then be 
defined at time t as P[R(t) < S(t)].  Ellingwood and Mori 

(1993) define the reliability function, L(t) as the 
probability that the structure survives during interval of 
time (0,t).  The equation for reliability function becomes 
 

      dr)r(f]dt)r)t(g(Fs
t
11[texp[)t(L

t

0
R

0
∫∫ ⋅−−=

∞
λ  (11) 

where fR(r) is the pdf of initial strength, R and g(t) is the 
time-dependent degradation in strength.   

Ellingwood and Mori (1993) express the reliability in 
terms of the conditional failure rate or hazard function, 
h(t) as 

                                )t(Lln
dt
d)t(h −=                        (12) 

which can be expressed  as  

                             ∫−=
t

0
d)(hexp[)t(L ξξ                     (13) 

Ellingwood (1995) later notes that the reliability and 
limit state functions L(t), or conversely the probability of 
failure, pf(t) , are cumulative, i.e., they should be used to 
define the probability of successful performance during a 
service life interval (0,t).  Ellingwood (1995) emphasizes 
that the pf (t) = 1- L(t) is not equivalent to P[R(t) < S(t)], 
the latter being just an instantaneous failure at time, t, 
without regard to previous or future performance.  This is 
a very important point that is lacking in much of the 
literature that is available. 
 

Although the method developed by Ellingwood and 
Mori (1993) was used to analyze the reliability of 
concrete structures, it can be used to calculate the time-
dependent reliability of ship structures.  The main 
advantage of this methodology is the development of a 
closed function expressing the structure reliability, 
considering the time dependency of structural strength 
degradation.  The probabilistic characteristics of the 
loading are considered as time invariant. 
 
2.3. Methodology for Time-Dependent Reliability of 

Ship Structures 
 

Based on the analysis presented on section 1.2 of this 
paper, the time-dependent failure modes of ship structure 
can be classified in two main categories: (1) first-passage 
failure modes, and (2) cumulative failure modes.  The 
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methodologies for time-dependent reliability analysis for 
these two categories are presented in this section. 
 
2.3.1.First-Passage Failure Modes 
 

Structural safety under a single load is measured by 
the probability of survival, L, represented by 

                       ( ) ( ) ( )∫
∞

=>=
0

RS drrfrFSRPL             (14) 

in which FS(x) is the probability distribution function of 
the structural response due to the applied load, S, and fR(r) 
is the probability density function of the resistance of the 
structure, R, expressed in units that are dimensionally 
consistent with S. 
 

Structural loads and strength vary in time, making 
structural reliability time dependent.  Assume, for the 
present that the initial strength of the structural 
component, R0, is deterministic and equal to r.  Suppose 
that N=n load events occur within time interval (0, tL), 
and that there is no change in component resistance, r.  
The loads Sj, j = 1, 2, …, n, are assumed to be statistically 
independent random variables described with distribution 
function FS(x).  The reliability function, L(tL), defined as 
the probability that the structural component survives 
during time interval (0,tL) is expressed as 
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===
    (15) 

or 
                     ( ) ( )[ ]n
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However, strength of the component may deteriorate 
with time due to environmental action, and this 
deterioration may be expressed as 

 
                                  ( ) ( )trgtr =                                  (17) 

in which r(t) is the strength at time t, and g(t) is the 
degradation function.  Ellingwood and Mori (1993) 
assumed that the function g(t) is independent of the load 
history.  Therefore, the formulation presented 
subsequently can be used to express time-dependent 
reliability due to deterioration induced by corrosion and 
similar environmental effects.  However this methodology 
cannot be applied to fatigue analysis, where the time-
dependent behavior in strength is affected by stresses 
induced by environmental loading. 
 

If n loads occur within the time interval (0, tL) at 
deterministic times tj, j = 1, 2,…., n, the reliability 
function is represented as follows: 
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In general, the loads occur randomly at a vector of 
times T={t1,t2,….tn}, described by the joint probability 
density functions fT(t). In this case, the time-dependent 
reliability function becomes 
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The number of loads acting on a structure during a 
given time interval can be considered random, so the 
reliability function is also dependent on the random 
variable n.  Ellingwood and Mori (1993) suggested that 
the number of load occurrences in a time interval can be 
modeled by a Poisson distribution, with characteristic 
parameter λ representing the mean rate of occurrence of 
loads.   
 

Considering that the number of load occurrences is 
modeled with a Poisson distribution, the time to occur one 
load is a random variable modeled by an Exponential 
distribution. In the time interval (0, tL), the time to occur 
the j load is represented by the following probability 
density function 

 
              ( ) ( )( )1jLjT ttexptf −−−= λ , for t>tj-1            (21) 

where tj-1  is the time that the (j-1) load occurs. 
 

As the loads are statistically independents, the joint 
probability function of the time of occurrence of n loads 
is expressed as: 

 

       
( )( )[ ]121nnL

n

n21T
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−λλ
 (22) 

for the interval (0, tL) and considering t1<t2<….<tn-1<tn.  
Consequently, the reliability function, considering the 
occurrence of n loads, can be formulated as follows 
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        (23)  

The reliability function presented in Eq. 23 can only 
be analytically evaluated if the time-dependent integral 
has a closed form.  As the probability functions usually 
used to define the loading effect on a structure or 
structural component have complex formulations, the 
numerical value of the Eq. 23 can only be defined 
numerically, and solved based on the use of simulation 
techniques.  This simulation is not easily executed taking 
in view that, for a given number of loads (n), the 
reliability function is evaluated based on the random 
generation of the time of occurrence of each load.  The 
simulation must be repeated for a given number of trials, 
until the reliability function presents a numerical 
convergence.  This procedure must be executed for a set 
of values of number of random loads, since this variable 
is considered a random variable. 
 

In order to evaluate the behavior of the reliability 
function presented in Eq. 23, the strength of the structure 
is assumed deterministic and a constant with magnitude r.  
The reliability can then be expressed as 
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Based on Eq. 25 a function A(n,λ, tL) can be defined 
as the relation between the reliability index and the 
structural resistance 
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      (26) 
 

The evaluation of the integral that defines A(n,λ,tL) 
can be executed numerically, with the use of simulation 
techniques, for a given set of values of the variables λ and 
tL, varying the number of loads (n).  
 

The Poisson probability function used to model the 
distribution of number of occurrence of load during the 
time interval (0, tL) as a mean value equal to λtL and the 
standard deviation equal also to λtL.  This mean value 
represents the expected number of load occurrences in the 
interval (0, tL). 
 

The trends presented in Figure 2 represents the 
numerical variation of A(n,λ,tL) as a function of the 
relation n/λtL i.e., (number of load occurrences divided by 
mean value of Poisson distribution), corresponding to the 
number of standard deviations, for a value of tL equal to 
10 units of time.  The results presented in this figure were 
defined through the use of numerical simulation, in which 
a random set of time of occurrences were generated, 
allowing the evaluation of the function A(n,λ,tL). 

 
Based on the results presented in Figure 2, the 

function A(n,λ,tL) decreases with the increase in the 
relation n/λtL.  The rate of decrease is reduced when the 
mean value of the Poisson distribution increases.  For the 
case when this mean value is equal to 10, the rate of 
decrease can be considered very low, and the function 
A(n, λ, tL) can be considered constant, and equal to 1. 
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Figure 2. Numerical Variation of the Function A(n,λ,tL) as 

a Function of the Relation (n/λtL) 
 
 

This result indicates that for high mean values of 
number of load occurrences, the joint distribution of the 
time of occurrence of loads can be considered uniform, 
since for high number of loads, the time of occurrence of 
these loads can be considered uniformly distributed in the 
interval (0, tL).  Specifically for ship structures, the mean 
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value of number of load occurrences during the ship 
operational life is very high, so the above mentioned 
hypothesis can be used to model the distribution of the 
time of occurrence of loads.  Ellingwood and Mori (1993) 
also used this hypothesis to model the joint probability 
distribution of the time of occurrence of the loads.   
 

Considering that time of occurrence of loads are 
uniformly distributed, the joint probability density 
function of the time of occurrence of n loads in the 
interval (0, tL) is expressed as 

                        ( )
n

L
n21T t
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According to Ellingwood and Mori (1993) the 
reliability function is expressed as 
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Equation 29 is used to define the reliability of the 
structure considering the action of n random loads in a 
given time interval (0, tL), and that the structural strength 
at the beginning of the operational life is deterministic. 
 

Considering that the number of load events is 
random, defined according to a Poisson distribution, the 
reliability function in the interval (0, tL) becomes 
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According to Ellingwood and Mori (1993),     
Eq. 30 is expressed as 
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As a final step for time-dependent reliability analysis, 
the conditioning on the initial strength R0=r is removed in 
order to take into account the randomness in the structure 
initial strength by considering the probability density 
function associated with the structural resistance as 
follows 
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        (32) 

Equation 32 is used to define the reliability of the 
structure or structural component in the time interval     
(0, tL).  This model can be used to analyze the reliability 
associated with the ultimate strength and buckling failure 
modes.  
 

The time-dependent reliability analysis based on this 
methodology must be performed according to the 
procedure presented in Figure 3. The information 
necessary to perform the reliability analysis includes the 
structural loading, the structural strength and the time 
degradation characteristics represented by the corrosion 
effects. 
 

The lifetime structural loading must be developed 
considering the operational conditions and the 
characteristics of a ship in the sea.  The operational 
conditions are usually divided into different operation 
modes according to the combinations of ship speeds, ship 
headings, and wave heights.  The ship characteristics 
include the length between perpendicular, the beam, the 
draft, and the displacement.  As the reliability analysis 
requires the probabilistic characteristics of the random 
variables used in the reliability function, expressed in   
Eq. 32, the loading acting on the ship structure must be 
defined by a probability function (FS(x)), that represents 
the combination of the loading conditions faced by the 
structure during its operational life.  This function can be 
expressed as a combination of short-term loading 
conditions probability functions, in accordance with the 
Lifetime Weighted Sea Method, proposed by Hughes 
(1988).  In addition to this function, the rate of occurrence 
of loads (λ) must be defined, in order to evaluate the 
time-dependent reliability.  If necessary, a rate of 
occurrence of loads can be defined for each short-term 
load condition. 
 

The ship structural characteristics allow the definition 
of the initial structural strength (R0), used for reliability 
analysis.  By considering the structural configuration and 
the uncertainties associated with the dimensions of the 
structural elements (plates and stiffeners), a probability 
density function can be associated to the structural 
strength.  This function is used to define the time-
dependent reliability according to the expression 
presented in Eq. 32. 
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Figure 3. Time-Dependent Reliability Flowchart for First-
Passage Failure Modes 
 
 

The time degradation effects, represented by the 
corrosion process, can affect the structural strength or the 
material properties.  With respect to the structural 
strength, the corrosion effect must be modeled according 
to a degradation function (g(t)), that express the rate of 
structural strength degradation through the ship 
operational life as a function of the reduction of the 
structural scantlings dimensions due to corrosion.  This 
function must be defined based on the statistical 
distribution of annual corrosion rates observed for ship 
structures.  Besides this effect, the corrosion can also 
affect the material properties, such as ductility, due to the 
phenomena named Stress Corrosion Cracking (SCC), 
Jones (1992).  So, the possible degradation in material 
properties due to the corrosion must also be modeled as a 
degradation function that expresses the rate of changes as 
a function of time. 
 

Once the probabilistic characteristics of the loading 
and structural strength are defined, the time-dependent 
reliability of the ship structure can be defined, being 
developed a function similar to Eq. 32 for each of the 
failure modes analyzed in the study (ultimate strength and 
buckling).  Based on these functions, the time-dependent 
reliability is defined for each of these failure modes.  The 
solution of the time-dependent reliability equation can be 
executed numerically or analytically, depending on the 

complexity of the equation developed for each failure 
mode. 
 

As a summary, the following steps must be executed 
for time-dependent reliability analysis of first-passage 
failure modes: 
 
1) Define the probability function associated with the 

ship long-term loading (FS(x)); 
2) Define probability density function of the initial 

structural strength of the ship structure          ( fR0(x)); 
3) Define the structural strength degradation function 

(g(t)) and the material properties; 
4) Define the time-dependent reliability equation, 

similar to Eq. 2-15, considering the possible material 
properties degradation due to corrosion action; 

5) Evaluate the time-dependent reliability considering 
the ship operational life. 

 
2.3.2.Failure Due to Cumulative Damage 
 
The total fatigue life of a ship structural detail is 
computed through the sum of the number of load cycles 
necessary to develop the crack and the number of load 
cycles necessary to induce the crack propagation, from an 
initial size to a critical size, as shown in Figure 4. 
 
 
 

Crack Initiation

S-N curve

Crack Propagation

Fracture Mechanics

0

N

Total Fatigue Life  
 
Figure 4. Comparison between the Characteristic S-N 

Curve and Fracture Mechanics Approach    
(Assakkaf and Ayyub 1999) 

 
 

Two approaches are usually adopted in the evaluation 
of fatigue failure. The first one uses the S-N curve 
associated with Miner’s rule as a base, considering the 
probabilistic distribution related to the S-N curve, Miner’s 
damage parameter and the loading to estimate the fatigue 
reliability. The second approach focuses on the fracture 
behavior, where the fatigue failure of a mechanical or 
structural element under dynamic loading can be 
considered as the dominant time to a crack length grows 
up to a critical magnitude, which may be decided by 
serviceability requirement or fracture criterion. 
 

Both approaches are discussed in the sequence of this 
section, being presented the fatigue reliability models 
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based on these approaches which were developed for ship 
structure design and analysis. 
 
2.3.2.1. The S-N Approach 
 

Traditionally, the design of marine structures takes 
into account the fatigue analysis based on S-N curves and 
some models proposed to analyze the fatigue reliability of 
ships structures are based on S-N curves and Miner’s rule. 
 

According to Miner’s rule, the total fatigue life under 
a variety of stress ranges is the weighted sum of the 
individual lives at constant stress range S as given by the 
S-N curves, with each being weighted according to a 
fractional exposure to that level of stress range (Fuchs and 
Stephens 1980).  The mathematical expression of Miner’s 
rule is 

                                      ∑
=

=
Sn

1i i

i

N
n

D         (33) 

where ni = number of stress cycles in block i, Ni = number 
of cycles to failure at constant stress range Si, and nS = 
number of stress blocks.   
 

The fatigue behavior of different types of structural 
details is generally evaluated using constant-cycle fatigue 
tests, and the results are presented in terms of nominal 
applied stresses and the number of cycles that produce 
failure.  The resulting S-N curves are expressed by the 
following relation 

 
                                    ANS b =     (34) 

where A = constant of S-N curve, N = number of cycles to 
fatigue failure, S = constant amplitude stress range at N , 
and b = slope of the S-N curve. 
 

The books published by Fuchs and Stephens (1980), 
Suresh (1991) and Maddox (1991) present good reviews 
of the metal fatigue process, which can be used as the 
basis for the fatigue analysis of any metallic structure. 
According to these authors, the fatigue behavior of a 
structural detail is a function of a variety of factors, 
including: (1) the general configuration and local 
geometry of the member, (2) the material from which the 
members are made, and (3) the loading conditions to 
which the detail is subjected to. 
 

The ship structure presents another important feature 
that influences the fatigue process which is the use of 
welding process for the assembly of the structural parts.  
According to many authors, such as, Morgan (1986); 
Mansour et al. (1995), Kihl and Sarkami (1996); Petenov 
and Thayambali (1998); Moan and Berge (1997), and Xu 
(1997), the weld can induce stress concentrations due to 
the weld geometry that influence crack growth behavior.  

The choice of the appropriate stress representation is 
an important factor in reliability-based design and 
analysis for fatigue.  Two different approaches can be 
used for fatigue design and analysis based on S-N curve: 
(1) the nominal stress approach, and (2) the hot spot stress 
approach. 
 

The nominal stress approach is the simplest one 
between these two approaches.  In this approach, the 
stress is represented by an average loading of the whole 
structural detail under study.  The nominal stress is the 
maximum stress due to sectional forces or moments or the 
combination of the two at the location of possible 
cracking site in the detail.  In this approach, neither the 
weld toe nor the properties of the weld material 
constitutive relations are taken into consideration.  The S-
N curve resulting from this analysis is unique to the 
structural detail for which it is established.  Most design 
codes nowadays divide various structural details into 
different classes and provide standard S-N curve for each 
class, such as the American Welding Society (AWS 1990) 
and the British Standards, cited by Mansour et al (1995).  
For the fatigue analysis, a given structural detail must be 
classified according to a specific curve provided by the 
standards. 
 

The hot spot stress is defined as the fatigue stress at 
the toe of the weld, where the stress concentration is the 
highest and where fatigue cracking is likely to initiate 
(Mansour et al 1995).  The hot spot stress takes into 
account the local increase in stress due to the complex 
structural geometry of the welded joint.  The advantage of 
the hot spot stress method is that only one universal S-N 
curve is required to define fatigue strength for all welds, if 
such curve exists.  The disadvantage of this approach is 
the requirement for more elaborate stress analysis 
methods, such as the finite element method, to determine 
the hot pot stress. 
 

Therefore, for welded structures, the weld geometry 
which produces stress concentrations must be considered 
as an additional local structural geometry effect which 
may be incorporated in nominal stress S-N curves or 
considered explicitly in hot spot S-N curves.  Typically, 
for ship structures, the usual approach for fatigue analysis 
is based on the nominal stress. 
 

In the fatigue analysis of ship structural details, the 
uncertainties associated with the following analysis 
variables may be considered: (1) Miner’s fatigue damage 
ratio, (2) the fatigue life prediction related to S-N curve 
model, (3) the applied stress range, and the (4) theoretical 
stress analysis procedure (Wirsching 1984). 
 

Fatigue reliability of ship structures, based on S-N 
approach, can be assessed using models proposed by 
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Wirsching (1984), Munse (1983), Mansour et al (1995), 
Ang et al (1999) and Assakkaf and Ayyub (1999).  

 
The Ship Structure Committee funded the model 

developed by Munse et al (1983).  The work is interesting 
not only for the recommended reliability-based fatigue 
design approach but also for the large amount of test data 
it contains for typical ship structural details 
 

The design approach is based on calculating a 
“design” stress range Srd for fatigue.  This stress range is 
the maximum peak-to-trough stress range expected at the 
structural detail in analysis once under the most severe 
sea state during the entire life of the structure.  The design 
stress Srd must be less than or equal to the nominal 
permissible stress permitted once during the life of the 
structure by the basic design rules. 
 

According to the Munse approach, the design stress 
range Srd is found using the following equation 

 
                                   ξfNrd RSS =          (35) 

where SN = the mean value of the constant-amplitude 
stress range at the design life Nd, Rf = a reliability factor, 
and ξ = a random load factor. 

The mean value of the constant-amplitude loading 
stress range is found by entering the S-N curve of the 
structural detail of interest at the number of cycles Nd 
expected in the design life.  The probabilistic nature of the 
design method is introduced by the factors Rf and ξ 
presented in Eq. 2-8. 
 

The reliability factor Rf is meant to account for 
uncertainties in the fatigue data, workmanship, 
fabrication, use of the equivalent stress range concept, 
errors in the predicted load history and errors in the 
associated stress analysis (White et al 1995).  The random 
load factor accounts for the probability of occurrence of 
the design stress range. 

 
The lognormal format (Wirsching 1984) has been 

proposed as a convenient closed-form method for 
performing reliability assessments of existing designs or 
for developing probability-based design criteria.  The 
fatigue damage, based on the Miner’s rule, is written as 

                                   ( )bSE
A
nD =          (36) 

where n = number of load cycles, and D = the damage 
accumulated in n load cycles.  Instead of using the mean 
value of the random variable Sb (E(Sb)), Wirsching (1984) 
proposed the use of an equivalent constant amplitude 
stress range, Se, defined as 

                                    ( )b b
e SES =         (37)  

and the damage can be written as 

                                      b
eS

A
nD =         (38) 

In order to take into account the stress modeling error 
in the fatigue analysis, Wirsching proposed the use of a 
bias factor B to correct the equivalent stress, and the 
fatigue damage is expressed according to the following 
equation 

                                   b
e

b SB
A
nD =         (39) 

The Miner’s rule states that fatigue failure occurs 
when the damage exceeds one, i.e., D≥1.  From fatigue 
experimental results, it was suggested that it is more 
appropriate to describe the fatigue failure as D≥∆, in 
which ∆ is a random variable denoting damage at failure.  
The random variable is used to quantify the modeling 
error associated with Miner’s rule. 
 

Because of the scatter in S-N data, Wirsching (1984) 
suggested that uncertainty in fatigue strength can be 
accounted for by considering A as a random variable with 
b taking as a constant. 
 

The stress correction factor, B, is also considered a 
random variable by Wirsching (1984), and the uncertainty 
in B is assumed to stem from five sources: (1) fabrication 
and assembly operations, (2) sea state description, (3) 
wave load prediction, (4) nominal member loads, and (5) 
estimation of hot spot stress concentration factor. 
 

Wirsching (1984) also recommended that a 
lognormal distribution should be used for the random 
variables A, B, and ∆, as a basis for fatigue reliability 
analysis and code development. 
 

Based on these considerations, at failure, the damage 
(D) is equal to ∆, and the total number of load cycles (N) 
until failure is 

                                      b
e

b SB
AN ∆=          (40) 

The total number of load cycles until failure (N) is a 
random variable.  If A, B, ∆ are lognormally distributed 
random variables, then N will have an exact lognormal 
distribution.  The mathematical properties of the 
lognormal distribution allow a closed-form solution for 
the probability of a fatigue failure prior to the end of the 
intended service life NS.  The fatigue failure probability 
(pf ) is given by 
                                      ( )Sf NNPp ≤=         (41) 

The probability of failure can be also defined in 
terms of the reliability index β and the standard normal 
distribution (Φ (⋅)) as 
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                                         ( )βΦ −=fp         (42) 

Based on Eq. 40, the reliability index can be 
expressed as 
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in which C∆, CA, and CB denote the coefficient of 
variation (COV) for the variables ∆, A, and B, 
respectively.  The tildes over the variables denote median 
values. 
 

In evaluating fatigue reliability according to 
Wirsching’s model, the equivalent stress range Se needs 
to be estimated. The estimation can be based on the 
Weibull model, as presented in the previous section, or 
based on more sophisticated analysis, such as the spectral 
method proposed by Sikora et al (1983).  Wirsching 
(1984) presented some expressions commonly used for 
the definition of the equivalent stress range. 

 
Based on the lognormal format, Mansour et al (1995) 

developed a prototype fatigue design criteria structural 
code for cruisers and tankers. 

 
The model developed by Assakkaf and Ayyub (1999) 

is based on the classical theory of structural reliability, 
being defined a functional relationship between the 
relevant load and resistance parameters as for fatigue 
analysis. 
 

The reliability-based analysis for fatigue requires the 
definition of a performance function related to the 
Miner’s rule.  This function is expressed as (Assakkaf and 
Ayyub 1999) 
 

                      tn
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=

∆                  (46)

       

where gSN = performance function, X = vector of basic 
random variables, and the random variables are ∆ = 
fatigue damage ratio, A = constant of S-N curve, Sk  = 

fatigue stress uncertainty factor, and ∑
=

n

1i

b
iS = cumulative 

dynamic stress range acting on the structure during a 
given number of load cycles n.  The Nt is a deterministic 
value that corresponds to the number of load cycles 
expected during the structure operational life.   
 

The limit surface or performance function of the limit 
state of interest can be defined as gSN = 0.  This is the 
boundary between the safe and unsafe regions in the 
design parameter space, and it also represents a state 
beyond which a structure can no longer fulfill the function 
for which it was designed.  Therefore, the fatigue failure 
occurs when ( ) 0Xg SN ≤ .  
 

As the joint probability function of the basic random 
variables is unknown, Assakkaf and Ayyub (1999) 
proposed the use of the advanced second moment (ASM) 
to solve the performance function presented in Eq. 46, 
defining the probability of fatigue failure, expressed in 
terms of reliability index. 
 

The reliability index resulting from reliability 
assessment methods such as the advanced second moment 
(ASM) is compared with target reliability, and the 
structure is considered safe when the former is bigger. 
 

The authors proposed the use of Eq. 46 to evaluate 
the reliability associated with a given ship structural 
detail.  According to these authors, the spectral analysis is 
used to develop lifetime fatigue loads spectra by 
considering the operational and the characteristics of ship 
in sea, as proposed by Sikora et al (1983).  With the 
proper identification of the structural detail resistance 
modulus, these loads spectra can be converted to stress 
range spectra.  The stress range spectra are used to 
compute the equivalent stress range Se as given by 

                                   b
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b
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=
=          (47) 

where nb = number of stress blocks in the stress 
histogram, fi = fraction of cycles in the ith block, and Si = 
stress in the ith block. 
 

The performance function is written as 

                               tb
e

b
S

SN N
Sk
A)X(g −= ∆          (48) 

The reliability-based design and analysis for fatigue 
requires the probabilistic characteristics of the random 
variables in the performance function.  It also requires 
specifying target reliability index β0 to be compared with 
a computed β resulting from reliability assessment 
methods such as ASM. 
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The reliability function for fatigue analysis suggested 
by Ang et al (1999) is based on the hypothesis that as 
fatigue is a process of cumulative damage, the conditional 
probability that failure will occur in the next loading cycle 
should be monotonically increasing with the life spent, 
i.e., the hazard function should be monotonically 
increasing.  Ang et al (1999) used the Weibull probability 
distribution to express the fatigue reliability. The 
corresponding reliability function ( L(tL N=n)) for a 
given time interval (0, tL) is expressed by 
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where n = the number of load cycles in the time interval 
(0, tL), E(N) = the mean fatigue life, and k = shape 
parameter for the Weibull probability distribution.  
 

The mean fatigue life is defined considering that the 
fatigue failure occurs when the mean damage, defined by 
Miner’s rule, is equal to 1.0, and is expressed as  

                                    ( ) ( )
( )bSE

AENE =         (50) 

and 

                                 ( ) ( )∫
∞

=
0

S
bb dssfSSE         (51) 

where E(A) = mean value of the S-N curve parameter, 
( )bSE  = the mean value of the random variable bS , E(N) 

in the mean fatigue life value, and fS(s) = the probability 
density function of the stress range acting on the 
structure. 
 

The shape parameter k can be obtained as follows 
                              ( ) 08.1NCOVk −=         (52) 

where COV(N) is the coefficient of variation of the 
fatigue life. 
 

According to Ang et al (1999) the coefficient of 
variation is used to model the uncertainty of the random 
variables that influence the ship structure fatigue life. The 
main sources of uncertainty are: (1) uncertainty in 
strength, and (2) uncertainty in loading. 
 

In establishing this coefficient, Ang et al (1999) take 
into account the following sources of uncertainty: (1) the 
scatter in fatigue data, related to the S-N curve, (2) 
uncertainty due to the utilization of Miner’s rule and 
errors in the fatigue model, (3) uncertainty in the stress 
range distribution and error in stress analysis and           
(4) uncertainty related to the effects of the quality of 
fabrication and wokrmanship. 

According to Ang et al (1999), the total uncertinty 
(COV(N)) in terms of fatigue life is given by 

 

         ( ) 2
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2
mr CbCCCNCOV +++=         (53) 

where Cmr = uncertainty (COV) due to errors in fatigue 
model and use of Miner’s rule, Cc = uncertainty (COV) 
due to fabrication and workmanship, CSN = uncertainty in 
S-N curve, CB = uncertainty in the stress range including 
error in stress analysis, and b = slope of mean S-N 
regression line. 

 
The method proposed by Ang et al (1999) considers 

the uncertainties in the variables that affect the fatigue 
failure of a structural detail through the use of their 
coefficient of variation.  The reliability of the structural 
detail is expressed as a closed function, based on the 
hypothesis that the life of the structure is modeled by a 
Weibull probability function.  The shape parameter of the 
distribution is calculated based on the coefficient of 
variation of the random variables.  The great advantage of 
this method is the use of a closed equation to express the 
structural detail reliability, although the use of the 
Weibull distribution to model the dispersion in the fatigue 
life could be questionable. 

 
2.3.2.2. Fracture Mechanics Approach 
 

The fracture mechanics approach is based on crack 
growth data. For the structural detail under analysis the 
crack initiation phase is assumed to be negligible and the 
life can be predicted using the fracture mechanics method. 
The fracture mechanics approach is more detailed and it 
involves examining crack growth and determining the 
number of load cycles that are needed for small initial 
defects to grow into cracks large enough to cause fracture. 
The growth rate is proportional to the stress range.  It is 
expressed in terms of a stress intensity factor K, which 
accounts for the magnitude of the stress, current crack 
size and geometry, and structure geometry. According to 
Fuchs and Stephens (1980) the basic equation that 
governs crack growth, named Paris Law, is given by: 

 

                                    mKC
dN
da ∆=         (54) 

where a = crack size, N = number of fatigue cycles, ∆K = 
range of stress intensity factor, and C and m are crack 
propagation parameters that come from fracture 
mechanics. The range of the stress intensity factor is 
given by Fuchs and Stephens (1980) as: 

                                ( ) aaSfK π∆ =         (55) 

in which f(a) is a function of crack geometry and structure 
geometry and S is the stress range induced by the cyclic 
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loading. When the crack size a reaches some critical 
crack size acr, failure is assumed to have occurred. 
Although most laboratory testing is typically performed 
with constant amplitude stress ranges, Eq. 54 is always 
applied to variable stress range models that ignore 
sequence effects (Rolfe and Barsom 1987). Rearranging 
the variables in Eq. 54, the number of cycles for the crack 
grow from the initial size (ai) to a given crack size (a) can 
be computed from: 

                       
( ) ( ) ( )∫=
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mmm

i aaf
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SC
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π
       (56) 

Eqs. 54 and 56 involve a variety of sources of uncertainty 
(Harris 1995). The crack propagation parameter C in both 
equations is treated as a random variable (Madsen et al 
1991).  
 

Considering the expression presented in Eq. 56, the 
fatigue damage related to one cycle of external loading 
can be calculated according to the following expression: 

 
                                      ( ) ( )mSCa =Ψ        (57) 

where the function Ψ(a) represents the increase in crack 
size due to the loading cycle and is defined as: 
 

                     ( )
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The failure criterion is taken as the exceedance of a 

maximum crack size admissible for the structure during N 
loading cycles, and expressed as: 

 
                                        0aa nf ≤−       (59) 

where af = the maximum crack size admissible for the 
structure, and an = the crack size after N cycles of loading. 
 

As the function Ψ(a) is monotonically increasing, the 
failure criterion can be written as: 

 
                               ( ) ( ) 0aa nf ≤−ΨΨ       (60) 

 Using the definitions presented in Eqs. 58 and 57 
respectively for Ψ(af) and Ψ(an), the failure criterion is 
written as a limit state function, that can be used for 
reliability analysis. 
 

The limit state function for fatigue fracture analysis 
becomes: 
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and the failure will occur when 0g K ≤∆ . The random 
variables in this equation are: ai = initial crack size 
presented in the structure, af = the maximum crack size 
admissible for the structure, C= the Paris Law coefficient 

and ( )
mn

1i
iS∑

=
= cumulative dynamic stress range acting on 

the structure during a given time period. 
 

Typically, the cumulative dynamic stress range is 
modeled as the product of the expected number of stress 
range during the time period studied and the equivalent 
mean stress range, defined based on the stress range 
density probability function.  
 

Specifically for the case of structures subjected to a 
great variety of external loading, due to changes in 
environmental conditions, such as marine, offshore and 
aeronautical structures, the limit state function is modified 
to account for the influence of each loading condition, 
according to the method proposed by Hughes (1988), 
named “Lifetime Weighted Sea Method”, and is 
expressed as: 
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where ( )
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= cumulative stress range acting on the 

structure due to loading condition j, and pj = probability of 
occurrence of this loading condition.  So in this method, 
the long term cumulative stress range associated to the 
structure is composed by the combination of short term 
cumulative stress range related to each loading condition 

acting on the structure.  The term ( )
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be converted to an equivalent mean stress range eS  
according to the following equation   
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The use of the first-order second moment reliability 

methods associated with the former limit state function 
allows the definition of the reliability index for a given 
structural detail.  As used for the S-N approach, this index 
can be compared to a target reliability index, and the 
structure is considered safe if the former is bigger. 
 

Usually, the crack growth curves for fatigue fracture 
analysis are developed for test specimens with a standard 
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geometry (ASTM 1999).  Even for large structures, such 
as ship structures or offshore structures, the certification 
societies present some universal crack growth curves, that 
can be used for fatigue analysis  (Kaminski and Krekel 
1995, and Fricke and Muller-Schmerl 1998).  In order to 
use those universal crack growth curves, the stress range 
used for reliability analysis must take into account the 
geometry of the structure, modeling the stress 
concentration due to the geometry of the weld line and 
structural detail.  This approach corresponds to the hot 
spot stress range. 
 

Once that the fracture mechanics approach is based 
on the stress range close to the crack, the residual stresses 
induced by the hull fabrication techniques influences the 
crack growth behavior, since they affect the stress field 
near the crack tip. 

 
According to Souza and Ayyub (2000), the approach 

most frequently used to account for the effects of residual 
stresses on crack growth involves superposition of the 
respective intensity factors for the residual stresses and 
for the external loading induced stress. 

 
As shown by the classical literature related to fatigue 

crack growth propagation analysis, such as the books 
written by Fuchs and Stephens (1980) and Rolfe and 
Barsom (1987), the fatigue crack growth depends on the 
stress intensity ratio (R), which is defined as the relation 
between the minimum and maximum values expected for 
each stress cycle induced by the random loading. This 
factor takes into account the presence of a static constant 
load acting on the structure  inducing a mean static stress 
that modifies the maximum and minimum stress intensity 
factor in one load cycle, although it does not influence the 
stress intensity range used in Paris Law, which is defined 
as the difference between the maximum and minimum 
value of the stress intensity range in a given load cycle.  
This residual stresses intensity factor is added to the 
external loading induced stress intensity factor, in order to 
define the stress intensity ratio (R).  
 

The limit state function for the fatigue crack growth 
analysis, presented in Eq. 62, must be correct to include 
the effect of the stress ratio on the crack growth rate. This 
correction is made applying the proposal done by Barsom, 
cited by Rolfe and Barsom (1987), where the Paris law is 
corrected by a factor  (1-R), as shown below: 
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where Rj= stress intensity ratio related to the load 
condition j. 

 
One advantage of fracture mechanics approach over 

S-N procedure, in addition to provide a more detailed 
description of the fatigue crack growth phenomenon, is 
the possibility of updating the fatigue failure probability 
based on the results of the non-destructive structural 
inspection executed through the structure operational life, 
as presented by Madsen et al (1991). 
 

The great disadvantage of the fatigue fracture 
mechanics approach is the lack of data related to the 
probabilistic characteristics of the model random 
variables when compared to the database related to S-N 
model random variables.   

 
 

3. APPLICATION OF PROBABILISTIC 
FRACTURE MECHANICS FOR LIFE 
PREDICTION OF SHIP STRUCTURES 

 
This section presents an example of the application of 

the probabilistic fatigue fracture approach for the 
evaluation of structural reliability and life expectancy 
analysis of ship structures, including the effect of the 
residual stresses. The example is used to demonstrate a 
reliability analysis by evaluating the reliability index for a 
given structural detail, based on the statistical 
representation of the crack growth parameter, C, 
corresponding to the detail of interest.  The performance 
function as defined in Eq. 64 is used in this example, 
where C, ai, af, and ∆Se are random variables.  The 
number of load cycles (N) is considered to be a 
deterministic variable, and the reliability index is defined 
for a set of values of N, in order to evaluate its variation 
with cycles or time.  
 

As the crack growth parameters are dependent on the 
material properties, the example considers a ship structure 
built with ABS-C steel which is a ferritic-pearlitic 
material usually used in merchant ships.  Actually the 
ABS specifications for structural steels do not list the 
ABS-C steel, which was substituted by the material ABS-
DS (Taggart 1980).  The material mechanical properties 
are presented in Table 2. 
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The results of the fatigue fracture analysis are also 
compared to the results of fatigue analysis based on S-N 
approach, classically used for ship hull fatigue evaluation.  
The comparison is made using the reliability method 
proposed by Assakkaf and Ayyub (1999), using            
Eq. 48, once it is based on the analysis of a limit state 
function using the ASM method, similar to the procedure 
based on fracture mechanics approach. 
 
 
Table 2. ABS-C Steel Mechanical Properties (Ramsamooj 

and Shugar 1998) 
 

Mechanical Property Magnitude 
Elasticity Modulus (GPa) 207 
Yield Strength (MPa) 269 
Fracture Toughness (MPam0.5) 102 
Charpy Energy (J) 78.6 

 

3.1. Definition of Crack Growth Law 

 
The procedure proposed by Gurney is used to define 

the mean K
dN
da ∆−  curve equivalent to one S-N curve 

recommended for ship structural design, according to the 
methodology proposed by Souza and Ayyub (2000). The 
joint detail C used by Mansour et al (1995), 
corresponding to a welded plate with a full penetration 
weld, subject to a uniform load perpendicular or parallel 
to the weld line, is used in this study. 

 

In order to define the equivalent K
dN
da ∆−  curve, the 

initial crack is assumed to be an elliptical surface crack 
having a  mean depth of 0.5 mm, as suggested by 
Kaminski and Krekel (1995) to study the crack growth 
process in the structure of a Floating Production Storage 
Off-loading (FPSO). 
 

The upper limit for the crack dimension can be 
considered in two ways: (i) the failure occurs when the 
crack grows from a surface elliptical crack and penetrate 
the plate thickness, or (ii) the failure occurs when the 
crack grows until a given dimension that would cause the 
brittle fracture of the structure.  The first criterion is based 
on serviceability analysis and considers that the structure 
is not suitable for service under the presence of a through 
thickness crack, due to the possibility of leakage.  The 
second criterion is based on the linear fracture mechanics 
concepts, which state that the brittle fracture occurs in the 
presence of a given crack dimension that induces a stress 
intensity factor greater than the material critical stress 
intensity factor. 

 

The materials used in hull structure of typical 
merchant ships or warships, such as the ABS-C used in 
this study, present high ductility, even in low temperature, 
in order to prevent the brittle fracture occurrence, 
Masubuchi (1980).  So the ship structures are usually 
designed to withstand the presence of a small length 
through thickness crack in the hull plate, and the brittle 
fracture occurs when this crack continues to grow as a 
through thickness crack until the total crack length 
induces a stress intensity factor greater than the material 
resistance. 
 

Although the presence of a through thickness crack, 
smaller than the critical crack length, cannot cause the 
brittle fracture of the hull structure, its presence allows 
the leakage of sea water inside the ship hull, which can 
cause the decrease in the ship operational performance or 
even contaminate a given liquid or dry cargo inside the 
hull. 
 

In this study the fatigue failure is attained when the 
semi-elliptical crack becomes a through thickness crack, 
and therefore the fatigue criterion is dependent on the 
plate thickness. For the development of this example, the 
plate tickness is supposed equal to 6.35 mm. 

 
Table 3 presents the parameters of the equivalent 

Paris law for the S-N curve used in this research. 
 

3.2. Residual Stresses 
 
The influence of residual stresses on the fatigue crack 
growth is assessed through the use of Equation 64.  As the  
Paris law parameters are defined based on typical S-N 
curves defined for welded joints, the effects of the short- 
range residual stresses are already accounted in the crack 
growth law.  However, the effect of the long-range 
residual stresses must be evaluated, since they  cannot   be 
simulated with the usual test specimens used in fatigue 
tests, whose dimensions are not large enough to allow the 
development of long-range residual stresses.  According 
to Masubuchi (1980), the long-range residual stresses 
have a magnitude close to 20% of the material yield 
strength, at least for ferritic-pearlitic steels, as those used 
for hull fabrication. 

 
To evaluate the effect of the long-range residual 

stresses on fatigue crack growth, the magnitude of the 
stress is considered constant through the plate thickness 
and the residual stress intensity factor is calculated using 
the geometry factor defined for the crack growth analysis, 
according to Gurney law.  A parametric study is executed 
in this example to examine the effect of the residual 
stresses, considering two magnitudes: 10% and 20% of 
the material yield strength. 
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Table 3. Statistical Parameters of the Equivalent Paris 
Crack Growth Law Joint Detail C 

 
Parameters of the Fatigue Curves   S-N Curve 

Joint Detail C 
b 3.5 
Mean of A(1) 4.23x1013 

Coefficient of 
Variation of A 

0.5 

 
S-N 
Curve 

Distribution of A Lognormal 
m 3.5 
Mean of C(2) 6.12x10-15 

Coefficient of 
Variation of C 

0.5 

Distribution of C Lognormal 

 
Equivalent 

K
dN
da ∆−  

Curve 
Parameter f(a) 1.09 

Notes: (1) Units of A according to stress in MPa  
            (2) Units of C according to stress in N.mm-2 

 
3.3. Stress Range 

 
In order to evaluate the effect of the stress range, in 

combination with the residual stresses effects, on the 
crack growth, three mean stress range magnitude are 
selected, 125 MPa, 75 MPa, and 60 MPa, corresponding 
to 50%, 30% and 20% of the material yield strength, 
respectively. 

 
3.4. Numerical Results 

 
The probabilistic characteristics of the random 

variables that are used in this example are provided in 
Table 4.  Reliability analyses are performed using the S-N 
and fracture mechanics limit states.  The first-order 
second moment reliability method was used for this 
purpose.  Summaries of the results are presented in Tables 
5 through 7, and graphically presented in Figures 5 to 7. 

 
The reliability index associated to the use of S-N 

curve is always higher than the reliability index 
associated to the use of the crack growth curve.  
Considering that the mean S-N curve is equivalent to the 

mean K
dN
da ∆−  curve, according to the relation proposed 

by Gurney, the differences in the reliability indices are 
related to the random variables used in each of these 
approaches, since their respective statistical models are 
different.  Furthermore, the limit state functions differ for 
these approaches, and this difference can influence on the 
results of the  reliability analyses. 
 

Figures 5 to 7 show the differences between the 
reliability indices based on the limit states.  However, 
both approaches predicted about the same interval of 
number of cycles in which the reliability index is equal to 

0.0, for all the cases analyzed.  This result can be 
attributed to the initial hypothesis that the underlying 
mean curves for the two approaches are equivalent. 

 
For fracture mechanics approach, the reliability index 

grows very rapidly for small numbers of load cycles 
indicating that until a specific number of load cycles the 
main concern of the structural design should be  the 
occurrence of brittle fracture instead of fatigue failure.  
This critical number of cycles is dependent on the 
magnitude of the stress range acting on the structure, 
considering the same initial crack size.  The S-N approach 
also presents an increase of  the reliability index with the 
decrease of the number of load cycles, but the growth rate 
is smaller than the growth rate presented by the fracture 
mechanics approach. 
 

The probabilistic analysis of brittle fracture failure 
can also be executed based on reliability methods. The 
limit state function that governs the brittle fracture can be 
expressed as 
                            KKg ICK I

−=    (65) 
where KIC = the material fracture toughness and K = the 
stress intensity induced by external loading.  This stress 
intensity factor is defined by an expression similar to 
Equation 4, but considering the maximum stress acting on 
the structure, instead of the stress range.   Equation 65 can 
produce a reliability index associated with the brittle 
fracture process, considering as random variables the 
crack dimensions, the stress acting on the structure and 
the material fracture toughness.  This analysis is not 
developed in this paper but can be explored in future 
studies. 

 
Considering that the failure criteria for the structure 

is the presence of a through thickness crack, the life 
corresponding to a target reliability index can be defined 
for both fatigue analysis approaches.  According to 
Mansour et al (1995), a failure criterion in this case that 
corresponds to a non-serious failure can be used, since it 
does not put at risk the crew life or the structural integrity 
of the ship, although the structure must be repaired in 
order to stop any leaks.  The corresponding target 
reliability is 2.5.  Table 8 presents the number of cycles 
for which the reliability index is equal to 2.5, for the joint 
detail C.  The presence of the residual-stress field clearly 
reduces the life of the structure.  Furthermore, the fatigue 
life predicted based on the fracture mechanics approach is 
40% smaller than the life predicted by the S-N approach.  
This observation indicates that more research effort must 
be spent to define a target reliability index for ship 
structures based on fracture mechanics. 
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Table 4. Random Variables for Joint Detail C 
 

Random Variable Mean Coefficient of 
Variation 

Distribution Type 

 
Stress Range 

∆Se 
(MPa) 

125. 
75. 
60. 

0.10 
0.10 
0.10 

 
Lognormal 

b 3.5 - Constant 
A 4.23x1013 0.40 Lognormal 
ks 1.0 0.10 Normal 

 
S-N 

Model 
∆ 1.0 0.48 Lognormal 
m 3.5 - Constant 
C 6.12x10-15 0.50 Lognormal 

ai (mm) 0.5 1.00 Exponential 

 
Fatigue Fracture 

Model 
af (mm) 6.35 0.10 Normal 

 
 
 

Table 5. Fatigue Reliability Results for Joint Detail C Using a Mean Stress Range 125 MPa 
 

RELIABILITY INDEX 
Number of Load Cycles 

Fatigue Analysis Model 

5x104 105 5x105 106 5x106 107 108 
S-N Model 4.24 3.38 1.39 0.54 -1.41 -2.24 -4.92 

σres= 0.00 MPa 3.41 2.71 0.86 0.14 -1.14 -1.59 -3.54 
σres= 26.9 MPa 3.32 2.61 0.76 0.06 -1.21 -1.65 -3.63 

Fatigue 
Fracture 
Model σres= 53.8 MPa 3.25 2.51 0.67 -0.02 -1.26 -1.70 -3.48 

 
 
 

Table 6. Fatigue Reliability Results for Joint Detail C Using a Mean Stress Range 75 MPa 
 

RELIABILITY INDEX 
Number of Load Cycles 

Fatigue Analysis Model 

5x104 105 5x105 106 5x106 107 108 
S-N Model 6.48 5.61 3.60 2.74 0.76 -0.90 -2.85 

σres= 0.00 MPa 29.06 3.83 2.89 2.10 0.31 -0.31 -1.89 
σres= 26.9 MPa 23.68 3.82 2.72 1.92 0.17 -0.43 -1.98 

Fatigue 
Fracture 
Model σres= 53.8 MPa 18.98 3.82 2.59 1.79 0.06 -0.53 -2.04 

 
 
 

Table 7.  Fatigue Reliability Results for Joint Detail C Using a Mean Stress Range 60 MPa. 
 

RELIABILITY INDEX 
Number of Load Cycles 

Fatigue Analysis Model 

5x104 105 5x105 106 5x106 107 108 
S-N Model 7.46 6.59 4.57 3.71 1.72 0.87 -1.92 

σres= 0.00 MPa 45.14 31.41 3.59 2.97 1.13 0.40 -1.43 
σres= 26.9 MPa 42.60 25.38 3.45 2.77 0.92 0.22 -1.54 

Fatigue 
Fracture 
Model σres= 53.8 MPa 40.31 20.38 3.33 2.62 0.77 0.10 -1.62 
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Figure 5. Reliability Index as a Function of Load Cycles for Joint Detail C Using a Mean Stress 

Range 125 MPa 
 
 

 
Figure 6. Reliability Index as a Function of Load Cyles for Joint Detail C Using a Mean Stress 

 Range 75 MPa 
 
 

 
Figure 7. Reliability Index as a Function of Load Cycles for Joint Detail C Using a Mean Stress 

Range 60 MPa 
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Table 8. Fatigue Life of Joint Detail C for a Target 
Reliability Index 2.5 without Residual Stress 

 
Mean Stress 
Range 
(MPa) 

Structural 
Life 
S-N Curve 

Structural Life 
Fracture Mechanics 

125 2.00x105 1.20x105 

75 1.20x106 7.00x105 

60 2.60x106 1.50x106 

 
 
The influence of the long-term residual stresses on 

the fatigue crack growth is significant, once the variable 
C influence the minimization procedure used by the ASM 
algorithm.  This procedure, in order to determine the 
shortest distance to the limit state function, evaluates 
directional cosines for all random variables.  Table 9 
presents the influence factors, corresponding to the square 
of the directional cosines defined in the minimization 
procedure, considering 105 load cycles and a mean stress 
range of 125 MPa for the purpose of illustration.  These 
results show that although the influence factor for ai is 
large for joint detail C, the influence factor for C is the 
second higher among the random variables, and has 
influence on the minimization procedure.  So the 
reliability index is influenced by the presence of the 
residual stress field. 
 
 

Table 9. Influence Factor for Joint Detail C for Mean 
Stress Range 125 MPa and 105 Loading 
Cycles 

 
Random Variable Influence Factor 

Joint Detail C 
C 0.222 
ai 0.653 
af 3.75x10-3 

∆Se 0.122 
 
 
An increase in the residual stress magnitude cause a 

decrease in the reliability  index.  The difference in the 
reliability index defined for null residual stresses and   for   
maximum  residual   stresses is  about  10%.    Therefore,  
for  fatigue fracture analysis, the long-term residual 
stresses field has an influence on the crack growth rate, 
and must be considered in reliability analysis. 
 

The effect of the residual stresses over the crack 
growth rate can be  more significant for structures that 
were repaired.  The welding process used during 
maintenance procedures can induce long-term residual 
stresses of high magnitude, since the displacement 

restraint in a built structure is higher than the restrictions 
during the initial structural fabrication. 
 

As presented in section 1.2, the effects of corrosion 
can affect the ship structural resistance.  As for fatigue 
analysis, the corrosion affects the material properties, 
increasing the crack propagation rate due to the 
phenomena named Corrosion fatigue, Jones (1992).  The 
association of corrosion with the action of cyclic stress 
tends to increase the rate of crack propagation.  The 
degradation effects of corrosion in the material properties 
is usually modeled with the use of a new coefficient C for 
the crack growth curve, which is related to an 
environment different from air, Rolfe and Barsom (1987).  
This new curve is assessed based on experiments 
executed with tests specimens subjected to the 
environment of interest, for the case of ships, salt water.  
This coefficient is usually higher than the coefficient 
defined with tests in air.  The exponent of the crack 
growth curve can be considered as a constant.  Finally, 
the effect of corrosion is also dependent on the area of the 
structure that is being analyzed.  Usually the structural 
parts close to the draft line present a higher corrosion rate 
than the values observed for the structure totally 
submerged or the structure in the air. 

 
In order to study the effect of corrosion over the 

fatigue reliability index defined with the probabilistic 
fracture mechanics approach, a parametric study is 
presented considering two values for the constant C of the 
crack growth curve, both of them higher then the value 
presented in Table 4.  The study is executed considering 
values 15% and 30% higher than the original value, 
representing an increase in the crack growth rate. 

 
The effects of corrosion on the reliability index are 

presented in Figure 8.  This chart presents the reliability 
index associated with joint detail C, considering an 
external induced stress range of 60 MPa, with null 
residual stress.  The reliability index is reduced as a 
function of the increase in the crack growth rate.  For an 
increase of 30% in the crack growth rate, the reliability 
index presents a decrease of almost 10%.   

 
Regarding fatigue analysis, as observed for the 

residual stress effects, the corrosion effect is detrimental 
for the structural safety.  The only way to avoid the 
corrosion effect over the crack growth is to keep a 
cathodic protection system on the ship hull.  Painting does 
not avoid the occurrence of corrosion fatigue, since once 
the crack becomes a surface crack, the paint film in the 
area and does not offer protection against the 
environmental effects. 
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Figure 8. Effects of Corrosion on the Reliability Index for Joint Detail C Using a Mean Stress Range of 60 MPa and 

Null Residual Stresses 
 
 

4.  CONCLUSIONS 
 

This paper has discussed the development of a 
reliability-based for life expectancy analysis of ship 
structures.  The methodology considers the time 
dependency of the loads acting on the ship structure and 
also the through life degradation of the structure due to 
environmental effects. 

 
The methodology is developed considering different 

approaches for first-passage failure modes and for 
cumulative failure modes.  The reliability function for the 
first-passage failure modes is developed based on the 
model proposed by Ellingwood and Mori (1993).   This 
function allows the evaluation of the structure reliability 
in a closed form, without use of numerical methods to 
calculate the reliability index.  This method also allows 
the consideration of ship structural degradation due to 
environmental effects. 
 

The reliability analysis for the cumulative failure 
mode, specifically the fatigue failure, is developed based 
on the probabilistic linear fracture mechanics model.  This 
model is suitable for the fatigue analysis of ship structures 
once it assumes the existence of fabrication process 
induced defects in the structure and considers that the 
fatigue failure will be dependent on the growth rate of 
these defects. The fatigue analysis is not based on a 
closed-form reliability function, such as the one defined 
for the first-passage failure modes.  The reliability index 
must be evaluated with the use of numerical methods, 
such as the Advanced Second moment, used in this paper. 
 

 Probabilistic analysis of fatigue crack growth in ship 
hull requires the utilization of reliability methods for 

assessing fatigue life by considering the crack 
propagation process and the uncertainties associated with 
it.  The limit state function that governs fatigue crack 
growth failure is developed based on Paris law by 
considering as random variables the coefficient of the 

K
dN
da ∆−  curve, the initial and maximum admissible 

crack size, and the stress induced by external loading.  
The residual stresses induced by welding are modeled as a 
deterministic loading acting on the structure that can 
accelerate the crack growth rate. 

 
The fatigue analysis of a typical ship structural joint 

is developed, comparing the reliability index related to 
fracture mechanics approach with the reliability index 
defined with the use of S-N approach.  The reliability 
index defined by the former approach is similar to those 
related to the fracture mechanics approach.  For the joint 
analyzed, the reliability index defined by S-N approach is 
slightly higher than the reliability index calculated with 
fracture mechanics approach.  This is an indicative that 
the uncertainties of the random variables in fracture 
mechanics approach are higher than in the S-N approach, 
and must be better characterized, mainly the material 
properties and initial crack size. 
 

The fracture mechanics approach is suitable for the 
study of the influence of the residual stresses on the 
fatigue failure of a ship structure.  The difference in the 
reliability index defined for null residual stresses and for a 
residual stress field with magnitude equal to 20% of the 
material yield strength is about 10%. 

 
The effects of corrosion on the reliability index are 

analyzed considering an increase in the crack growth rate.  
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For an increase of 30% in that rate, there is a decrease of 
10% in the reliability index. 

 
The alliance between the effects of corrosion and 

residual stresses field can reduce the predicted ship 
structural life as for fatigue analysis.    Both detrimental 
effects must be considered during the ship design. 
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