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ABSTRACT

This report presents findings of an Army Research Office sup-
ported study concerned with the response of high-strength steels to fast
running cracks, and a separate Ship Structure Committee program deal ing with
unstabIe fractures in ship plates. Together, the results provide a new
basis for measuring and characterizing the properties of structural alloys
that control fast fracture and crack arrest.

Measurements and calculations of unstable fracture and fracture
arrest in 12.7 mm- and 25.4 mm-thick, high-strength SAE4340 steel and A517F
steel plates are described. The unstable fractures which propagated at
steady-state velocities in the range 185 ins-l to 1180 ins-I, were produced in
wedge-loaded DCB- (double-cantilever-beam) test specimens. The study demon-
strates a new concept: the “duplex” OCB-specimen. This consists of a high-
strength/low-toughness 4340 steel “starter section” which is electron beam
welded to the A517F test section. The fractures are initiated in the
starter section, and this makes it possible to confront test materials with a
fast moving crack under controlled conditions close to the transition temp -
ature.

A fully dynamic analysis of unstable crack propagation and
arrest in the DCB-test piece is derived. The technique is based on the
beam-on-elastic-foundation model of the DCB specimen used previously but
with the simple beam and foundation representations replaced by a Timoshenko
beam and a generalized elastic foundation. Crack speeds, energy 1evels,
and the crack length at arrest are calculated with this model using a
finite-difference method and are compared with the measurements.

The calculations and the measurements reveal that unstable
propagation in the DCB-test piece proceed from the start with essentially
constant, steady-state crack speeds that depend on specimen geometry and the
starting conditions. The calculations also predict instances of discontin-
uous propagation at high speeds. The kinetic energy imparted to the test
piece is recovered and contributes to the crack driving force. It follows
from this. that fracture arrest is controlled by the history of energy dissi-
pation throughout the entire propagation event, rather than on Ka, a single
static toughness value calculated at the arrest point. For the 4340 steel ,
increases in crack velocity up to 860 ins-l at room temperature are accompa-
nied by a 4-fold increase in the dynamic fracture energy (a 2-fold increase
in the dynamic” fracture toughness), and by increases in the size cf the
shear lip. Oynamic toughness _~alues for the A517F grade at -763= ‘c, crack
speeds from 475 ins-l to 780 ms were also about 2 times t:e -:::-cej
value.

Klc -

-ii-



CONTENTS

PAGE

INTRODUCTION ..,..., . . . . . . . . . . . . . . .,, ,.. . 1

NEW CONCEPT S....... . . . . . . . . . . . . . . ......3

REFERENCES . . . . . . . . . . . . . . . . . . . . . . , . . . . ~

SECTION 1. RAPID CRACK PROPAGATION IN A HIGH STRENGTH STEEL

ABSTRACT . . . . . . . . , , . . . . . . . . , . . . . .. . . fj

I. INTRODUCTION. . . . . . . . . , . . . . , , . . , . . . .’ 7

II. EXPERIMENTAL PROCEDURES . . , . . . . . . . . . . . . , . 8

111. RESULTS . . . . . . . . , . . . , . . . . . . . . , . , , 13

IV. DISCUSSION. . . . . . . . . . . . , . . . . . . . . . . . 15

v. CONCLUSIONS . . . , . . . . . . . . , . . . . , . . . . . 20

VI. REFERENCES . .’. . . . , . . . , . . . , . . . . , . . . 21

APPENDIX 1-A - VELOCITY MEA5uRING PROCEDURE . . . . . . . 23

SECTION 2. THE CHARACTERIZATION OF FRACTURE ARREST IN A STRUCTURAL STEEL

ABSTRACT . . . . . . . . . . . . . . . . . . . , . . . . . . . 25

I. INTRODUCTION. . . . , . . , . . . . . . . , . . . , , . . 26

11. EXPERIMENTAL PROCEDURES . . . . . . , . . . . , . , . . . ~~

III. ANALYSIS. , . . . . . . . . . . . . . . . . . . . , . . . 3(3

Iv. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . , 3Z

v. CONCLUSIONS . . . . . . . , . . . . . . . . . . . . . . . 40

VI. REFERENCES . . . . . . . . . . . . . . . . . . . . . . , 41

APPENDIX 2-A - SUPPLEMENTRJ.RY ILLUSTRATIONS . . . . . . . 43

SECTION 3. DYNAMIC ANALYSIS OF CRACK PROPAGATION IN THE DCB TEST SPECIMEN

ABSTRACT . . . . . . . , . . . . . . . . . . . . . . . . . . . jj

I. INTRODUCTION. . . . . . , . . . . . . . . , . . . . . . . 5fj

II. SUMMARY OF PREVIOUS WORK . . . . . . . . . . . . . . , . . 56

111. A MODEL OF THE DCB SPECIMEN USING A TIMOSHENKO BEAM

ON A GENERALIZED ELASTIC FOUNDATION . . . . . . . . . . fjo

Iv. RESULTS Am CONCLUSIONS ON DYNAMIC CRACK PROPAGATION . . 69

v. REFERENCES . . . . . . . . . . . , . . . . . . . . , . . 76

ApPENDIX 3-A - DeriVatiOn oF THE COVERNING EQUATIONS

FOR THE TIMOSHENKO BEAJ&GENj3RALIZED

ELAsTIc FOUNDATION MODEL” OF THE DCB

SPECIMEN . . . . . . . . . . . . . . . . 77

-111-



—

CONTENTS (Cent’d)

———

PAGE

APPENDIX 3-B

APPENDIX 3-C

APPENDIX 3-D

DERIVATION OF THE COMPONENTS OF ENERGY

AND THE c8AcK ExTEN510N CRITERION

FOR THE TIMOSHENXO BEAM-GENERALIZED

ELASTIC FOUNDATION DCB MODEL . . . . . . .

SOLUTION FOR INITIAL CRACK FXTENSION

IN THE TIMOSHENKO BEAM-GENERALIZED

ELASTIC FOUNDATION DCB MODEL . . . . . . .

FINITE-DIFFERENCE APPROXIMATION TO

EQUATIONS FOR DYNAMIC-Cl+kCK PROPA-

GATION IN THE TIMOSHENKO BEAM-

GENERALIZED ELASTIC FOUNDATION

DCB MODEL . . . . . . . . . . . . . . . .

APPENDIX 3-E - COMPUTER PLOTS OF REsULTS FOR DYNAMIC

C8ACK PROPAGATION IN STEEL DCB TEST

specimens . . . . . . . . . . . . . . . .

ACKNOWLEDGMENTS, . . . . . . . . . . . . . . . . . . . . . . . .

82

87

94

98

98

-iv-



LIST OF FIGURES

EauZS

1

2

3

4

Section 1

1

2

3

4

5

6

7

8

9

10

11

2

3

WEDGE -LOADING ARRANGEMENT FOR DCB -SPECIMEN SHOWING THE

VELOCITY MEASURING CONDUCTING STRIPS . .. .. .. .. ..

THE DUPLBXDCB-TEST PIECE .. .. .. . ., .. .

BEAM-ON-ELASTIC-FOUNDATION MODEL AT DCB-SPECIMEN .. .. ..

APPLIcATION OF THE R -CURVE CONCEPT TO A CRACK AKKES TOR

SCHEMATIC DRAWING OF DOUBLE -CANTILEVER -BEAM SPECIMEN

vARIATIoN OF sTRESs INTENSITY AT THE ONSET OF FAST FRACTURE
WITH ROOT RADIUS OF THE STARTING NOTCH .. .. .. .

SCHENATIC OF PLATE CROSS SECTION FOR A TUNNELING FLAT
FRACTURE AND A SHEAR FRACTURE THAT LAGS BEHIND .. .. .. ..

THEORETICAL CALCULATIONS OF CRACK PROPAGATION AND ARREST

USING THF. TIMOSHENKO BEAM WITH A GENERALIZED FOUNDATION
MODEL .. .. .. .. .. .. .. .. .. . .. ..

VELOCITY ANO SURFACE PROFILE ?!EASURENENT ON SAE4340 STEEL ..

FKAC’IIJRESURFACES OF TEST SPECIMENS .. .. .

REIATION BE’IWEEN DYNAMIC FRACTURE TOUGHNESS AND CRACK

VEIOCITYF ORSAE4340STEEL .. .. .. . .. .. .

STRESS INTENSITY AT CRACK ARREST OF SAE4340 STEEL .. .. ..

RELATIONS AMONG VARIOUS SHEAR LIP DIMENSIONS ., .. ..

VARL4TION OF FRACTURE ENERGY WITH SPECI.MEN TOUGHNESS
IN SAE 4340 STEEL TESTED UNDER STATIC CONDITIONS AT
ROOM TEMFER4TUKE .. .. .. ... . .. .. .. ..

COMPARISON BETwEEN THEORETICAL PREDICTIONS AND EXPERIMENTAL
MEASUREILENTS OF TBE REL4TION BETWEEN CRACK VELOCITY AND

CRACK TBAVEL .. .. .. .. .. . ., .. ..

APPENDIX 1-A

A-1 RESISTANCE -TIME RECORDING OF THE RUPTURE OF CONDUCTING

STRIpS IN 2 ADJACENT GRIDS (ABSCISSA 16 p SeCICm,

ORDINATE O .5 volts/cm) DURING A CRACK PROPAGATION

EVENT. . .. .. .. .. .. .. .. ,. .. ., . ..

Section 2

1 SCHEIL4TIC REPBES ENTATION OF THE ENERGETIC OF FRAcTURE ARREST

IN THE DCB-TEST PIECE, ILLUSTRATING (a) THE ARREST TOUGHNESS

CONCEPT, (b) THS R-CURVE CONCEPT, ANC (c) THE CONCEPT OF A
DYNAMIc STRAIN ENERGY RELEASE RATE .. .. .. .. .. ..

DIMENSIONS OF DUPLEK TEST PIECES .. .. .. .. .. .. ..

THEORETICAL CALCULATIONS OF c8AcK PROPAGATION AND ARREST IN

TIMOSHENXO BEAM-oN -EIAsTIC -FOUNDATION MODELS OF AN ORDINARY

AND ADUPLEK DCB-SPECIMEN .. .. . .. .. .. .. .. ..

2

2

2

4

9

9

10

12

13

14

15

16

16

19

19

24

27

29

33

-v-



—- .,___

ELs!Ks

4

5

6

7

APPENDIX 2 -A
A-1

A-2

A-3

A-4

A -5

A-6

A-7

A-8

A-9

A-10

A-II

A-12

A-13

A-14

A-15

A-16

A-17

A-18

LIST OF FIGURES (Cent ‘d)
PAGE

DUPLEX DCB SPECIMENS TESTED AT DIFFERENT TEMPERATURES ..

EXANIFLES OF VELOCITY (CBACR LENGTH VS TIMl ) MEASUREMENTS

DERIVED FROM THE CONDUCTING STRIPS .. .. .. .. ..

COl%’ARISON OF THE VELOCITY DEPENDENCE OF Kd -VALUES FROM
DIFFERENT INVESTIGATIONS(14, 15,25-29) .. .. .. ..

cOMPARISON OF THE CHARPY ANc FRACTURE TOUGHNESS VALUES FOR

A517F OBTAINED IN THIS INVESTIGATION, ANo THOSE REPORTED BY

BAR50M AND ROLFE(30) AND HOAGLAND, ET AL(9) .. .. .. .. ..

DDPLEXDCB SPECIMEN BUNKS .. .. .. .. .. .. ..

MICROGRAPH OF ELECTRON BEAM WELD AND HEAT AFFECTED ZONE OF

SPECIMEN 3VY-10 TAKEN ON PLATE MIDPIANE .. .. .. .. .

MICROGBAPH OF ELECTRON BEAM WELD AND HEAT AFFECTED ZONE OF

sPECIMEN 3vY-11 TAKEN ON PLATE MIDPIANE .. .. .. ..

ORDINARY 4340 STEEL DCB SPECIMEN 3V40 (12 .7 mm-THICK, TESTED
AToOc, Kn/Kd=l .57) .. . .. .. .. .. .. .. ..

1-

ORDINARY 4340 STEEL DCB SPECIMSN 3V44 (12 .7 trun-THICK,TESTED
AT -78°C, Kq/Kd = 1 .88)

DUPLEX 4340/A517F DCB TEST

AT O°C) .. .. .. ..

DuPLEKo4340/A517F DCB TEST

AT-78C) .. .. .. ..

DuPLEXo4340/A5 17F DCB TEST
AT-78C) .. .. .. ..

DUpLEXo4340/A517F DCB TEST
AT-78C) .. .. .. ..

DUPLEX 4340/A517F DCB TEST

AT O°C) .. ..

DlJPLEXo4340/A517F DCB TEST

AT-78C) .. .. .. ..

DUPLEXo4340/A517F DCB TEST

AT-78C) .. .. .. ..

DUPLEXo4340/A517F DCB TEST
AT-78C) .. .. .. .-

DUPLEKo4340/A517F DCB TEST

AT-78C .. .. ..

. . . . . . . . . . . . . . . .

PIECE 3VY1 (12 .7 mm-THICK, TESTED

. . . . . . . . . . . . . . . ...

PIECE 3VY3 (25 .4 nun-THICK, TESTED

. . . . . . . . . . . . . . . . . .

PIECE 3VY-4 (25 .4 mm-THICK, TESTED

.. .. .. .. .. .. .. .. .

PIECE 3VY1O (12 .7 mm-THICK, TESTED

.. .. .. .. .. .. .. .. ..

PIECE 3VY11 (12 .7 mm-THICK, TESTED

.. .. .. .. .. .. .. .

PIECE 3VY12 (12 .7 mm-THICK, TESTED

.. .. .. .. .. .. .. .. ..

PIECE 3vY13 (12 .7 mm-THICK, TESTED

.. .. .. .. .. .. .. .. .

PIECE 3VY22 (25 .4 mm-THICK, TESTED
.. .. .. ..

PIECE 3VY23 (25 .4 nmI-THICK, TESTED

.. .. .. .. .. .. .. .

36

36

38

38

43

44

44

45

45

45

46

46

46

47

47

47

48

48

DUPLEX 4340/A517F DCB TEST PIECE 3vY24 (25 .4 nnn-THICK, TESTED

ATO°C .. .. .. .. .. .. .. .. ., .. .. . .. 49

DUPLEXo4340/A517F DCB TEST PIECE 3VY28 (25 .4 mm-THICK, TESTED

AT-78C .. .. .. .. .. . .. .. .. .. .. . .. 49

cRAcK VEH3CITY MSAS UREMENTS DERIVED FROM THE CONDUCTING
STRIPS .. .. .. .. .. .. .. .. .. .. . .. .. 50

EXTENT OF PEACTURE PROPAGATION IN THE DUPLEX 4340/A517F DCB
TEST PIECE 3VY1O .. .. .. .. .. .. .. . .. .. .. 52

-vi-



E.w.E

A-19

A-2o

Section 3

1

2

3

4

5

6

LIST OF FIGURES (Cent ‘d) PAGE ,

EXTENT OF F8ACTURE PROPAGATION IN TW DUPLEX 4340/A517F DCB

TEST PIECE 3VY11 .. .. .. .. .. .. .. .. .. .. ..

PROFILE OF THE ARRESTED CRACK IN THE AS 17F STEEL TEST SECTION

OF SPECIMEN 3VY-10 (12 .7 mm-THICK, TESTED AT -78°C) .. ..

THE DOUBLE CANTILEVER BEAM (DCB) TEST SPECIMEN AND THE BEAM-

ON-ELASTIC FOUNDATION MODEL .. .. .. .. .. .. .. .,

COMPARISON BETWEEN STRESS INTENSITY FACTORS FOR TRE DCB

SPECIMEN CALCULATED uSING TWO DIMENSIONAL ELAsTICITY THEORY

WITH THOSE FROM VARIOUS DIFFERENT BEAM-ON -ELASTIC FOUNDATION

MODELS . .. .. .. .. .. .. .. ., .. .. .. ..

SPECIMEN A, KqJKd=2 .. .. .. .. .. .. .. ..

SPECIMEN A, Kq/Kd=2 . .. .. .. .. .. ..

SPECIMEN B, (Kq/Kd)s = 3.0, (Kq/Kd) = 2.0 .. .. ..

SPECIMEN B, (Kq/Kd)s = 3.0> (Kq/Kd)T = 2.0 .. .. ..

APPENDIX 3 -E

E-1 - E-30 COMPUTER PRINTOUTS .. . .. .. .. .. .. ..

53

54

58

65

70

71

74

74

99-113

-vii-



_ .._ —

LIST OF TABLES

TABLE

Section 1

I

II

Section “2

I

Section 3

I

11

III

IV

PAGE

MEASUREMENTS OF FM~TORE FEATORES IN SAE4340 STEEL QUENCHED

AND TEMPERED AT205C .. .. .. . .. .. .. .. .. ., 16

DYNAMIC FBAC’17JRE ENERGY AND TOUGHNESS VALUES FOR UNS TABLE

CRACKS IN 4340 STEEL INCLUDING vALUES FOR THS SHEAR LIP AND

FLAT PORTIONS OF THE FRACTURE .. .. .. .. .. .. .. .. 17

DUPLEX SPECIMEN TEST RESULTS .. .. .. .. .. .. .. .. 37

DIMENSIONS OF DCB SPECIMENS USED IN THE COMPUTATIONS .. .. 70

COMPUTATIONAL RESULTS FOR SINGLE-SECTION DCB SPECIMENS .. .. 72

COWTVJTATIONAL RESULTS FOR DUPLEX DCB SPECIMENS .. .. .. .. 72

COMPUTATIONAL RESULTS SHOWING THE RFLATIVE EFFECTS OF VARYING

THE MASS OF THE LOAD PINS .. .. .. .. .. .. .. .. .. 75

ApPENDIX 3-c

I COEFFICIENTS IN THE RELATION FOR THE COMPLIANCE OF THE DCB

SPECIMEN AS GIVEN BY vARIOUS DIFFERENT ANALYTICAL MODELS .. 93

APPENDIX 3 -D

1 COMPARISON OF CRACK LENGTH VS TIME RESULTS COMPUTED USING

DIFFERENT FINITE DIFFERENCE STEP SIZES .. .. .. .. .. .. 97

II COMPARISON OF COMPUTATIONAL REsuLTS USING DIFFERENT FINITE

DIFFERENCE STEP SIZES . .. .. .. .. .. .. .. . .. 97

-viii-



—

NOMENCLATURE

A=

D=

E=

<=

F=

G=

Gc =

‘q =

H=

I=

K=

Ka =

‘d =

id =

‘Ic =

K’
Ic =

K=
q

L .

L1 =

L2 =

L3 =

M=

P=

Q=

R=

area of surface depression associated with shear lip or cross-
sectional area of beam (=bh)

—

pin diameter

Young’s modulus

total energy of specimen

compressive force parallel to crack plane introduced by action of

wedge on pins

strain energy release rate x shear modulus

critical strain energy release rate

strain energy release rate at onset of crack extension on blunt-
notch DCB specimen

instant ant?o”s value of specimen kinetic energy

modified Heaviside step function

moment of inertia (= bh3/12)

stress intensity

stress intensity at crack arrest

dynamic fracture toughness

average value of Kd in duplex test specimen

static plane strain fracture toughness

stress intensity required to reinitiate arrested crack

stress intensity at crack initiation in blunt-notch KB specimen

Specimen length

length of “starter section” in duplex test piece

length of “test section” in duplex test piece

total length of duplek test piece

couple initially applied to beam in analytical model

load

pinching force initially applied to beam in analytical model

dynamic fractme energy

-ix-.



Rf

‘SL

T

u

u
SL

v

w

Y

a

aa

a
r

a.

al

b

c

co

d

e

f

h

k
e

k
r

A

s

t

u
z

w

.

.

.

.

.

.

.

flat fracture component of R

shear lip component of R

kinetic energy

strain energy content of specimen

shear lip energy per unit volume

crack ve locity

plastic work dissipated in the formation of one shear lip Q work
done on specimen during crack propagation (= O for these experiments)
~ w/we = dimensionless displacement

h ~ = diminsionless rotation
Wc

crack length

crack length at arrest

crack length at arrest

initial crack length

crack length at point where crack enters test section in duplex

specimen

specimen thickness

L-a-e = uncrac.ked length of specimen

@= bar !7.”. speed (5120 m/s)

distance by which flat portion of crack in interior of specimen

leads crack o“ surface during propagation

distance from center of pinhole to end of specimen

distance from the center of a loading pin to the crack plane ~
width of flat fracture surface

height of arm of DCB specimen

extensional stiffness of the foundation in the beam model

rotational stiffness of the foundation in the beam model

width of surface depression associated with shear lip ~ Pin length

width of shear lip

time

local ‘Value of beam displacement

average deflection of the cross section in the beam model

-x-



.

.

.

.

.

.

.

.

.

.

critical spring deflection in beam-on-elastic foundation model

length coordinate on crack propagation direction

length coordinate parallel to thickness direction

length coordinate parallel to displacement direction

shear deflection coefficient of the beam, K = E/3G

mean angle of rotation of the cross section about the neutral
axis in the beam model

displacement of one arm of OCB specimen

crack-tip opening displacement

strain rate

crack- extension parameter, 9 = kewz + kr~z

critical value of the crack-extension parameter, Oc = bR

f31eC = dimensionless crack-extension parameter

Poisson’s Ratio

x/h = dimensionless length

specific gravity

flow stress

local value of tensile stress

nominal yield stress
1/2

()

~
12P t

= dimensionless time

local value of shear stress

CONVERSION OF S1 UNITS TO ENGLISH ONITS

Ouanti ty S1 Unit English Unit

Velocity mls x 3.281 = ftlsec

Velocity mls x 2.237 = mph

Stress m 1.2 x 0.145 = Ksi

Fracture energy KJ /mz x 5.71 lb/in

F’racture toughness ~/m312 x 0.91 Ksi &

-xi-



SHIP STRUCTURE COMMITTEE

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research
program to improve the hull structure of ships by an extension of knowledge
pertaining to design, materials and methods of fabrication.

RADM W. F. Rea, III, USCG, Chairman
Chief. Office of Merchant Marine Safety

U.S. Coast Guard

CAPT J. E. Rasmussen, USN
Head, Ship Systems Engineering

and Oesign Department
Naval Shiu Enaineerina Center
Naval Ship Sy;terns

ilr. K. blorland
Vice President
American Bureau of

The SHIP

Co~mand

Shipping

Headquarters -

Mr. M. Pitkin
Asst. Administrator for

Commercial Development
Maritime Administration

CAPT L. L. Jackson, USN
Maintenance and Repair Officer
ililitary Seal ift Command

SHIP STRUCTURE SUBCOMMITTEE

STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee
on technical matters by providing technical coordination for the determination
of goals and objectives of the program, and by evaluating and interpreting the
results in Terms of ship structural design, construction and operation.

NAVAL SHIP SYSTEMS COMMANO

Mr. P. M. Palermo - Chairman
ilr. J. B. O’Brien - Contract Administrator
ilr. G. Sorkin - Member
Mr. C. H. Pohler - i!ember

U . S . COAST GUARD

CDR C. S. Loosmore - Secretary
CAPT D. J. Linde - Member
CDR E. L. Jones - Member
CDR W. M.. Devl in - Member

MARITIME ADMINISTRATION

iflr.J. J. Nachtsheim - Member
ilr. F. Dashnaw - Member
Mr. F. Seibold

MILITARY SEALIFT COMMAND

Mr. R. R. Askren - Member
Mr. T. W. Chapman - Member
CDR A. 14cPherson, USN - Member
Mr. A. B. Stavovy - Member

AMERICAN BUREAU OF SHIPPING

~lr. S. Stiansen - i4ember
itr. 1. L. Stern - Member

NATIONAL ACAOEMY OF SCIENCES
Ship Research Committee

i!r. R. W. Rumke - Liaison
Prof. J. E. Goldberg - Liaison

SOCIETY OF NAVAL ARCHITECTS & MARINE
ENGINEERS

Mr. T. M. Buermann - Liaison

BRITISH NAVY STAFF

CDR P. C. Bryan, RCNC - Liaison

WELDING RESEARCH COUNCIL

Mr. K. H. Koopman - Liaison

INTERNATIONAL SHIP STRUCTURE CONGRESS

Prof. J. H. Evans. - Liaison

_~ii-



INTRODUCTION

The goal of the research described in this report is to characterize the

fast fracture resistance and the fracture arrest capabilities of steels . The report
contains the results of two separate studies. One is supported by ARO and is con-

cerned with the response of high-strength steels to fast running cracks. The second

study, sponsored by the Ship Structure Committee, seeks to establish material pz-o-

perties and criteria for stopping unstable fractures in ship hulls. The results are
presented under one cover because the same concepts and material properties apply to

fast fracture and to fracture arrest. For this reason, too, the findings of these
two studies are closely related. The ARO funded measurements of fast fracture in

SAE-4340 steel, presented in Section I, support the theoretical analysis conducted

for SSC and described in Section III . This analysis, together with measurements per-

formed on A517F steel (Section 11), establish the valid criterion for fracture arrest,
It should be noted that the approach described herein is sufficiently general that

it can be used to characterize both ferrous and nonferrous alloys. It has already

been applied successfully to a glassy polymer (1~2) .

The studies described in this report make use of a new testing procedure

for producing unstable fracture amd fracture arrest in the laboratory under con-

trolled conditions. This procedure was described in an earlier report, SSC-219(3) ,
and is illustrated in Figure 1. The test piece is in the form of a double-

cantilever-beam (DCB) specimen , with a ~ starting slot. The specimen is slowly

loaded in an ordinary testing machine (operating in the compression mode) by forcing
dual wedges between the pins. This arrangement offers several unique features:

● The blunt notch permits the specimen to sustain stress intensity values

that are greater than KIC. Consequently, as soon as a sharp crack emerges
from the blunt notch, the crack immediately becomes unstable and propagates

rapidly.

● Since wedge loading is inherently “stiff”, crack propagation proceeds

with essentially constant displacement at the load point. Under these con-
ditions the strain energy release rate diminishes as the crack grows and

this ultimately causes the crack to arrest within the confines of the test
piece, provided it is long enough.

● Little energy is exchanged between the wedge-loaded IXB-specimen and
the testing machine during the propagation e“ent . For this reason, the

results can be expected to be relatively insensitive to the character of
the testing machine.

● The wedge introduces a modesf compressive stress parallel to the crack

plane, typically 2 to 15% of the yield strength, which tends to stabilize
the crack path. Hence, the side grooves ordinarily required to keep the

crack from turning can be eliminated. This makes it possible to reproduce

the shear lips obtained in practice , and simplifies the task of measuring

the fracture velocity.

9 The measurements and analysis described in this report also show that

the unstable fractures generated in this way propagate at am essentially

constant velocity, which can be controlled by altering the bluntness of

the starting slot. In this way fractures traveling at constant speeds
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of from 200 ins-l to 1100 ins-l have been produced in 4340 steel test pieces with

modest dimensions, e.g. , 120 mm wide by 300 mm long.

NEW CONCEPTS

This report presents, in detail, experimental and analytical studies
carried out during the past 15 months. The following new concepts are discussed.

11) The OUplex NB Test Piece. The “duplex” IXB-test specimen was
developed to facilitate the production of fast propagating cracks close to the

transition temperature . The specimen is illustrated in Figure 2, and discussed more
fully in Section II. It consists of a high -strength/low-toughness 4340 steel
“starter section” electron beam welded to the “test section”. Unstable fractures
have been initiated in a 4340 steel starter section at ambient as well as at low

temperatures, and directed at high speed into an A517F steel test section. The high-
strength starter section also reduces the specimen size required for measuring a

given toughness leve 1.

fz) A Fully Dynamic Analysis of Crack Propagation in the DCB Specimen.
A fully dynamic analysis of unstable crack propagation in the beam-on-elastic

foundation model of a DCB specimen (shown in Pigure 3) has been carried out. The

model treats the arms of the IKB-specimen as Timoshenko beams with lateral and rota-

tional inertia. To simulate a moving crack each spring in the elastic foundation is

systematically removed when a critical deflection corresponding to the dynamic tough-
ness is exceeded (for duplex specimens, 2 spring deflections are employed) . The
treatment given in Section 111 supersedes a primitive “ersion reported earlier(4) .
The analysis makes it possible to extract dynamic fracture energy or toughness values

independently from two measurements: The fracture velocity and the crack length at
arrest.

(3) Fracture Velocity Measurements. An experimental procedure for
measuring the fracture velocity was devised. The method, which employs a grid of
conducting strips, insulated from the specimen by a thin epoxy layer , is described

in Section 1, Appendix A. Actual velocity measurements described in Sections I and

II reveal that unstable fractures in the CCB-specimen propagate at essentially
constant velocity., in agreement with the theoretical analysis in Section 111.

(4) Energy Conservation and the Criterion for Practure Arrest. The

theoretical calculations in Section 111 show that as much aS 8~/. of the kinetic
energy imparted to the DCB-specimen by the growing crack is recovered to drive the
crack in the latter stages of the propagation event. At the same time, values of
the dynamic fracture energy (or toughness) deduced from velocity measurements and,
independently, from the length of the crack at arrest are in close agreement

(Sections I and II). ‘These agreements represent a critical test of the theory that
the kinetic energy ?s substantially conserved. It follows that arrest is controlled
by the history of energy dissipation throughout the entire propagation ewmt rather
than by K=, the arrest toughness value.

(5) Origins of Dvnamic Toughness. The dynamic toughness values associ-
ated with 900 TJIS-lfractures in SAE-4340 steel at room

800 ins-l fractures in A517F steel at -78°C are roughly
Klc-values reported at these temperatures. The higher

temper~ture, and with 500 to
twice as large as the static

dynamic toughness for the

I
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FIGURE 4. APPLICATION OF THE R-CHKVE CONCEPT TO A CRACK ARRESTOR.
R’ is the dynamic fracture energy of the base material;

R“ is the dynamic fracture energy of the arrestor. G is

the strain energy release rate; G= and Ga and a?<and aa

are the strain energy release rates and crack lengths corre-
sponding to the onset of unstable fracture and to

fracture arrest, respectively. The shaded areas I and
II represent the amount of kinetic energy imparted to

the structure, and the amount recovered in the form of
fracture energy prior to arrest.

4340 steel, which displayed ductile (dimpled) fractures , could be correlated with
an increase in the size of the shear lips; the specific shear lip and flat fracture

energies are relatively constant. The higher dynamic toughness of the A517F grade,

which involves cleavage, cannot be attributed tO shear li S, but maY be cOnnected
!to the ductile ligaments left behind by the crack front( ) .

The material property that emerges from these studies as the most signifi-

cant measure of both the fast fracture resistance and the fracture arrest capability

is R, the dynamic fracture energy (or Kd, the corresponding dynamic toughness. f)

This quantity and its variation with velocity, together with G, the strain energy

release rate (which depends on the inertia of the structure) , determines the arrest
condition. This is shown schematically in Figure 4 for a plate (low energy, RI)

fitted with arrestor (high energy, R“) . The problem of calculating the minimum
width of the arrestor might be simplified: (1) by relying on the static strain
energy release curve and (2) by assuming all of the kinetic energy is conserved --

approximations that are likely to be conservative.
test this concept,

However, more work is needed to

and to provide a sound basis for selecting R-values appropriate

for base materials and arrestors.

r,Kd= m--~ , where E is the elastic modulus and v is Poisson’s ratio

lV
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SECTION 1

RAPID CRACK PROPAGATION IN A HIGH STRENGTH STEEL

by

G. T. Hahn, R. G. Hoagland, A. R. Rosenfield, and R. Sejnoha

ABSTRACT

The relation between fracture velocity and the energy dissipated

by unstable fractures in high strength 12.7 mm-thick plates of sAE4340 steel

has been measured using the wedge-loaded double-cantilever-beam (DCB) speci-
men. The experiments are analyzed using the dynamic beam-on-elastic- foun-
dation model. In agreement with the model, steady-state crack velocities
are attained. In addition, the theoretical velocity-arrest length i-elation

is closely obeyed. Increases i“ crack velocity up to m860 ins-l are accomp-

anied by a 2-fold increase in the dynamic toughness (a 4–fold increase i“
the dynamic fracture energy) a“d by corresponding increases in the size of
the shear lips. Measurements of the plastic work associated with the shear

Ii s show that the per-unit-volume shear lip fracture energy, USL = 0.21 J/
?.nun , IS essentially constant over this range of velocity. The fracture

energies derived from the model are in good agreement with those derived by

assuming that all of the strain energy released during crack propagation is
converted into fracture energy.
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sAPID CRACK PROPAGATION IN A HIGH-STRENGTH STEEL

1. INTRODUCTION

The behavior of unstable cracks in engineering structures is not well

understood. Such features as the crack ve locity, the tendency for crack branching

and fragmentation, and the process of crack arrest have been measured in isolated
cases, but few generalizations are established. The main difficulties are the need

for simple laboratory tests and for suitable dynamic analyses that can distinguish

the contributions of inertia, kinetic energy, and velocity dependent toughness
“a~ue~, (1,2) In addition, there have been only a few attempts to relate R or Kdt,

the dynamic fracture energy or fracture toughness of a fast running crack to the

underlying fracture processes. The situation is clearest for the glassy polymer,

PMMA . In this case the dynamic fracture energy and the nature of the dissipative

process have been related to the density of small (- 0.1 mm) paiabOlas On the
fracture surface(3 ,4).

Cleavage fractures in steels have received attention, but here it is not

yet clear how the dynamic toughness varies with crack velocity(2 ,5-11) . For example

Eftis and Krafft(5) and others (2,7,10,11) find aS much as a 5-fold increase in the

dynamic toughness with increasing crack velocity in the range 100 to 1400 ins-l. At

the same time , Bilek and Burns(9) and Fitzpatrick, et al(8) present evidence favor-

ing a decrease in toughness with crack speeds in the range 50 to 700 ins-l. Several

author s(10,12 ,13) report evidence that the major contribution to the toughness
arises from the ductile rupture of unbroken ligaments left behind by the cleavage

crack front. These ligaments could account for either an increase or a decrease in

toughness depending on whether the number of ligaments generated and the work of

rupturing them increases or decreases with crack velocity.

Unstable ductile fractures have. been studied in thin metal foils. In

these cases the fracture surface is composed entirely of shear lip and it appears

that the toughness increases with the crack speed consistent with the increased

resistance to plastic flow with strain rate within the crack tip plastic zone (14,15),

However, there have been no systematic studies of unstable propagation in thicker

sections of high-strength structural alloys with the characteristic flat, dimpled
fracture surfaces .” A single determination reported by the authors(l) for a 500 ins-l
fracture in SAE4340 steel at the 1380 MNm- 2 (200 ksi) yield strength, level gave a

dynamic toughness about twice the static KIc-value.

The present paper extends the measurements of unstable propagation and

arrest in 4340 steel NB-test pieces to a range of fracture velocities from 180 rns-l
to 860 ins-l. A systematic increase in the dynamic toughness is observed and this

is correlated with increases in the width of the shear lip. The measured values of
crack velocity and the length of the crack at arrest are found to be in excellent

accord with an improved dynamic analysis of crack propagation in the EKB-test piece.
The agreement implies that kinetic energy imparted to the XB-test piece by the

propagating crack is substantially recovered and used to drive the crack in the

latter stages of the propagation event.

‘ ‘d%’ where E is Young’s modulus, and v is Poisson’s ratio.
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11. EXPERIMENTAL PROCEDURES

Measurements of fast fracture and arrest were performed on 12.7 mm-thick,

quenched and tempered (1 hr. at 205”c) sAE4340 steel plates at room temperature+ .
The procedures used have been reported earlier and are described here briefly.

The Wedge-Loaded DCB-Test . Unstable fractures were produced by wedge
loading double-cantilever-beam (tKB) specimens as shown in Figure 1 of the General
Introduction. Dimensions of the test pieces are gi”en in Figure 1. The sample
contains a blunted starting slot which allows it to sustain a stress intensity, Kq,

which can be as much as 3 to 4 times KIC. Consequently, as soon as a sharp crack
emerges from the blunt notch, the crack immediately becomes unstable” and propagates

rapidly. The loading arrangement is stiff allowing the crack to propagate under

essentially fixed-grip conditions. Under these conditions the strain energy release

rate decreases as the crack grows , and this ultimately causes the crack to arrest

within the confines of the test piece provided it is long enough. The wedge also
induces a compressive load parallel to the direction of crack propagation, elimi-
nating the need for side grooves to promote a straight-line crack path and

facilitating the measurement of velocity.

The value of Kq was derived from the opening displacement measured with

a clip gage mounted to the end of the specimenfl. Crack velocities were measured
using an electric-resistance grid technique described in Appendix A. Earlier
results on PMMA(3) and the previously reported test in this series(l) show that

unstable cracks in the wedge-loaded CCB test piece propagate from the start with a

steady-state speed which is maintained until shortly before arrest This speed
depends on Kq, and can therefore be varied by changing the root radius of the Start-

ing slot. The root radius was formed by spark machining a hole in the specimen ahead
of a saw-cut and the” extending the saw-cut There was some scatter in the value of
stxess intensity required to initiate a fast mo”ing fracture (Kq) as shown in

Figure 2. Late in this series of experiments the notch roots were smoothed by
elect repolishing. This tended to eliminate very low Kq values in subsequent tests
Figure 2 shows that Kq varies as (root radius )l/2, as has been observed for cleavage
crack extension; while this simplifies the problem of selecting the root radius

needed to produce a given crack velocity, it is immaterial for the subsequent
analysis whether a particular Kq versus root radius relation is obeyed.

Shear Lip Measurements. Profiles of specimen surfaces in the “icinity of

the crack line--the “necking -in” associated with the shear lips--were measured
using a Talysurf machine to determine the depression width & and area A which are

illustrated in Figure 3. ‘These qwmtities, can be related to RSL = ~ and

t The composition of the 4340 steel is given in Reference 1. Tensile properties
are as follo”s: yield strength = 13B0 IfNm-2 (200 ksi) , ultimate strength
. 1940 i!Xm-2 (282 ksi), reduction in area = 50%.

Tt The corresponding displacemen t(y~)the load points was calculated “sing the
expression derived by Kanninen
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FIGURE 1. SCHENA’IIC DSAWING OF DOUBLE -CANTILEVER -BE~”

SPECIMEN .

FIGURE 2. VARIATION OF STRESS- INTENSITY AT THE ONSET OF FAST FRACTURE
WITH ROOT RADIUS OF THE STAHTING NOTCH. Closed points refer

to specimens where velocity was measured. Half closed

points refer to reinitiation of an arrested crack.
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FIGURE 3. SCHEMATIC OF PLATE CROSS SECTION FOR A TUNNELING FLAT FRACTURE AND A
SHEAR FRACTURE TRAT LAGS BEHIND: (a) flat fracture in region 2-3
arrives at cross section, (b) flat fracture opens by plastic
deformation in regions 1-2, and 3-6 (dashed lines) , between the ends

of the flat fracture and tt,esurface producing depressions on the \
surface in regions 1-5 and 4-6 and (c) complete fracture at section ~
by rupture in regions of intense shear 1-2 and 3-4, producing the

characteristic shear lips.

‘SL–~> where RSL and UsL are the per-unit-area and per-unit-volume fracture

energies of the shear lip, respectively, 2W is the plastic work dissipated in the

shear lips, g is the crack length, and s is the shear lip widtht :

(2)

These quantities, together with R
r’

the per-unit-area fracture energy of the flat

portion of the fracture, make up he total or averaged fracture energy R:

R =($) R~L+(:)RF ,0,

R=(&) U,L+(:)RF

(3a)

(3b)

where b is the plate” thickness and f is the width of the flat poztion. Equations

(3a) and (3b) are analogous to the expression derived by Bluhm(18)

+ The differential plastic work, dW can be expressed in terms of dP, the differ-
ential force, and bt , a displacement : dW=~. dP, where dP =; . s . da, ~ is
the average flow stress, and a is the c~ack length. The quantity ?it= A . S-l
by virtue of volume conservation provided deformation of the shear lip in the
<~:ec:ion of crack propagation is negligible. The shear lip volune-per-unit
::.2:?. ?5 crack extension (for the 2 shear lips on either side) is arbitrarily
...-=. ~<,,:>lwe)fda = ~ . j.
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Analysis of Unstable Propagation. The analysis of crack propagation in
.-..DCB test piece is derived from the beam-on-elastic foundation model illustrated

:7.Figure 3 of the General Introduction to this report. A simplified treatment of .

:?.is model which employs Euler-Bernoulli-beam theory and accounts for the lateral
:nertia of the beam has already been described(l) . The present study employes a

-?re complete analysis which accounts for both translational and rotational inertia

‘ the test piece. The analysis , based on Timoshen.ko beam theory, is described in
~jtail in Section 111.(19)

The elastic foundation, representing the material in the path of the

:Jvancing crack, consists of a line of sprin:s. In the dynamic calculation the
>reakimg of successive springs simulates crack advance and it is specified that a

spring will break when it reaches a critical displacement. Because the springs are

Linear elastic this corresponds to either a critical crack-tip-opening displacement
(COD) , a critical strain energy release rate (Gc) , or a critical dynamic toughness

(Kd). At the same time,
A

it should be noted that the breaking of springs , i .e., the

dissipation of fracture energy at the crack tip, is the only energy dissipation
~.cchanism provided for.

5 The analysis describes the crack length, crack velocity, time-variation of

:he displacements of the arms of the OCB specimen and the length of the crack at

arrest as a function: (a) R or Kd, (b) the specimen dimensions, (c) density,
(d) elastic moduli, and (e) Kq (the bluntness of the starting notch) . Examples of
such calculations are given in Figure 4 for the specimen configuration employed in

this study. Figure 4a illustrates that the analysis reproduces the constant velocity

propagation that is observed experimentally? . Figure 4b shows that kinetic energy T
is first imparted to the beams; of the maximum amount imparted, 57.is recovered

during the latter 2/3 of the growth increment, with less than 107.of the total

strain energy released remaining as unrecovered kinetic energy in this case

Figure 4C illustrates that both the steady-state velocity V and the arrest
length a= are single valued functions of % for a given material and specimen COn -

Kd
figuration. This means that Kd can be obtained independently from me.3SUrementS of

either: (i) Kq aid aa, or (ii) Kq and V, and the appropriate functional relations

derived from the theoretical model. Alternatively, the arrest length can be inter-

preted without resorting to the detailed anatysis by way of the relation :

[
‘K. K 11/2

‘d q a(static)
(4)

Equation (4) is a close approximation when all of the kinetic energy is recovered
at arrest, and is approximate when the unrecovered kinetic energy is a small

fraction of the total strain energy released. Figure 4. shows that Equation (4)

represents a close approximation of the detailed analysis consistent with the
calculated result that the kinetic energy in the beam-on-elastic-foundation model

is substantially recovered.

T It should be noted that the crack length versus time curves in Figure 4a contain

small sinusoidal fluctuations which are accompanied by 180° out-of-phase fluctu-
ations’ in the strain energy and kinetic energy (see Figure 4b) . These fluctu-

ations, which appear to be connected with stress waves traveling in the arms of
the beam, became more intensie as the ration Kq/Kd is increased, ultimately pro-
ducing ~ di~continuo”s propagation when Kq/Kd z 2.5. Additional information is

reported in Section III .
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III. RESULTS.

All specimens exhibited an extended region of constant velocity propa-
gation followed by rapid deceleration and arrest, as typified by Figure 5. At

the same time, the cross sectional area of the surface depression associated with
the shear lips attains a plateau value within a distance from the starting notch
about equal to the specimen thickness. The larger contractions closer to the

starting notch are probably associated with the plastic zone generated in the

vicinity of the blunted notch during static loading. As the crack decelerates and

arrests, the depression decreases accordingly. In addition, the plateau value of

the shear lip width increased systematically with increasing crack speed, the

extremes being shown in Figure 6. The flat fracture surfaces also become notice-

ably rougher (see Figure 6) . AS reported earlier(l) at higher magnifications,

both the flat and shear portions of the fracture display the dimples characteristic

of ductile, fibrous mode of extension.
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FIGURE 5. VELOCITY AND SURFACE PROFILE MEASUREMENT ON SAE4340 STEEL
(SAMPLE NO. 33).
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FIGURE 6. FRACTURE SURFACES OF ‘TEST SPECIMENS: (a) crack velocity = 185 m[s

per second and (b) crack velocity = 869 mls per second .

Two separate evaluations were made of the dynamic fracture energy:
(a) from the measured velocity (see top of Figure 4.) and (b) from the crack length

measured at arrest (Equation (4)) . As shown in Figure 7, these two essentially

independent determinations of R or Kd are in close agreement. The one point that

departs from this pattern was determined from velocity data and appears to be - 3070

too high. Owrall, the data show that the toughness almost doubles between the

static value and the highest velocity attained (- 17% of the bar wave speed) .

In contrast to the dvnamic toughness, K. , the stress intensity at crack

arrest (derived from the stati~ analysisy, incre.a~ed slightly with Kq (and, in turn ,

with crack velocity in the range O to 200 ms ‘1) then remained about at the le”el

required to reinitiate an arrested crack> KIC, aS shO~ in Figure 8.

The measurements of su-face profile are gi”en in Table 1. Note that the
various measures .of distortion are closely related to one another. Two examples
are given in Figure 9 where it is shown that the width of the depression is propor-
tional to the shear lip width and that the area of the depression is proportional
to the area of the shear lip. The shear lip fracture energies, RSL and USL, were
calculated with Equations (1) and (2) from_the measurements of the surface

depression using the flow stress valuet : 0 = 1700 MNm-2, and are listed in Table 2.

A
t The plastic strain rate in the shear lips: ? -- — . ~ , where V is the fracture

velocity and d - 5 mm is the distance by which fl!~ fracture in the interior leads
the shear fracture on the surface . For the values in Table 1, ? . 104 see-l.
Nhile the dynamic flow stress of 1400 MNm-2 yield strength steels at this rate is
not established, the dynamic flow stress values are expected to be close to the
static values at 104 see-l on the basis of measurements on lower strength
materials by Harding and other considerations. For strain rates > 104 See-l,
rate sensitivity could be expected, and this is important since strain rates
associated with the flat fracture are probably 2 to 4 orders of magnitude larger.
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Values of the flat fracture energy, RF were then obtained from Equation (3a) .

Table 2 shows that RSL, the per-unit-area fracture energy, increases with shear lip
width, while USL, the energy per unit volume is essentially constant. The average $
value, USL s 0.21 J/mm3, corresponds to a local temperature rise of - 30”C.t~ A
measure of the temperature rise cm the surface of Specimen 33 was obtained by “sing

a series of Tempilsticks which responded to temperatures of 45°C to 73”c. A surface
temperature rise in excess of 22°C and 50°C were detected out to - 0.8 mm and

--0.25 nun on either side of the crack line, respectively. The 22°C rise corresponds
closely to the shear lip height, 1, and while this suggests that the calculated

value of USL is reasonable, it does not provide an exact check.

IV. DISCUSSION

‘Themeasurements described here show that the dynamic fracture energy for

crack propagation in 4340 steel experiences a 4-foId increase with crack speed in
the velocity range O to 860 ins-l. The increase in energy, equivalent to a - 2-fOld

increase in Kd, arises mainly from a systematic increase in the propOrti On Of shear
to flat fracture. However, there is room for a modest contribution arising from

an increase in the specific flat fracture energy with speed (see Table 2) consistent
with the observed roughening of the surface. while the change in the fracture

surface occupied by shear lip is relatively modest, increasing from -- 07.to 157.at

tbe highest velocity, the effect on R is dramatic, because RsL, the shear fracture

energy is 5 times’ to 10 times the RF, the flat fracture energy.

oo&&_+&+Jg
CrockVeloc,ty,m/s

FIGURE 7. RELATION BETWEEN DYNAMIC FRACTURE TOUGHNESS AND C8ACK
VELOCITY FOR SAE4340 STEEL (Q & T 1 HR. AT 205°C ,
b = 12.7 mm). Tested at room temperature

tt The temperature rise is calculated assuming the heat generated by the plastic
work accompanying the intense shearing of regions 2-3 and 2-4 in Figure 3 is
confined to the area 1, - s outlined by the dashed lines.
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FIGURE 8. STRESS INTENSITY Al’CRACK ARREST OF SAE4340 STEEL.

TABLE 1. MEASURl?llENTSOF FRACTURE FEATURES IN SAE4340 STEEL QUENCHED Am
TEMPERED AT 2050C

Steady-state Depression Depression Shearlip Flat
Sample crackspeed ..,. A, height,L.
No. 10-~~z

width,s, fracture
v, m/s width,f,mm

3OB

32

30D

33

34

31

35

37

0

0

185

381

472

513

772

869

-0 -0

-0 -0

50 2.0

63 1.75

100 2.6

200 3.5

-0 12.7

-.0 12.7

0.47 11.06

0.51 1.0.98

0.63 10.74

0.91 10.18

0
100

0

1=38s

o 0.2 0.4 0.6 0.8 1,0
Shear-Lip Width,s,mm

0.20.

I 2 3

Shear-Lip Area,sl,mm2

FIGURE 9. RELATIONS AMONG VARIOUS SHEAH LIP DIMENSIONS.



TABLE II. DYNAMIC FRACTURE

INCLUDING VALUES

ENERGY AND TOUGHNESS VALUES FOR UNSTABLE CRACKS IN 4340 STEEL

FOR THE SHEAR LIP AND FLAT PORTIONS OF THE FRACTURE

303 -0 73 27 - ,, 13

32 -0 76 29 ;,; 76

30D 185 135 1 w 54 lEO (),‘8 1?0 &2 92

31 381 1!5 121 64 210 0,24 295 47 97

~~ 472 121 124 71

31 513 130 16, 82 2T0 0.21 232 55 105

35 772 144 Lk 1 lcl

37 869 1!.2 136 96 370 0.21 272 60 89

———. —

(.) Fro. Eq.atiocl (G)
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The measurements of the surface depression show that RSL increases with

the size of the shear lip, while the per-unit-volume shear fracture energy,
USL = 0.21 J/mm3 remains essentially constant. These results are very similar to

those which can be derived from the data of Steigerwald(21) who examined the “ari -

ation of KIC with specimen thickness, also for a 4340 steel in a quenched and
205°C-tempered condition. ‘The shear lip width did not vary systematically with

thickness in these experiments, s - 0.5 mm, while the proportion of shear to flat
fracture increased as the specimen thickness was reduced. Figure 10 shows that
Steigerwald’s resultst cam be represented by Equation (3b) . The quantity

USL $= 0,20 J/um3 is derived from the slope of the straight line, assuming that the

relation between 4 and s of Figure 9a holds in this case . Another estimate

UsL x 0.19 J/nnn3 can be obtained from Equation (2) by assuming that A/4s = 1/16 as

before, and by using the measured yield str-ngth(zi) of 1500 MN/m2, again in good

agreement with the value obtained here. The relative constancy of USL-values

derived from these 2 investigations suggests that R-values can be predicted once

the relative amounts of flat and shear fracture are known. The factors governing

the size of the shear lip are not clearly resolved but this may be connected with RF

since RF and the dimensions L and s tended to increase with crack speed.

Perhaps the “ost important findings of this study are the agreements

between theory and experiment. The Timoshenko beam theory fbeam-on-elastic foun-

dation analysis makes the following predictions about crack propagation in the ECB-
test piece:

(1) The crack propagates at an essentially constant, steady-state

velocity from the start. This is confirmed by the velocity

measurements (compare Figures 4a and 5) .

(2) The steady-state velocity is not an invariant, but depends on the

initial conditions, i.e. , the blmtness of the starting slot. This

is confirmed by the measurements (see Figure 7) .

(3) For a given DCB-configuration, material density and modulus, the crack
velocity and arrest length are separate, single-valued functions of

R or Kd (see Figure 4c) . This means that R- or Kd-value can be in-

ferred independently fmm the velocity and from the arrest length. The

fact that v?lues obtained in these two ways agree closely (see Figure 7)

can be regarded as a critical test of the theory.

(4) Alternatively, the theory predicts a unique relation between crack

velocity and the length of the crack at arrest , that is independent

of the dynamic toughness of the material . This relation is compared

in Figure 11 with the predictions of quasi-static anal ses and with
the measurements. 3Since the quasi-static .anaIYSe S(16, 2) do not all

predict a cOnstant ~el Ocity, peak velocities are plotted. F“i-thermore,
the curves will shift with changes in the test piece geometry. The
data points also do not all represent the identical geometry since
different initial crack lengths were used in some cases. Despite this,
it is clear from the figure that the present fully dynamic analysis
provides, by far, the best description of the relation between the
velocity and crack length at arrest, two quantities that can be
measured directly.

t Steigerwald’s Kc-values have been converted to G= which approximates the value
of R at zero velocity.
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These agreements are important for two reasons . By validating the analysis,
they confirm that a large part of the kinetic energy imparted to the EY2B-test piece

by the unstable crack is recovered and used to drive the crack. This cornslusion has

implications for fracture arrest which are discussed in Section II. One of Lhese
is that Ka, the stress intemsity at arrest calculated from static considerations , is

~ a materials property. The relative constancy of the Ka-values reported” in

Figure 8 is fortuitous --a consequence of the increase of ~ with velocity (Kd c ~,

see Figure 7) together with Equation (4)--and not a sign that Ka is an invariant.
Additional evidence that Ka depends on specimen goemetry has been reported by

Kanazawa(23) .

The agreements cited are also important because they provide the basis

for a convenient laboratory test procedure for measuring crack propagation. The

wedge-loaded DCB test makes it possible to control the velocity and energy dissi-
pation rate of unstable cracks and to extract dynamic fracture energy and toughness

values from the measurements. The method has already been extended to tougher

steels by facilitating fracture initiation. This is accomplished with a “duplex’’/DCB

specimen consisting of high -strength/low-toughness SAE4340 “starter” welded to the
test ~ection. (2) ‘rhe fracture is initiated from a slot in the starter section in

the manner described here and enters the test section at high velocity. In this way

R and IQ values can be measured close to the transition temperature. The technique

is also being used to study crack arrestors.

v. CONCLUSIONS

1.

2.

3.

4.

5.

Unstable fractures in high-strength 4340 steel, wedge-loaded DCB-test pieces
propagate at essentially constant velocities. The existence of steady-state
velocities, their variation with the initial conditions, and the relation between

steady-state velocity and arrest length are all in close agreement with the
dynamic beam-on-elastic-foundation analysis. The measurements represent a
critical test of this theory. These results confirm that the kinetic energy im-
parted to the wedge-loaded DCB test piece is substantially converted into fracture
energy during the latter stages of a propagation event.

The dynamic toughness of the 4340 steel increa es systematic ly with crack
? }2speed in the range O to 860 ins-l from 75 MNm-3 2 to 140 Mtim-3 , reflecting a

_ 4-fold increase in the dynamic fracture energy R.

The per-unit-volume shear lip fracture energy, UsL = 0.21 J/rmn3 appears to be

essentially independent of shear lip size and crack speed over the ranges ob-

served. The temperature rise detected on the surface in the vicinity of the

crack is consistent with the UsL-value derived from measurements of shear lip

geometry.

Both the size of the shear lips and RsL, the per-unit-area fracture energY
dissipated within the shear lips, increase with crack speed. The increase in
toughness with speed is observed mainly because the quantity RsL is 5 to 10 times

RF, the flat fracture energy.

The flat fracture energy also appea<s to increase with crack speed consistent
with noticeable increases in the roughness of the fracture surface.

—
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APPENDIx 1-A

,.-

VELOCITY NEASURING PROCEDURE

The velocity of crack propagation was measured from the change in the

:?sistance of grids as the advancing crack severed successive strips of the grid.
This grid was deposited on top of an epoxyt film coated on the steel specimen to
serve as an insulator.

The epoxy was mixed 1 part activator to 1 part resin. Then a bead of

?poxy about 1/4” in diameter was placed across the width of the specimen. Following

:his, the specimen and the epoxy bead were covered with a 5 mil sheet of mylar.
i-sing a straight edge, the epoxy was “squeegeed” to an almost (3 to 4 roils) uniform

thickness covering the specimen. After an overnight “set”, the mylar was stripped

from the specime~ leaving behind a glass-smooth bubble-free epoxy coating on the
specimm surface.

As additional preparation, the conducting grid was deposited through a
mylar mask prepared for the specimen. This mask had an array of four grids, each

consisting of 5 parallel strips 1-1/4 mm wide and spaced 5 mm apart, 15 to 40 mm
long, in the form of a trapezoid, cut out with a razor blade (see Figure 1 of the
introduction) .

After the mask was taped to the specimen surface, the specimen was placed

in a vacuum evaporation unit and the system was evacuated to < 2 x 10-5 torr .
Esing a platinum carbon composite as a source, -- 1,000 k of material was deposited

perpendicular to the specimen surface< through the mask.

Upon removal from the evaporator, each line was checked for continuity
with a “olt ohm-meter. Typical values for the lines ranged from 30 to 50 K ohms.
The ends of the lines were then joined with conductive paint resulting in four

separate parallel circuits with resistance values ranging from 7,500 to 12,500 ohms .

The four individual trapezoidal arrays were connected in parallel circuit.
Each leg of the circuit contained not only a trapezoid but also a single channel of

a high-speed tape recorder and a variable resistor. A voltage (12 V d.c. ) is im-
posed on the total circuit. An oscilloscope trace of the output of two individual
channels of the tape recorder is shm.m in Figure A-1. The velocity measurements

were made from such traces displayed two at a time so that the time interval between
grids could be measured.

Since the tape recorder speed was 3 rn[sec.and the reel contained about
2-1/2 km of tape, it had a recording time of almost 15 minutes Thus , the tape

recorder could be started well before the crack began to propagate with assurance
that the resistance changes would be captured. Triggering problems were accordingly

eliminated. At the speeds employed, signal changes 5 # se. apart could be
distinguished and velocities as high as 1000 mfsec could thus be measured for a

conducting strip spacing of 5 nm. Larger “elocities could be detected by increasing

the strip spacing.

t Duro E-Pox-E, No. EPX1, Woodhill Chemical Sales, Cleveland, Ohio.
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FIGURE A-1 . RESISTANCE-TIME RECORDING OF THE RUPTURE

OF CONDUCTING STRIPS IN 2 ADJACENT GRIDS

(ABSCISSA 16 v SeC/CIIl, ORDINATE 0.5

vo 1ts/cm) DURING A CRACK PROPAGAHON

EVENT .
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SECTION 2

YHE CHARACTERIZATION OF FRACTURE ARREST IN A sTRUCTURAL STEEL

by

G. T. Hahn, R. G. Hoagland, M. F. Kanninen, and A. R. Rosenfield

ABSTRACT

A new method of characterizing the fracture arrest capabilities

of structural steels is described. The method employs wedge-loaded

“duplex” double–cantilever-beam (DCB) specimens and a fully dynamic anal-

ysis of crack propagation in the test piece. In this way (1) unstable

fractures can be initiated and arrested over a wide range of temperature

encompassing the transition temperature, (2) the speed of unstable frac-

ture in the test piece can be controlled , and (3) R or Kd, the dynamic

fracture energy or dynamic toughness of the material, can be evaluated .
Results for fractures propagating at 600 ins-l to 1100 ins-l in. 12.7 re-

mand 25.4 inn-thick plates of A517F steel and SAE 4340 steel at O°C and -78°

C, are described. The analysis of the test data lends support to the
view that kinetic energy contributes to the crack driving force, and that

Ka, the static stress intensity at arrest is not a material property.
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THE CHARACTERIZATION OF FRACTURE AHREST IN A STRUCTURAL STEEL

1. INTRODUCTION

The risk of catastrophic fracture can be reduced by endowing pressure

vessels and other monolithic structures with a predetermined fracture arrest
capability . This can be done by selecting base materials with specified tough-

ness levels or by installing tough crack arrestors in strategic locations. A
number of methods of characterizing the arrest capabilities of steels have been
devised including Robertson’s arrest temperature(l), Pellini’s FAD(2), and the
arrest toughness, Ka (3-6)

The arrest toughness concept has features of a quantitative methodology
comparable to crack extension fracture mechanics, but it involves several arbi-

trary and questionable assumptions about tbe energetic of fracture arrest A
tacit assumption is that the kinetic energy imparted to a structure by an un-
stable crack is not converted into fracture energy and is not a source of crack
dri”ing force. I“ contrast, Berry(7) , Romualdi and Sanders (8), and the present

(authors 9, 10) adopt the position that the kinetic energy is substantially con-

served and that it contributes to the crack driving fore

~~~~~{5 ,6) is th~
in the analyses of Irwin and Wells (3)y Kanazawa

~4),A:;;h:;o~y~;;;;on

t the strain energy release rate of the propagating crack can

~a:;~:~g;;:y:i ;:::::y
~~~~ed frOm static cO”sideratio”s. HOT.JeW-, a“aIySe.

as well as the interpretation of fracture velocity
suggest that the inertia of structural members influences the

strain distribution and G-values in a significant way . These assumptions are
important because they affect the interpretation of test data, and this is illus-
trated in Figure 1 for the DCB (double -ca”tile”er-beam) test piece which is used
to measure Ka :

. ‘lbearrest toughness concept presupposes that G, the strain energy
release rate, is the only contribution to the crack driving forcet , and
that the crack arrests when G < R, where R is the energy that must be
supplied to the crack-tip region to produce crack extension (the dynamic
fracture energy of the material) . I“ contrast, kinetic energy utiliza -

ticm implies arrest when (G + H) <R (G ‘- $ , H.-~i s the kinetic

ener~v release rate, and U and T are the strain energy and kinetic energy
of the system) .

● When G is the sole driving force, Ga, the value of G at arrest, must
always lie on the R curve, and can therefore be regarded as the con-

trolling material propert (see Figure la) .

r

The corresponding stress
EG

intensity value, Ka e ~ is the arrest toughness, where E is Young’s
1-v

t The statements i“ this a“d the following paragraph pres”ppase fixed grip

conditions; otherwise the rate cf external work input , - ~, is an addi-

tional dri”ing force. ba
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The kineticenergy
isrecovered:
AreaI=AreaE

(b)

The kineticenergy
isrecovered:
AreaI.AreaD

,G(dynamic)

~ti
QQ”o

(c)

FIGURE 1. SCHEMATIC REPRESENTATION OF THE ENERGETIC S OF FRACTURE ARREST IN THE DCB-

TiZSTPIECE, ILLUSTRATING (a) THE ARREST TOUGHNESS CONCEPT, (b) THE R-CURVE

CONCEPT, AND (C) THE CONCEPT OF A DYNANIC STRAIN ENERGY RELEASE HATE. The
quantities G=, a*, Ga, and aa are the critical Strain energy ~elea~e ~ate~
and crack lengths corresponding to the onset of unstable fracture and to
fracture arrest , respectively. The shaded areas I and 11 represent the
amount of kinetic energy imparted to ,the structure, and the amount
recovered in the form of fracture energy prior to arrest. The drawings
reflect the simplifying assumption that there is no external work exchanged
between the test piece and the loading system during unstable fracture.

modulus and v is Poisso”s ratio When kimstic energy is conserved, G
does ~ lie o“ the R curve, and “either G= nor Ka C+I” be i“terpreteda

as material properties (see Figure lb) . I“ this case, the qua”titY R,

or a“ equivalent (apparent) dynamic stress intensity Kd ❑ j% are the

%’l-v

aPPxOPriatE material Parameters fOr defining the arrest capability of a
structural material .

● Figure lC illustrates the concept of a dynamic G-curve that departs

from static values The departures influence the kinetic energy in the

system and the crack speed This is irnporta”t in situations where R

(and K ) vary with V,

t

the fracture “elocity(13-15) . I“ this case R(V)
and Kd V) must be introduced to predict the instantaneous “elocity and

the point of arrest .

These assumptions also ha”e a bearing on the design of arrestors .
For example, the Ka-approach implies that arrest is instantaneous when G < R.
Accordingly, a strip of tough material (R > G) just wide enough to contain the
hea”ily straiwsd region adjacent to the crack tip is adequate to stop a propa-
gating crack if the K=-approach is valid . The R-curve concept implies that

the arrestor must be wide enough to absorb the kinetic energy stored in the
structure.

,

This paper describes a new testing procedure and an appropriate
dynamic analysis which help to disti”g”ish between the Ka - and R-curve approach

to fracture arrest . The procedure provides a wide range of constant fracture
velocities a“d thereby affords opport””ities for meas”ri”g the variation of R
with crack speed . A preliminary description of the method, which utilizes

wedge-loaded DCB-test pieces with blunt starting slots, is contained i“ an
earlier report .(9) The present paper describes the use of “duplex” DBC-test

pieces which make it possible to initiate fractures at temperatures close to
(or even above) the transition temperature and to direct unstable, high speed
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cracks into the testama teria lounder controlled conditions Results for 4340
and A517F steel at O C and-78 C are presented. A more comprehensive study of

the 4340 steel appears in Section I and a more complete description of the
analysis is given in Section III. The results obtained favor the idea that

kinetic energy can con~ribute to the crack driving force, necessitating an R-
cur”e - rather than a Ka -approach to fracture arrest .

II. BXPERINRNTAL PROCEDURESJ

Measurements of fast fracture and arre:t were pe~formed on material

from a 25 .& mm-thick plate of A517F steelt, at O C and -78 C. Plate specimens,

machined to a thickness of 12 .7 and 24.5 mm, were wedge-loaded as shown in

Figure 1 of the General Introduction . Dime”siom of the DCB-test pieces are
given in Figure 2 (The lo”gitudi”al axis of the test piece is parallel to the
rolling direction .). The configuration, i“scrumentatio”, and analysis differ
in 4 essential respects from those employed by Hoagla”d(13) , Ripli”g a“d
coworker, (5,6) , B“I-”S and Bilek(15) a“d others who have used the DCB-specimen

to study propagation and arrest :

(1) Blunting Startinz Slot The fracture is initiated with the
aid of a blunt slot rather than a sharp crack . The blunted notch permits the

specimen to sustain a stress intensity, Kq, which is typically 3 to 4 times as
large as KIC Consequently, as soon as a sharp crack emerges from the blunt
notch, the crack immediately becomes unstable and propagates rapidly. The Kq -
value ca” be systematically altered by varying the slot root radius (See
Section 1, Figyre 2) Results reported here were obtained with a root radius
of about 0.7 mm, prepared by spark machining followed by elect repolishing to

make the crack initiation conditions more reproducible

(2) WedEe Loading. The specimen is slowly loaded in an ordinary
testing machine (operating in the compression mode) by forcing a split wedge

t The composition of the A517F steel is: C-O .18, Mn-O .93, Ni-O .85, MO-O .42,

Cr-O .54, V-O .038, CU-O.3 Tensile properties are as follows:

Yield Strength Ultimate Strength RAJ

R’I 763 MA%-2(111 Ksi) 823 NNm-2(119 Ksi) 70
-78°C 810 NNm-2(118 Ksi) 886 MNm-2(129 Ksi) 69
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FIGURE 2. DIMENSIONS OF DUPLEX TEST PIECES

between the pins Since the wedge loading is inherently “stiff” , crack propa-

gation proceeds with essentially constant displacement at the load pointt
Under these conditions G decreases as the crack grows , and this ultimately
causes the crack to arrest within the confines of the specimen provided the
test piece is long enough (16) Wedge loading has two other virtues Since

little energy is exchanged between the DCB-specimen and the testing machine
during the propagation event, tbe results are expected to be relatively insen-
sitive to the character of the testing machine. The friction between the wedge

and the pins introduces a modest compressive stress parallel to tbe crack plane,

tYPicallY 2 to 15% of the yield strength, which tends to stabilize the crack
path(17) . Hence, the side grooves ordinarily required to keep the crack from
turning are not needed This simplifies the measurement of velocity and makes
the test a closer replica of service conditions

(3) The Duplex Specimen To facilitate the production of fast pro-
pagating cracks at temperatures close to the transition temperature, “duplex-
DCB test specimens” were employed .

‘he:’ consisted ‘f a ‘igh+Tfr::g:;(l~ ;7Ftoughness 4340 steeltt “starter section electron beam welded

t

tt

ttt

The dynamic analysis given in the next section indicates that tbe dis-
placement of the load points remains fixed during the first part of the
propagation event and then experiences a series of oscillations

The composition of the 4340 steel is given in Reference 9. Tensile pro-

perties are as follows :

Yield Strength Ultimate Strength ~

Quenched and Tempered 1 hr.
at 200°C, Tested at RT

Tested at -78°C
1380 MNm~~ (200 Ksi)
1600 ~m-2

1940 MNm~~ (282 Ksi) 50

As-Quenched, Tested at -78°C 1670 MNm

(232 Ksi) 2010 MNm-z (292 Ksi) 50
(242 Ksi) 2260 MNm (328 Ksi) 29

Electron beam welding produced a sound and relatively narrow fusion and
heat -affected zone about 3 nunwide.
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steel “test section” , as shown in Figure 2 and in the Appendix to this section,

Figures A-1 - A-3. The fracture is initiated from the slot in the starter

section, and directed at high speed into the test section. The high-strength

starter section also makes it possible to attain higher Kq -values withOut

exceeding the limitation on yielding imposed by linear elastic fracture mechan-
ics theoryt . This is important because the maximum fracture velocities that

can be produced in the test piece, and the maximum values of R and Kd that can
be measured in a particular specimen vary directly with Kq . The requirements
are less stri”ge”t once the crack is propagating since the higher dynamic yield

strength corresponding to crack tip strain rates - ~~4 to 107 ~ec-l is the”

appropriate

(4) Analysis of Measurements . The analysis described in the next

section makes it possible tO extract R- (Or Kd-) values frOm Kq and Ka (static),
the stress intensity at initiation and arrest which are measur d with a stan-
dard displacement gage mounted to the end of the DCB specimen ?t Alternatively

R or Kd can be evaluated independently from Kq and V, tbe fracture velocity in

the test section. Tbe velocity measuring system consisted principally of a

grid of conducting strips whose resistance is rmmitored during the propagation
evsnt A description of the grid, the method of preparation, and the rec@rding

technique are given in tbe Appendix to Section 1.

III. ANALYSIS

The analysis of crack propagation in ordinary and duplex DCB-test
pieces, is derived from the beam-on-elastic-foundation model Kan”i”en(20) has
shown that a static analysis of the model employing a Euler-Bernoulli beam and
a Winkler layer provides a description of the stress intensity factor for the
DCB-spt?cime” which is i“ excellent agreement with tvo-dimensional analyses and

f The maximum value of K ~ 0.9 Uy fi , where h is the beam height and Uy
is tbe yield stress (lg~. Thus the maximum value of Kq that can be gener-
ated at room temperature in the present duplex sample

(h = 63.5 ~, Uy (4340) = 1380 ~m-2) is -310 ~/m-3’2. HOweve~ compar-
ison of tbe results in Specimens 3V44 and 3V21O (see Table I ) , P. 37)
suggests that this might be sufficient ly conservative

tt The quantity Kq .i: calculated for the wedge opening a“d a crack length a.
equal to the inltlal slot length . The quantity Ka(statiC) is calculated

for the wedge opening and crack length a= measured after arrest from

pure,ly static considerations It does not account for the kinetic energy

dis:i-ibution in the arms of the DCB-specimen at the instant of arrest
For this reason, Ka is not necessarily a precise rneas”re of the stress

intensity at instant of crack arrest . Both of these calculations are

based o“ displacement meas”rememts made with a gage attached at a distance
~ = 1,65 ~ from the center of the pins (see Figure 2), and .cOrrected by

using an expression derived by Kanninen(20) .
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with experimental results
t

This model was initially adapted to unstable crack-
ing by( lo) : (1) introducing a force Q to allow for the larger deflection of the .

specimen at the load point which is permitted by the blunt starting slot (see
Section 3), (2) incorporating lateral inertia forces into the equations gover” -
ing the beam deflection, and (3) systematically removing the springs comprising

[)

1/2
~,

the foundation when the critical spring deflection Wc = 2E

corresponding to the dynamic fracture energy R, is exceeded This model
gives a good representation of the constant speed propagation obser”ed i“ the
DCB-test piece, a“d much better estimates of the crack speed than q“as istatic

treatments that ignore inertia (10) Howe”er, the calculated speeds still exceed
the experimental values by about a factor of two .(lo)

This analysis has now been substantially refined. Timoshenko’s beam
equation s(21122) and a model havin ~ag eneralized elastic fou”daticm with exten-
sional and rotational stiffness (23 have been introduced. This makes it possible
to account for lateral and rotational inertia. The governing equations for this
model, derived in Section 3, starting from the e uatio”s of three-dimensional elas-
ticity, and adapting the method given hy Cowper, T’2b) thus gives the relatim.

KGA ()&-a
axz ax

where

E.

I=
G.

p = density

average deflection of the cross
section
mean angle of rotation of the
cross section about the
neutral axis

elast ic modulus
moment of inertia (= bh3/12)
shear modulus

(2a)

2
keH.*(cc-6) w = PA + (2b)

at

A = cross sectional area of beam (=bh)
ke = extensional stiffness of the

foundation
kr = rotational stiffness of tbe

fomdation

K = shear deflection coefficient of

the beam, K = E/3G
5 = crack extension parameter,

@ = kewz + kr~lz
6C = critical value of the crack

extension parameter, e, = bR

t When the “untracked length” of the beam is > 2h and ~ ~ 1, the expression
derived for K reduces to:

(1)

where K is the stress intensity factor, P is the load applied at the end

of the specimen, a is the crack length, 2h is the height of the sPecimen,
b is the thickness of the specimen, a“d o = (6)-1/4 = 0.64.
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and H$~(x) is the ordinary Heaviside step function modified such that a spring
once broken always remains broken. The crack extension parameter can be evalu-

ated by considering the energy components of the system, as described below .

The boundary conditions to be imposed are those which correspond to a

minimum displacement ~ of the load pins with no applied tOrque at the cracked

end of the specimen (x = O) and stress-free conditions on the untracked end

(x= L). Using the equations derived in Section 3, these are

W(o, t) > 6, v’ (O,t) = o

w’ (L,t) - Cj (L,t) = O (3)

V’ (L,t) = O

where the prime notation indicates differentiation with respect to x The

initial conditions are obtained by finding the static solution that satisfies

the above boundary conditions and has, in addition, a force Q acting at x = W.

such that O(cio,O) = eC (for duplex specimens, 2 f3c-values are introduced : one
for the starter section and one for the test section) This static solution

has been obtained in closed form, while the dynamic equations (2a and 2b) are

evaluated by finite difference techniques .

IV. RESULTS ANU DISCUSSION

Theoretical Analvsis

Calculaticms of the speed, extent and e“ergetics of unstable fracture,
employing the Timoshenko -beam -on-e lastic-fou”dat icm model, were carried out for
the DCB co” figurat ion employed in this study The rnai” features of tbe results
are contained in Figure 3 and may be summarized as follows :

(1) Crack Velocity Characteristics . Crack propagation under wedge
loading tends to proceed at constant “elocity. Figure 3a illustrates that the
crack assumes the steady-state velocity immediately, and maintains this velocity

until shortly before arrest The magnitude of this speed depends on se”eral
factors : (i) the specimen configuration, (ii) the elastic modulus and density
(or equi”ale”tly, cm Co, the bar wane speed), (iii) Kq, and, consequently, the

bluntness of the starting notch, a“d (iv) the dynamic toughness R (or Kd),
with (iii) and (iv) entering as the dimensionless ratio Kg/Kd (see Figure 3d) .
Figure 3a shows that a crack propagating in a duplex specimen begins by propa-

gation at the speed consistent with the ratio K /Kd (starter se tie”) and then

i 7 Since theassumes a second velocity characteristic of Kq~ d (test ~ectio”

velocity in both the starter and the test section obey essentially the same
Kq/Kd-dependence (see Figure 3d) , it appears that the velociey in the test

section is independent of the speed in the starter section . Finally, it should
be noted that the crack length versus time curves inoFigure 3a contain small

sinusoidal fluctuations which are accompanied by 180 out-of-phase fluctuations
in the strain energy and kinetic energy (see Figure 3b) . These fluctuations,

which appear to be connected with stress waves traveling in the arms of the

beam, became more intense as the ratio Kq/Kd is increased, ultimately producing

K
a disco”t inuous propagat ion when 2> 2.5. Additional information is reported

in Section 3.
‘d -
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FIGURE 3. THEORE~ICAL CALCULATIONS OF CRACK PROPAGATION ANC ARREST IN TIMOSHENKO
BEAM-ON-ELASTIC-FOUNDATION MODELS OF AN OKOINARY AND A DUPLEK DCB-SPEC-
IMEN (Kq/K

d(starter section)
=2, K

d(test section) lKd(starter section) ‘1”4) ‘
(a) velocity profiles, (b) energy changes, (c) G, H, and R, and (d) the
influence of Kq/Kd on velocity and arrest length. Tbe quantities G and H

in Figure 3 (c) do not reflect the small fluctuations evident in the
variation of U and T with crack length in Figure 3 (b).

(2) Energetic . The energetic of crack propagation in the theo-

retical model are described in Figures 3b and 3C . Figure 3b illustrates that

kinetic energy is first imparted to the beam and then recovered during the

latter 2/3 of the growth increment; with about 85% of the kinetic energy

recovered prior to arrest, and less than 10% of the total strain energy released

remaining as unrecovered kinetic energy in these two cases . Figure 3C shows

that H, the kinetic energy release rate, is comparable to and in some places an

even larger part of the crack driving force than G, the strain energy release
rate . The true, dynamic values of G depart substantially from the G(~tatic) ,

the values derived from static consideration, except at the point of arrest

The relatively small discrepancy between the real Ga and Ga(~tatic) arises

because there is relatively little kinetic energy trapped in the specimen at
arrest . However, this should not be interpreted as evidence that Ga ~ta~ic) or
Ka(~tatic) are closely related to the fracture energy or toughness o$ the

material at arrest. This is clearly revealed in Figure 3C which shows that

neither G= nor Ga(~tatic) correspond with R.

(3) Evaluation of R (or Kd) . Figure 3d illustrates that both the

steady state velocity V and the arrest length aa are single-valued functions of

‘q
— for a give” material and specimen configuration. This means that Kd can be
‘d
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obtained independent ly from measurements of either: (i) Kq and at, or (ii)

K a“d v, and the appropriate functional relations derived from t e theoretical

:m del Alternatively, the arrest length can be interpreted withOut reSOrting

to the detailed analysis by way of the relation
(9),

>1/2

(4)
‘d = ‘q

.K
a(static) ;

Equation (4) is a close approximation when all of the kinetic energy is re -
co”ered at arrest, and is approximate when the unrecovered kinetic energY is a

small fraction of the total strain energy released .
For example, for the ordi-

nary DCB-specimen and test conditions described in Figures 3a-3c, Equation (4)
yields e value of Kd that is only 6% smaller than given by the detailed analysis
(see Figure 3d) . The Kd-value for the test section of a duplex specimen can he

inferred from measurements of K , V (the crack velOcity in the test section) ~
and the functional relation in J~gure 3d, independent of the value of Kd for the

starter section. The analysis can also be used tO derive the Kd-value for the

test section frOm the arrest length, Kq, and ‘d( ta ter sect~on)
a curve analogous to the one in Figure 3d. Sim=~ar~y, Equat10. (~ ::~~ting

I
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incorporated into an energy balance for duplex specimens after Kd for the
:.aterial on the starter section has been de~ived from the test of an ordinary OCB - ,

s?ecimen. Since the energy consumed in the starter section is KAa = K~ Aaf E :

-1/2
KK (aa-ao) - K: ~parter ,ection (al-ao)

K
a(static)

d(test section) = ~ (aa-al)
(4a)

<here aa, a , a“d al are the arrest length, initial length, and the length of the

rack when ~t first enters the test section, all for the duplex test piece.

Experimental Results

ExamPles of the extent of propagation in duplex specimens and tyPical

fracture velocity measurements are shown in Figures 4 and 5 and the test results

are presented in Table 1. Additional illustrations and velocity records are

civen in the Appendix to this section, Figures A-4 - A-18. Figures A-14 and A-15

show that the behavior of the DCB-test pieces is quite reproducible.
The frac -

tures propagate at 800 to 1100 ins-l in the 4340 starter section and penetrate the
test section at this speed. At -78°C the fractures continue to propagate in the

A517F for some distance (Figures 4b and &c), while at O°C, the fractures were

stopped by the A517F steel close to the weld line (Figure 4a) .

The fractures propagated further in the center of the plate than on the
surface, and this is illustrated in the Appendix to this section by Figures A-18
and A-19. These figures show the morphology of the fracture after arrest and it
is not clear to what extent the crack was tunneling during rapid propagation. The
crack length at arrest was identified with the distance propagated in the center

of the plate, i .e., the point of furthest propagation. At O C where the extent
of the unbroken shear lips represent a le.rge fraction of the arrest length, the
calculated Kd-values underestimate the real values and are regarded as 10wer limits.

Figure 6 compares the Kd-values for the A517F steel with existing mea-

:y:7:;Y
for other steels. With two except iom,

(
the results of Fitzpatrick,

and Bilek and Burns 15) , a trend toward higher Kd -values with increas-
ing fracture velocity is apparent However, the exact form of the dependence is
not well defined for any of the steels that have been studied. The Kd -“alues
for th~1A517F do not display a clear-cut velocity dependence in the 475 ins-l to

780 ms range examined here, b“t the existence of one should not be ruled out

Pe~haps the most striking feature of the results is the large differ-

ence at - 78 C between the Kd-values measured for a propagating crack, and the
dynamic initiation Kid-values reported by Barsom and Rolfe(30) for a rapidly
loaded, but stationary crack. It has generally been thought that Kid-values

approximate the toughngss of propagating c:acks Figure 7 shows that this

could be true at - 196 C. However at - 78 C the Kid-values fall below the

K1c -curve, while the Kd-values obtained here are 4 times larger than KId and
fall well above the K1c-curve. These differences cannot be attributed to

differences in chemistry or to a beat-to-heat variation in the transition

temperature . The present material has virtually the same composition and ten-
sile properties as the heat studied by Barsom and Rolfe(30) . Furthermore, the
Charpy transition of the present heat was about 25°C * than the cme tested
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by Barsom and Rolfe (seeoFigure 7), and in tbe wrong direction to explain the
higher Kd-values at - 78 C The discrepancy between Kd and KIC and K1d could

be connected with the relaxation of co”strai”t (the AS’IM E 399-72 thickness

requirement for plane s~rain is not satisfied for the static yield and Kd -

values measured at - 78 C) , but this is unlikely for several reasons For one

thing, the dynamic yield strength appropriate to the extremely high-strain

rates produced in the crack tip plastic zone, could be large enough to provide
for plane strain in a 25.4 mm-thick section : I“ Ii”e with this, the 25.4 mm
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F/
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FIGURE 7. COMPARISON OF THE CHARPY ANU FRACTURE TOUGHNESS
VALUES FOR A517F OBTAINED IN THIS INVESTIGATION,

AND THOSE REPORTED BY BARSOM AND ROLFE
(30) *m

HOAGLANE , ET AL ‘9)
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A517F test pieces displayed flat fractures with virtually no shear lip and no

measurable reduction in thickness In addition, the Kd-values for the 25.4 mm

4340 steel starter sections which ~ satisfy
5
lane-strain requirements also

appear tO be much greater than KIc at -78°C. ( 1)+

Perhaps the main fi”di”gs of this study relate to the agreements be-

tween theory and experiment . The theoretical velocity profiles are surprisingly
close representations of the measurements (compare Figures 3a and 5) . Values of

Kd deduced from the fracture velocity measurements (Figure 3a) and those derived
independently from the measured arrest lengths (Figure 3b) , are in close agree-

ment (see last two columns of Table 1) . This type of agreement is also demon-
strated in Section I for fracture arrest i“ 4340 steel at room temperature where

the theoretical crack velocity-arrest length relation is closely obeyed .

These agreements represent a critical test of the theory that the
kinetic energy imparted to the wedge-loaded DCB test piece is substantially

conserved and con”erted into fracture energy during the latter stages of the

propagation event It follows that arrest is controlled by the history of energy

dissipation throughout the entire propagation e“ent (the R-curve) rather than by
Ka . The results also derncmstrate the power of the beam-on-elastic-foundation

model to provide a realistic description of crack propagation and arrest In
view of the agreements between theory and experiment, and the evidence that plane
strain conditions were maintained ahead of the propagating cracks, it seems
likely that Kd (or R) is a unique property which cannot always be inferred from
measurement on stationary cracks . The difference between Kd and the dynamic
i“itiatio” Kid-results may be co””ected with the ccmtribution of ductile liga-

ments which has been discussed inoReference 9 . Examples of the ligaments ob-

served in the A517F sheet at - 78 C are shown in the Appendix to this section,
Figure A-20 . It was shown that the deformation and rupture of these ligaments

during rapid propagation can account for a large fraction of the energy dissi-

pated by a cleavage fracture. The flat fracture energy of 4340 steel, which

consists of not-hing but ligaments , doubles in the range O - 860 ins-l, showing

that ligament formation can be sensitive to the crack velocity . Finally, such

ligaments would be expected to be less prevalent at - 196°C, and initially absent

at the onset of fracture in specimens containing a starter crack prepared by
fatiguing .

Finally, some comments about tbe significance of the wedge-loaded

duplex DCB-test are in order . The test is comparable to a fracture-toughness

evaluation, in that it provides an absolute value of the dynamic fracture

energy or toughness for full-thickness plates, which can be used tO predict

the likelihood of crack arrest and to design crack arrestors. Unlike the Charpy,

the drop weiEht or explosive-bulge tests, the R or Kd -values derived from the

duplex ~est ~o not require full-scale service experi~nce

As with other fracture-mechanics tests, the magnitude of

can be measured is limited by the test-piece dimensi~ns,

to make them useful

the
but

toughness that

not as severely,

t It should be noted that the existence or “o”existe”ce of plane-strain con-

ditions is “ot a main issue here since the objecti”e of the present study

is to characterize the fracture of 12 .7 mm- and 25.4 nun-thick plates,

rather than the behavior of cracks under plane-strain conditions . Howe”er,
it does have a bearing on the applicability of the results to even heavier

sections .
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because extremely high-strain rates and high dynamic yield stress values are

involved . The present configuration, with overall dimensions of 127 mm by
381 mm is capable of measuring dynamic-toughness ValUeS Up to - 200 MNm-3/2 .
More energy can be stored in the test piece relative to the fracture energy by

doubling the height dimension, increasing the stre”g,th of the starter secticm
or undercutting alomg the crack line . Such changes might make it possible to
measure toughness values in the range 300 to 400 MNm - 3/2 or eve” higher.
The requirements for an electron-beam weld and spark machi”i”g a“d grinding to

size the hardened 4340 starter section add to the cost and detract from the
convenience of the test . These are partly compensated by the fact that fatigue
precracking is “ot required, and that the test can be performed o“ an oi-di”ary

tensile testing machine . Crack-velocity measurements are also not required
The test results quoted here and in Section I show that Kd (or R) and the velo-

city can be inferred simply from the displacement-gage xeadings at the onset of
fast fracture and a measurement of the Ie”gth of the crack at arrest

v. CONCLUS IONS

1. The concept of a “d”plex” DCB-test piece in which an unstable crack is
initiated in a high -strength/low-toughness “starter section” which is

electron-beam welded to the “test section” has been successfully demon-

strated. Ln this way, the response of A517F steel test sections to
1000 ins-l fractures has been studied at - 78°C, and also at O°C which
is close to the full-shear e“d of the ductile-to-brittle transition.

2. The Timoshenko beam theory /beam-on-elastic-foundation analysis has been
extended to duplex test pieces . The theoretically derived velocity pro-
files are in excellent agreement with the actual velocity measurements
The anzlysis makes it possible to derive dynamic fractnre energy or

fracture-toughness “alues either from the velocity of the crack in the

test section or the length of the crack at arrest. Values obtained
independently from these two measurements are in close agreement , a“d

this represents a critical test of the theory.

3. The analysis and the agreements with experiment show that the kinetic

energy imparted to the wedge-loaded DCB-test piece is substantially con-
verted into fracture energy during the latter stages of a propagation
eve”t It follows that fracture arrest is controlled by the history of

energy dissipation throughout the entire propagation event (the R-curve)
rather than by Ka, a critical co”gbness at the point of arrest.

4. The dynamic fracture toughness “al”es rneas”red at - 78°C for 12.7 mm- a“d

25.4 mm-thick plates of A517F steel, Kd = 143 MNm -3/2 - 202 ~m-3/z ~r~

2-times and 3-times KIC, and Kid, the values for static and dynamic

initiation from stationary cracks. It appears that K1d does not always

reflect the behavior of fast propagating cracks. At O“C,
Kd > 300 ~m-3/2 for this steel.
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APPE~IX 2-A

SUPPLEMENTARY ILLUSTRATION S

:IGIJRE A-1. DUPLEX DCB SPECIMEN BLANKS. The photograph shows the single pass

electron beam weld which joins the 25.4 mm-thick 4340 steel starter and

A517F test section; top : near side relative to beam; bottom: far

side
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FIGURE A–2 . MICROGRAPH OF ELECTRON BEAM WELD AND HEAT AFFECTED ZONE OF SPECIMEN 3VY-

10 TAKEN ON PLATE MIDPLANE . The fracture propagated from left to right I

FIGURE A-3 . MICROGSUIPH OF ELECTRON BEAM WELD Am HEAT AFFECTED ZONE OF SPECIMEN 3VY-
11 TAKEN ON PLATE MIDPLANE . The fracture propagated from left to right.
A small transverse crack was observed close to the fusion zone at (a)
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FIG. A-13. DUPLEX 4340/ A517F DCB TEST PIECE 3vY22 (25.4 IIUI-
THICK, “rESTEDAT -78°C) Fracture initiated at a and
propagated close to the weld 1inc. At this poln~, a

second fracture, normal. to the first was initiated from

a long shallow surface crack in the we!.d near the. center

of the test piece and propagated tbrougb the weld before

the main fracture could pe”ecr?.te. the test section. !ioce

that the second fr,,cturc departe.<] Irm the wc,ld 1ine at

~, evidence that tbe weld was reasonably Lough

FIG. A–14 . DUPLEX 4340/A517F DCB TEST PIECE

3w23 (25.4 mm-TllI.CK,TESTED AT -78°C) .
Tbe fracture initiated at ~ and arrested

at b.



FIG. A-15 . DUPLEX 4340 /A517F DCB

TEST PIECE 3vY24 (:5.4 nm-
THICK, TESTED AT O c) . Frac-

ture initiated at ~ and

arrested on the A517F steel
test section at ~, shOrtly
after penetrating the weld

line.

,, ,

FIG. A-16. DUPLEX 4340/A517F DCB TEST P~ECE

3vY28 (25.4 INwTHICK, ‘ESTED ‘T ’78 c) “
Fracture initiated at a and arrested—
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FIG. A-17 (Continued)
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(a) Specimen Surf,3ce

___!___Zal
,$:

(l]) Specimen Sfid,ection

FIGORE A-19. EXTEXT OF FRACTUKE PROPAGATION IN THE D[JPLEX4340/A517F EC13TEST PIECE :3VY11:
(a) at tl,cspecimen surface and (h) on the specin,c,,midsection.

‘Thearrow in (a) shows the extent of
the crack “n tl,e surf.=, ; (b) illustrates that the crack extended farther on the plate and
midsection
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(a)
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(b)

.
.

FIGURE

7’?’...1c-.

,“ c’
(c)

A-20 . PROFILE OF THE ARRESTED CRACK IN ~HE A517F STEEL TEST SECTION OF spEcl-

MEfj 3vY-10 (12.7 mm-THICK, TESTED AT -78 C) .
The profiles shown are on the

plate midplane: (a) the arrested crack tip, (b) 0.3 to O.6 ~ behind the crack

tip, and (c) 0.8 to 1.2 nun from the crack tip.
An unbroken llgament ~, Is

visible in Figure A-20 (c); ruptured ligaments, identified by ~, are evident
in all 3 photographs.

-1-...
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SECTION 3

DYNAPIIC ANALYSIS OF CRACK PROPAGATION IN THE DCB TEST SPECIMEN

by

M. F. Kanninen

ABSTBACT

In this report an analysis of dynamic unstable crack prOPagatiOn

in the double-cantilever (DCB) test specimen is presented . The technique

is based on the beam–on–elastic foundation model Of the DCB specimen used

previously but with the simple beam and found. ciOn representations replaced

by a Timoshenko beam and a generalized ela..~ic foundation. Crack speeds

and energy levels calculated with this wdel using a finite–difference meth-

od are presented and discussed. A ctimplete derivation of the governing

equations uf the model and of thr computational prOcedure is alSO given.
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DYNAMIC ANALYSIS OF CRACK PROPACA’rTON IN THE O’CF SPEC lMEN

I. INTRODLICTION

The criteria which govern unstable crack propagation and crack arrest have

not yet been definitely established. In fact, this problem presc”tly constitutes

a controversial topic in fracture mechanics. Two points of view are current: one

based upon an ‘(arrest-toughness” criterion, the other upon an “etlerg>r-haLance”

criterion.

?lany investigators subscribe to the idea that crack arrest can be treated

as simply the reverss (in time) of crack initiation. In other words, that each

material has an intrinsic crack-arrest toughness which is a property of che material
L- the same extent that KIC is a proper~? Of that material. It follows that tt’.e

un$ta~l- propagation of the crack which precedes its arrest is of no concern in an
engine erin~ ?e~ign aimed at presenting catastrophic failure hy i“s”ri”g crack arrest

An alternative p~int of “iev is tflat~ crack will continue to propagate u“ti.1 tl,e
system can no longe. pro”ide sufficient energy to support further crack growth,

This means that crack &.rest depends on the nature of the crack-extension process
prior to arrest, not mere,.~ on the end point itself.

Experimental results .nd anal Yses which would decisively re”eal Lbe
correct criterion for crack arres. are presently lacking. However, the energy-
balance approach appears to be more viable for the follow i.n~reasons First, it
permits analytical progress to be made towards an engineering solution to the problem.
Second, because an energy balance must alW.vS he satisfied, such an analysis will

undeniably have a fundamentally correct basis Third, even though the.two approaches
are not necessarily incompatible (they will coinc;de T&e” the kinetic energy of the

system is negligible) , the energy-balance approach alwa~,s pro”ides the more

conservat ive predict ion of crack arrest. In this report, an analysis hased on the
energy-balance point of view is developed for the double-cantilever-hearr (DCi{) test
specimen.

II. SUMMARY OF PREVIOUS WORK

(1-4)
On the basis of work conducted in this laboratory , it now seems

certain that the inertia forces must he explicitly taken into account in the analysis

of rapid unstable crack propagation. For the DCE specimen this can be readily

accomplished because a one-dimensional spatial degree-of-freedom (i.e. , beam theory)
representation suffices. Hence, the time variable can he accommodated without an

inordinate increase in the mathematical complexity of the problem. Tt should perhaps
be emphasized that there is no intent to use beam theory to predict local stresses

or strains in the neighborhood of the ‘rcrack tip” in this work. Rather, the beam
analysis is used only to calculate nonlocal quantities (e.g. , strain energy, kinetic
2nergy) that can be determined much more accurately. This is the basic reason that

the simple theory is successful.
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A !Fam ~Odcl has h~en “s~rj by a large rILIm!jer of different investigators

over the years . In most cases, a pair Of bl,ilt-in cantilever beams, having ~
length equal to the crack length% were taken to represent the cracked portion

of the specimen. The deformation of the untracked portion was thereby neglected
although empr ical correct ions ha”e been introduced to compensate for this neglect
We hawe de”eloped a“ extended model i“ which tl,e beams are of the same length as
the specimen but are partly connected Ihya continuous array of linear springs

which simulate tbe transverse elasticity of the un.racked region~$,, In the case
of symmetrically located crack, of course, this is equi”alc. t to a single beam

partly supported by an elastic foundation and, because this offers a more co””enie”t
way of formulating the problem, it will he used in the following discussion. The
beam-on-elastic foundation model of the DC? specimen is shown in Figure 1.

As a first attempt, the simplest possible representations for the two
compo”e”ts of the beam-on-elastic foundation model were employed : a simple Euler-
Eerno”lli beam and a Wi”kler layer.(l) Omitting the details, a solution for the
beam de.flectio” satisfying appropriate houndaxv conditions is then readily obtained
for a constant length crack. Ha”ing the beam deflection, the strain energy ca” be
computed a“d an expression for the stress-intensity factor deduced. Whe. the
““ncracked length” is not too small, the res,

K=2’3&
~h3/2

where K = stress-intensity factor
P = load applied at the end of the
L2= crack length
2h = height of the specimen
h = thickness of the spcc.imen

~“d v is the.number (6)-1/4 = 0.6h. Because

Xgreemc”t both with two-dimensional analyses
belie”ed that the beam-on-e lastic-foundat io”

specimen

Equation (1) was found to !bei.nexcellent
and with experirne”tal results, it is
model can he used in the dynamic

sit”at ian where the realistic two-dimensional solutions are “irtually unobtainable.

‘The initial use OC the beam-on-e lastic-fo,]ndatio” model in the analysis
of unstable crack propagation was in ,aquasi-static approxima tion..~:-~This work was
reported in Re ference L. ‘Theresults, when compared later with experiments, revealed
x two-fold inadequacy of this approach. First, the predicted crack speeds
~reatly i“ excess of the observed speeds. Second, the calculation did not
zssc~ntially constant-speed propagat ion as was obser”ed in the experiments
remedy this, a dynamic “ersio” of the model was developed by incorporating

were
predict
ro

the

‘ Prandtl(5) has used a beam-spring fracture model but had in n,ind an atomic bond
breaking picture like that developed later by Goodier and Kanni”en. Hence,

Prandtl’s springs have a finite spacing associated with them (in contrast to
the continuous foundation en”isio”ed here) so that both the springs and tbe beam
have a distinctly different physical interpretation from that of the model
developed i“ this paper.

‘<<:Inertia forces were not included in the equation of motion. Strain energy and
kinetic energy were computed from the res”lti”g static configurations a“d tbe
crack speed deduced from a postulated ene,rgy balance. (1)
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FIGURE 1. THE DOuBLE CANTILEVER BEAM (DcB) TEST SPECIMEN mc T:iE

BEAN-ON-ELASTIC FOUNDATION MODEL .

lateral-inertia

to be solved is

forces into the equation governing the beam deflection. The equat ion

then given by

4 2

EIfi+pA~ + kH (Wc-w)w . 0
ax at

(2)

where w is the beam deflection, w= is a critical deflection for the rupture of the
foundation, H denotes the Heaviside step function, and other parameters are as

given below.

The boundary condit ions accompanying Equat ion (2) were those representing
a fixed displacement 6 with no applied, torque at the load pins and zero stress at
the right-hand end of the specimen. Hence, using the notat ion given in Figure 1,

w(O,t) = 6

and (3) ‘

w“(O,t) = w“(L,t) = w“’(L,t) = O

The initial condit ions were obtained by solving the static counterpart of Equat ion (2),

subject to the above boundary conditions.

-A
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Notice that the parameters 6 and wc appearing in this formulation can be ,

alternatively expressed in terms of more physically relevant parameters.
Specifically, 6 can be directly related to the applied stress-intensity factor Kq
while Wc can be related to a fracture toughness (i.e. , either Kc for the static

problem or Kd for the dynamic problem) . Without providing the details, this means

that a dynamic-crack-propagation solution can be obtained by specifying only the
ratio Kq/Kd in addition, of course, to the specimen geometry.

For an initially blunt crack, Kq > Kc. Hence, unless some additional

refinement is introduced into the model represented by Equat ions (2) and (3), a
portion of the beam that is supported by the foundation just beyond the crack tip

will have a deflection exceeding Wc in the initial configuration. As described in

Reference 2, crack propagation then commences with a substantial instantamsous

increase in crack length. This awkward feature of the model was subsequently

eliminated by introducing a “pinching force” Q at the crack tip in the initial con-

figuration. (This is the essential difference between the work described in
References 2 and 3.) The pinching force, which was intended to simulate the effect

of the initial bluntness, was incorporated in the form of a.j~p discontinuity
in w’” at x = a. equal to Q/EI. The parameter Q was then taken to be such that

W(ao, o) = Wc. Then, crack propagat ion can occur smoothly (once the pinching force

is removed) from the beginning of the computation.

The solution to the initial-value problem given b Equations (2) and (3)
3was obtained numerically using a finite-difference method. ( ,3) A constant dynamic

fracture toughness was used, just as in the quasi-static calculations of Reference 1.

A substantial improvement was realized in that the calc”latio”s predicted constant-

speed propagation at much reduced speeds. Encouraged by this result, a more refined

version of the beam-on-elastic foundation model was undertaken to eliminate the

remaining discrepancy between the calculated speeds and the experimental values
(roughly, a factor of two) . The development of the model and the computational
results obtained from it are the subject of this report.

Before discussing the details of the dynamic-crack-propagation model
contained in this report, it may be useful to briefly ment ion other analytical
treatments that have been offered. Most of these are quasi-static in nature and
have been described in Reference 1 and elsewhere . The only dynamic treatment
directly applicable to the DCB configuration is that of Bilek and Burns(6) . They
have obtained a closed form solution by considering a built-in Euler-Bernoulli
beam under various loading conditions : constant bending moment, constant displacement
rate, or constant shearing force. The equation of motion for these conditions
can thus be transformed into an ordinary differential equation by “se of a similarity
transform.* The sol”t ion determined in this way predicts that crack propagat ion

occurs in such a way that the rat io al~ t is either a constant or changes slowly
with the fracture energy’s dependence on the crack speed. Here, a denotes the
crack length and t the time.

While the work of Bilek and Burns is certainly useful, their approach
suffers from a number of disadvantages in comparison to tbe model developed in
this report. First, they are not able to specify initial conditions (the similarity
transform restricts the analysis to the specific condition that a = O at t = O).
Among other drawbacks, the systematic variation of the parameter Kq by blunting
the.initial crack cannot therefore be treated. Second, the “built-in beam”

J+.
The equat ion of mot ion for the Bilek-Burns model is the same as Equat ion (2)
of this report “hen k = O. The boundary conditions consequently contain the

(. fracture criterion which is that of a critical bending moment at the crack

tip.



..-. —.

condition at the crack tip, in addition

that the size of the specimen increases
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to producing spurious wave effects, means

in time. Hence, the energy apportionment

calculated from the solution is somewhat suspect. Third, although a closed-form
solution is obtained, it is sufficiently complicated (i.e. , involving Fresnel,

sine and cosine integrals) , that the details of the results are not easily accessible
without a computer. In this light the finite-difference procedure employed here

is no more inconvenient.

III. A MODEL OF THE DCB gPECIMEN USING A TIMOSHENKO BEAM

ON A GENERALIZED ELASTIC FOUNDATION

The very significant improvement in the analysis resulting from the
incorporation of a single inertia term strongly suggests further development of

the model in this direction. TWO areas of improvement are innnediately available :
the beam characterization and the foundation characterization. In particular, tbe

applicability Of One-dimensional beam theory can be extended by taking account of
transverse-shear deformations and, for moving beams, of rotary inertia. The
formalism which includes these effects is usually referred to as Timosbe”ko’s beam

equations (7,B) . Similarlv. the Winkler foundation can be generalized to an elastic
fo”ndat ion which

stiff ness~f~. The

., .-.
exhibits rotational stiffness in addition to an extensional
current model (Figure 1) employs these concepts.

1. The Equations of Motion

The governing equations for a model of the DCB specimen using a Tirno-
shenko beam on a generalized elastic foundation are derived in Appendix A. The

derivation starts from the equations of three-dimensional elasticity, adapting

the method given by Cowper(lO) . The resulting relations are

(4)

** As shown by Kerr(9) , the generalized elastic foundation is equivalent to
the Pasternak foundation model.
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where,

w = average deflection of che cross section
Y = mean angle of rotation of the cross section about the neutral axis

E = elastic modulus
I = moment of inertia (= bh3/12 for a rectangular cross section)
G = shear modulus
F = axial compressive force applied to the beam
o = density
A = cross-sectional area of beam (= bh for a rectangular cross section)
ke = extensional stiffness of the foundation
kr = rotational stiffness of the foundation
H = shear-deflection coefficient of tbe beam
9 = crack extens ion parameter

9C = critical value of the crack-extension parameter

and H,’:(x)is tbe ordinary Heaviside step function modified such that a spring once
broken always remains broken.

The boundary conditions to be imposed are those which correspond to stress-
free conditions at the ends of the specimen. Using the equat ions derived in

Appendix A, these are

w’(-e, t) - Y(-e, t) = O

‘i’’(-e, t) =0

w’(L, t) - Y(L, t) = O

Y’(L, t) ‘=0

(5)

where the prime notation indicates differentiation with respect to x and the
coordinates are as shown in Figure 1. An additional constraint that must be

imposed is that the deflection of the load point cannot be less than the deflection
imposed initially . If 6 denotes this initial displacement, then

W(o, t) > 6

throughout the crack-e xtens ion process.

The initial condit ions are obtained by finding the static solut ion that
satisfies the above bo””dary conditions and has, “inaddition, ~ force Q and a couple

M acting at x = ao. The parameters Q and M, which are intended to simulate the
effect of the initial bluntness, are chosen such that e(ao,O) = ~c a“d the strain
energy in the system initially is a minimum. The static solution can be obtained
in closed form by, (i) separating the problem into the two intervals where the
differential equations have constant coefficients (i.e., -e<x<aoandao~x~ L
where a. is the initial crack length) , (ii) finding a sol”ti~n v=lid for each

interval, (iii) satisfying the boundary conditions of the problem together with the
condition that w = b at x = O, and (iv) e“alwiting the re”aining arbitrary constants
such that w and Y are continuous at x = a. while “’ and Y ‘ experience jump disco n-
tinuities equal to Q/KGA and M/YGA, respectively. The details are given in Appendix C.

In the Timoshenko-beam equations, the effecti”e transverse-shear strain
is taken to be equal to the average shear stress on a cross section divided by the
product of the shear modulus and a dimensio”les.s ‘Ishear coefficientmv M. This latter
quantity is “s”ally introduced to compensate for the fact that tbe shear stress
and shear strain are not uniformly distributed over the cross section. A more
fundamental derivat ion of M has bee” give” by Cowper (10) by integrat ion of the
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equations of three-dimensional elasticity. His result for a rectangular cross
section is

~=m

where v is Poisson’s ratio. In the following it will be convenient to approximate ~
this result by taking

KG 1—.—
E3

(6)

which is exact for v = 3/11.

2. Tbe Energv Components and the Crack-Extension Criterion

The crack-extension parameter ~ appearing in Equations (4) can be evaluated
by considering the energy of the system, as follows . Expressions for the energy

components in a DCB specimen represented by a Timoshenko beam on a generalized
foundation are developed in Appendix B. The results are !

u=;{E&)2+W& - ,)2+,,2 + w(, -f3)k W2 + k,,’] } dx
c Lc

0
(7)

a“d

‘W” + ~’(:)2} ‘xT = ~ {PA(~j

0

where U and T are strain energy and the kinetic energy, respectively. Notice
that the factor 112 ordinarily appearing in expressions of this kind is omitted
because U and T each represent a total for the two halves of the specimen.

The total energy ~ contained in the specimen at any point in time is
the sum of U+T. Hence, from EquatiOns (7)

aw2 +P 1(~)2+ PA$# +Ftfz+

+ ‘(x-a)Lkew2 + ‘ry21 J ‘x

(8)

where a is the crack length. It is assumed for simplicity that there are no
“islands” of material remaining behind the crack tip whereupon the function H(x-a)
performs exactly the same service as does H~’(8-@c) and, there fOre, can be used

in its place.

The basic premise of fracture mechanics is that the energy absorbed by
the extending crack must be just equal to that “released” by the body containing
the crack. In the present case, where no work is done by external forces while

b, the crack is propagating, this means that during an amOunt Of crack advance d a
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Rbda =-d:

or
(9) ‘

where R is the dynamic energy absorption per unit area of crack extension, and

V = da /dt is the crack speed. As shown in Appendix B, upon substituting

Equation (8) into Equation (9), differentiating “irh respect to t, integrating
by parts, “sing Equations (4) and (5), it is found that

[

* .
bR = kew2+krY ~ (10)

XU2

This reveals

value of the

that the crack-extension parameter must be associated with a critical

bracketed quantity. Consequently, by definition

F1 = kewz + krY2 (11)

and

e = bR
c

(12)

are the parameters that must be used in the dynamic solution of Equations (4).

Notice that this result could also have been obtained by simply equating the smu
of the extensional and the rotational energy contained in the springs that must

rupture to permit a unit of crack advance (which is therefore “lost” to the system)
to the fracture toughness per unit of crack advance.

3. The Evaluat ion of the Foundat ion Parameters Using the Static Solution

In the development of the beam-on-elastic-foundation model of the
specimen using simple-beam theory, it was possible to intuitively determine

appropriate value of the foundation mod”lw. This choice was then verified

DCB
the

by

cornpa~ing the stress-intensity factor obtained from the model with established
data for the DCB specimen. The same procedure is followed here, the essential

difference being that there are now two foundat ion constants, ke add kr. Just

as in tbe previous work, by solving Equations (4) and (5), an expression for the
stress-intensity factor can be determined. By comparing this result to existing

experimental and two-dimensional computational resultp(ll-L3) , confidence that

appropriate choices of the system parameters -has been made is gained.

The foundat ion parameters ke and kr can be evaluated from a simple one-

dimensional “tensile specimen” picture af the foundation elements. In particular,

by equating the extens ion of the element to the beam deflect ion, equating the

force ‘acting on the element to kew, and taking the elastic properties Of the

element to be the same as those of the beam, it is found that

(13)
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Similarly, by associating the change in shape of the element when shearing forces
given hy k,.’!are applied to its sides with the mean rotation of the beam cross
section, t~e result

is obtained. Using the approximate

Equation (6) and taking A = bh then

form of Cowper’s

gives

~ .EbJ1
r 6

which is appropriate for a rectangular cross section

(14)

she2r coeffici.ext given by

(15)

and a material for which

v~ 0.272.”- For other types of cross section, appropriate expressions for K can

be obtained from Cowper(lO) .

The derivation of general expressions for the specimen compliance and
the stress-intensity factor appear in Appendix C. Using the results given there

together with Equations (13) and (15) , it is found that”:

and

(16)

(17)

when the “untracked length”, L-a, is large in comparison to h.

To test the validity of these results, comparison with the stress-

intensity factors calculated using two-dimensional elasticity theory (e.g.,
boundary-point collocat ion) can be made. Such a comparison is shown in Figure 2
using the data of Gross and Srawley(12) and of Wiederhorn, Shorb and Moses (13) .

TO put these results into perspective, tbe values obtained at various stages of
the development of the beam-on-elastic foundation model are also shown. In
obtaining tbe curves appearing in the figure, the values of the foundation constants
were either those of Equations (13) and (15) or were zero. Notice that the simple
built-in cantilever-beam model is included here as the special case of a beam
supported by an infinitely rigid foundation to which it is mathematically equivalent.

The results given in Figure 2 show that the rigid-foundation models are
clearly inadequate. The two “self-consistent” beam-on-elastic foundation model
models, on the other hand, provide an excellent representation of the established

data for the DCB specimen. It is worth pointing out that it may be possible to

obtain precise agreement with the established data by introducing further numerical
factors into tbe relations for the foundation parameters. However, the simplicity

afforded by Equations (13) and (14) is felt to be more valuable than the modest
improvement that would accrue by complicating them.

>,%Equation (17) represents the stress-intensity factor for crack extension under
cons tant load. To obtain the stress-intensity factor for crack extension under

constant displacement, Equation (16) can be used tO eliminate p frOm Equation (17”
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~. Computational Procedure for Dynamic Crack PropaEat io”

For computational purposes, it is convenient to
length of the order of the spring deflections. Let this parameter be denoted

introduce a unit of

as Wc and defined such that

kw2=gc
ec (18)

where a = bll is a critical value of the parameter appearing in Equation (11).
Introdu~ing Equation (13), it can be seen that

‘c= (H1’2
OK, in analogy with the static sit”acio”, bY defining K: P Em

(19)

(20)
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where Kd is the dynamic fracture tOughness. Notice that when

in rotational deformation of the foundation is zero (i.e., in

the crack-extens ion parameter is satisfied by having the beam
just equal to a critical deflection wZ. This was tbe case in

tbe energy stored

a Winkler foundation) ,
deflection become

the model represented

~y Eq~tion (2) . However, in the more general case where kr ~ O, the deflection WC

will have no such specific role.

Dimensionless variables can be introduced as follows. First, let the

new independent variables be

5=: (21)

and
1/2

‘=(*) :

Then, let the new dependent variables be

(22)

and

y=~y
‘c

A dimensionless crack-extens ion parameter can

A
e=;

c

Equivalently, using Equations (11) and (18)

(23)

(24)

similarly be introduced by def i“ing

(25)

Or, with Equations (13), (15), (23), and (24)

(26

As can be readily seen from Equation (25), the critical value of the e parameter

is unity.

Substituting Equations (21-25) into Equations (4) then gives, in the

most general case



(27)

Similarly, Equations (5) become

w’(-e/h,T) - Y(-e/h, ~) = O

y’(-e/h, ~) = O

W’(L/h, ~) - Y(L/h, ~) = O

Y’(L/h, ~) c O

(28)

The initial conditions are obtained, just as in the shove, by solving the ~ime-

independent version of Equations (27). Again, the boundary conditions at tbe
left-hand end are replaced by

W(o,o) = 61VC

and

Y’(o, o) = o

where 6 is tbe initial deflection of tbe load pins. The ratio 6fwc can be related
to the ratio K /Kd which is more convenient for comparison with experiment.
is accomplishe~ through Equations (16), (17) and (20) to obtain

This

Also, if the wedge is considered to be stationary, the condition

W(o,’r) > 61WC

must be imposed during the crack-propagation process.

(29)

Because Equations (27) represent a hyperbolic system, the characteristics
should be obtained in order to set the integration step properly. In the present

circumstance, the characteristics correspond to the roots of the equation
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This can be solved by inspection and the result used in connection with standard
procedures in the solution of differential equations by finite-difference technique ;
see for example Forsythe and Wasow(14) . In particular,

where AS and AT denote the
difference computat ion.

Al
A<

. min {$ , (&)’”]

step sizes of the two independent variables in the finite-

Equations (27) are valid for arbitrary specimen cross-sectional geometries.
For present purposes they can be simplified by specializing to a rectangular cross
section. Tbe result is

and (30)

where it has been assumed that the axial force F can be neglected. The boundary
condit ions remain unchanged. The integration step sizes in the finite-difference
computation are now subject to the requirement that

A< > J’12 AT (31)

which could also have been obtained directly from Equationz (30).

An important part of the computat ion %s the evaluat ion of the energy
components during unstable crack propagat ion. By substituting the various parameters
introduced above into Equations (7), suitable expressions for a rectangular cross
sect ion are found to be

and (32)

To compute the rates of change of the energy components, it suffices to calculate
the “kinetic energy release rate” ~. Hencei
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@IJ
with the “strain energy release rate” - ~, being determined by appealing to an

energy balance.

Details of the finite-difference formulation of Equations (30) and

(32) used in the computing program are given in Appendix D. Also given there

are the results of computations in which the step sizes A~ and AT are

systematically varied. As can be seen from these results, the computation is

remarkably insensitive to the particular choices (provided, of course, inequality

(31) is satisfied) which affords a very economical computation. On the average,

each computation reported here was obtained in about two minutes of CDC 6600
central processor time.

Iv. RE SJLTS AND CONCLUSIONS ON DYNANIC CSACK PROPAGATION

To perfom a computation of unstable crack growth and arrest in a single-
section DCB specimen using the analytical model described in the above, it is only

necessary to specify the geometric dimensions of the specimen together with the
ratio Kq/Kd. For a duplex specimen the ratio ftTIRS--the ratio of the energy

absorption ratio in the test section and the starter section, respectively--must
also be given. In order to identify the results of particular computations in a
concise manner, these numbers will be given together with a “specimen designation
letter” representing the geometry. The specimen designations together with the
actual dimensions corresponding to that designation are given in Table 1. Two
material constants, Co = 5190 M/s and v = 0.272, are also used in this work. These
values are appropriate for steel.

The most important feature to be expected from the computational results

is that they exhibit constant speed propagation over a sizable portion of the
event. This is found to be the case provided K /~ is not too large.

:

For the

Kq/Kd values corresponding to the experimental ata obtained so far, essentially
constant speed propagation is obtained.

A typical result is shown in Figure 3 “here the crack lengths computed as

a function of time are shown as open circles for the standard cases: specimen

tYPe A with KqfKd = 2. The best least-squares linear representation of the

computational results is shown by the solid line in Figure 3. The slope of this
line then provides a measure of the “steady state” speed V. The least-squares
calculation has been performed routinely to determine V using the computed data

over the first 807.of crack growth. Hence, for each computation tbe key results

to be reported are the steady state speed V and the crack length at arrest, ar.

Accompanying the crack length-t ime computational results are the values
of the strain energy, kinetic energy and the absorbed energy. These are rout ine1y
computed at tbe time that the critical condition for crack extension is met at

one of the finite-difference mesh points. A plot of the three energy components
as a function of crack length for the standard case (whose crack length-time record
is shown in Figure 3) is shown in Figure 4. In the figure the strain energy is
designated by U, the kinetic energy by T, and the absorbed energy by R. Not ich
that, iriaccord with Equations (32), the actual values of these quantities are
not computed--only the rat ios of the energy components to the constant quantity Rbh*.

<( In a duplex specimen the “alue of (f is that of the starter section.
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TABLE I - DIkiENSIONS OF DCB SPECIMENS USFD IN THE COMPUTATIONS*

SPECl!.ENDES1GK4TION --

Paramet,r,~~~ A B C D E F c H J K L
— — —— .— .— — — —-

92.$ 92.1, 92.4 184,8 184.8 90.0 90.0 90.0 180.0
~o

90.0 9G.G

h 63.5 63.5 63.5 127.0 63.5. 70.0 70.0 70.0 70.0 90.0 90.0

L 360.7 360.7 36o.7 721.& 721.4 350.0 360.0 360.0 720.0 360.0 360.0

d .. :32.1 132,1 -- -- -- 115.0 115.0 -- -- 115.0

e 20.3 20.3 20.3 40.6 20.3 25.0 25.0 25.0 25.0 25.0 25.0

f ..- . 25.0 -- -- -- -- 25.0 -- -- --

b 12.7 12.7 12.7 25.4 12.7 12.5 12.5 :2.5 12.5 12.5 12.5

D 25.& 25.k 25.L 50.8 25.fA 25.L 25.4 25.4 25.6 25.4 25.4

/. 69.0 88.0 88,0 176.0 88.9 90.0 90.0 90.0 90.0 90.0 90.0
——.——

● A1l dimensionsare im mm.

+* parametersare as shown i. Figure 1 (page4) Additionalparametersare
D - pin diameter,A . pin length.

0.{

0. 50. 100. 150.
T1.E <.ICRO 5ECI

2.00 1.00 63,5 92.4 360.1 0.0250 0.0010

FIGURE 3. SPECIMEN A,
Kq/Xd = 2

..-
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3
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0
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FIGURE 4. SPECIMEN A,
K,l/Kd = 2

0. 50. 100, 150.
n-no

2.00 1,00 63.5 q2.+ 360.7 0.0250 0.0010

In Tables 2 and 3 the steady-state crack speeds (defined as above) and
the distance propagated at arrest are shown for single-section and duplex specimens,
respectively. Plots of the crack length-time data and the linear least-squares
representation of these data are given in Appendix E. From the plots it can
readily be seen that no steady-state speed exists when Kq/Kd” exceeds - Z.5. Be1ow
this figure, however, the linear representation is apprently quite accurate. At

least for the computations shown in Table 2, it can be stated that the linear
representation is roughly “slid for cracks that arrest within the specimen but
not otherwise.

Perhaps the most striking result of the computations is the support that
is given to the following idea: that the steady-state speed achieved by the crack
at some point in time depends only upon the conditions existing at the time, and
not upon tbe prior history of crack propagation. This is most easily seen by the
results obtained for duplex specimens. In particular, the relation

(33)



TABLE II - COMPUTATIONAL RESULTS FOR
SINGLE–SECTION DCB SPECIMENS

KJi&

1.2

1.5

2.0

2.5

3.0

3.5

4.0

2.0

1.5

2.0

3.0

1.2

1.5

2.0

2.5

3.0

2.0

1.2

1.5

2.0

2.5

3.0

SrecimenConfiguracion A

1.45 26 1.875

1.45 75 2.650

1.45 176 &.250

1.45 * *

1.45 * *

1.45 * *

1.45 * *

SpecimenConfigurationD

1.45 352 4.250

SpecimenConfigurationE

2.90 113 4.70

2.90 246 6.80

2.90 * *

sPecilnenConfi.eu.ation F

1.30 26 1.70

1.30 15 2.40

1.30 187 4.00

1.30 * *

1.30 * *

Sm. in!.”Comfiguration J

2.55 247 6.10

SpecimenConfigurationK

1,00 29 1.35

1.00 83 1.95

1.00 218 3.k5

1.00 * *

1.00 * *

vIc
J

.056

.116

.180

.217

.234

.237

.422

.180

.075

.127

.173

.061

.124

.188

.226

.253

.136

.071

,150

,217

,275

,283

TABLE 111 - COMPUTATIONAL RESULTS FOR DUPLEX
DCB SPECIMENS

2.0 1.2

2.0 1.5

2.0 2.0

2.0 4.0

2.5 2.0

3.0 2.0

3.0 2.25

2.0 2.0

2.0 1.2

2.0 1.5

2.0 2.0

2.5 2.0

2.0 1.2

2.0 1.5

2.0 2.0

a -a
(K /Kd ) ~

.0
(vlco)~

J!Tz!L—

Sm.imen Ccmfizwation B

1.83 148

1.63 122

1.41 91

1.00 40

1.77 163

2.12 252

2,00 220

SpecimenConfimratio. C

1.41 148

SpecimenC.anfic.retio.G

1.83 152

1.63 117

1.41 82

SpecimenConfi!wration H

1.77 268

Smcime. Conffz.?ation L

1.83 178

1.63 137

1.41 92

.171

.171

.171

.171

.192

.533

.533

.170

.259

.259

.259

.398

.289

.289

.289

_

.16

.14

.10

.-

.16

.20

.19

.09

.17

.15

.12

.22

.20

.19

.17

* Crackdid mot arrestwithin the specimen.
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can be used to put the speeds obtained in the two different sections on a common

basis. Here, the subscript T denotes properties of the test section, S the starting

section. The statement made above is then equivalent to stating that, by plotting

the speeds obtained in each sectiOn aS a function Of Kq/Kd fOr that sectiOn~ the
results will fall on a single curve. Not ice, however, that the distance propagated

at arrest is very definitely dependent on the entire process, as evidenced by the
data shown in Table 3.

Figures 5 and 6 show the computational results for a duplex specimen in

which K /Kd = 2 in the test sect iOn. Tbe value of Kq/Kd in the starter sectiOn

is 3 wh~ch allows a very high crack speed to be achieved prior to its entry into

the test section. Despite this, the steady-state speed that is “achieved in the

test section is 0.191 CO which compares well with the value 0.180 Co calculated in
Figure 3. Crack arrest, on the other hand, occurs at arfh E 4.925. This is in

contrast to the value a=fh - 4.250 obtained for a single -sectiOn specimen with

Kq/Kd = 2 and no arrest within the sPecimen when Kq/Kd = 3.

One of the attractive features of having an analytical model in conjunction

with an experimental program is that it makes possible a systematic investigation

of some aspect of the problem that would be quite awkward to accomplish experi-
mentally. As an example, the effect of load pin mass can be approximately determined.

Within the confines of beam theory, the contribution of the pass of the load pins
can most conveniently be taken into account by varying the beam density while
leaving its dimens ions unchanged. This introduces a correction into the equations

of motion for tbe load point which is related to the quantity

AM= <:(:-1
)

where O is the pin diameter, 1 is the pin length and, as above, b and h are

specimen thickness and half height, respectively. It has been assumed that
density of the pin material and the specimen .material are the same although

differing densities could be accounted for in an obvious way.

the

the

In Table 4 are shown the relati”e effect of the additional mass contributed
by the load pins on the distance propagated at arrest and on the average crack

speed in a typical case. It can be seen that while these results are not especially
sensitive to the pin mass, there may well be instances where the effect should be
cons idered. In ad&it ion, the movement of tbe pins while the propagation e“ent is
in progress can be important in interpreting the experimental results; Such
results can be obtained from the analysis and are also shown in Table 4 at two
different stages of the crack propagation event. It should be pointed o“t that
in the current calculation the “edge is considered to be fixed. In actuality some
novement occurs. Finally, it is interesting to notice that the oscillations of
the computed crack length-time calculation generally diminish as the load pins
become relatively more massive.

In conclusion, the analytical model for unstable crack propagation
developed in this report has now been demonstrated to predict results that are in
very goo~ accord with the experimental observations. This is taken as conclusive
support for the energy-balance approach to crack propagation and arrest. In fact,
the most important result of the work described here is to certify the correctness

of this approach for use in less specialized applications. Possibly the most
direct proof of the validity of the energy balance point of view are plots,

typified by Figure 3, which show that the kinetic energy at tbe time of crack arrest
is practically zero.
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FIGURE 5. SPECIMEN B, (K /K ) = 3.0,
~ds

(Kq/Kd) = 2.0

FIGURE 6. SPECIMEN B, (Kq/Kd)S = 3.o,

(Kq/Kd)T = 2.0
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TABLE IV - COMPUTATIONAL RESULTS SHOWING THE RELATIVE EFFECTS OF
VARYING THE MASS OF THE LOAO PINS*

comparativeincrease
f. massat load point
due to the @d Pins

0.0

0.5

1.0

1.5

2.0

Kq/Kd - 2 Swim. ~

Comparati.. Comparativecrack
crack .gro.dthat point
.Deed of arrest _

1.105 0.928

1.079 0.928

1.000 1.000

0.887 1.000

0.780 0.982

Ratioof pindisplacement
frominitialco.fll.rati.n

at timeof 120. se.
arrest afterarrest

1.193 1.325

1.110 1.176

1.072 1:120

1.033 1.0h6

1.005 1.002

* The entries in this cableare the ratiosof the given result to the result
determinedin the standardcase. ln the standardcase the load pins had a
diameterof 25.4 m., a lengthof 88.0 mm., the specimenthickmss was
25.4 m. with the densityof the pin and the specimenbeingequal. For
the resultsof the stamda.d..s., see Table 3.

There are, to be sure, aspects of the analytical model that could still
be improved upon. In particular, the simulation of the crack-blunting effect by
imposing a point force and couple at the crack tip in the initial configuration
is a gross oversimplification. This was acceptable i“ the pre”ious models (i.e.,
with a Euler-Bernoulli beam) because it introduced a disconti””ity only in the

third derivative of w. In a parabolic system, this effect is inconsequential.
In the present formulat ion, however, discontinuities exist i“ the first deri”ati”es
of the two dependent variables and, the equation is byp~rb~li~. Consequent ly,
che spurious effects introduced by the point force and couple remain highly visible
throughout the computat ion. This is believed to be tbe reason for tbe high amplitude
of the periodic oscillation about tbe mean as seen, for example, in Figure 2.

In addition to a more precise treatment of the initial bluntness,
cons iderat ion might also be given in improving the model to account for the
interaction between the wedge and the load pins. Currently being neglected is
the possibility that a torque is applied to the specimen due to friction at the
contacting surfaces. Movement of the wedge and the related contact forces (actiing
on both ends of the specimen) while the crack is propagating are similarly neglected.
Of even more importance is the current restrict ion to a single value of Kd tbrougho”t
the ent ire crack propagat ion process. However, these improvements are almost
certainly second-order effects and, while desirable, they are not likely to change
the gross features of the results given in this report.
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APPENDIX 3-A

DER IVAT ION OF THE GOVERNING EQUATIONS FOR THE

TIMOSHENKO BEAM-GENERALIZED ELASTIC
FOUNDATION MODEL OF THE DCB SPECIMEN

The incorporation of the Timoshenko beam and generalized elastic
foundation ideas into the model of the DCB specimen can best he accomplished

by using three-dimensional elasticity theory, thereby generalizing the derivation

given by Cowper(lO) . Let x be the coordinate along the length of the beam and

consider that beam cross sections lie in the y-z plane with tbe beam deflection

taking place in tbe z-direction. Then, following Cowper, the quantities ordinarily

arising in elementary beam theory are given precise definitions in terms of tbe
variables of three-dimensional theory of elasticity. In particular, the beam

deflection w is defined as tbe net displacement of the cross section via the

relation

W = ~ ~~,ruzdydz (A-1)

where A is tbe area of the cross section and “z is the displacement component in

the z-direction. Similarly, the transverse-shearing force S acting on tbe cross

section is defined as

S = f,f~xzdydz (A-2)

where Txz is a component of tbe shearing stress . In botb of these equations, of

course, the integration extends over the cross section.

The equation of motion of a beam element with respect to forces in the
z-direction is

aTxz aT i% azu

ax
—+–=+$+F

by z
=9 *

at
(A-3)

where F= is the body force, p is the mass density and t denotes time . Integrat ion

of Equation (A-3) over the cross section gives

(A-4)
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By application of the divergence theorem, Cowper shows that the second term in

the above is simply p, the total transverse load applied to the beam. In the
present situation this is just the force exerted hy the springs . Hence, for

1inear springs

p = -kew (A-5)

Using this relation together with Equations (A-1) and (A-2), Equation (A-4)
becomes

which is the first of four basic equations of the model.

Cowper next introduces a parameter Y which represents the mean angle

of rotation of a beam cross section about the neutral axis .$: Hence

Y = - + ,~,~ZUX dy dz (A-7)

where I (= bh3/12 for a rectangular cross section of height h and width b) is the
moment of inertia of tbe cross section with respect to the neutral axis. Notice
that if (as in the elementary beam theory) cross sections remain plane, then Ux

would be proportional to -z whereupon Y would be exactly equal to the slope of
the beam. In general, however, there is warping in addition to rotation and the
equality does not hold.

The equation of motion of a beam element with respect to forces in the
x-direction is

aT
~

aT

ax
+2+-Z?+

ay a.

Multiplying each term by z and integrating over the

a’u
F
x ‘0— ;

(A-8)

at

cross section gi”es

Fx } dy ‘z

dz

The first integral can be interpreted as the “et bending moment

cross section. Hence, let

* Cowper’s parameter is just the same as that gi”en by Equation

the minus sign omitted. Tbe negative is used here to conform
commonly accepted form.

(A-9)

acting at any

(A-7) but with

with the more



.—----

-79-

M = ,~~ 27 dy dz (A-1O)
x

The second term can be interpreted by rewriting it in order to apply the

divergence theorem. That is,

‘h”{~(z’xy)+z Txz)- Txz+zFx}dydz

= ~ z {“Y’XY + ‘zTxz J ‘s+ .~~{”x - ‘x. I ‘y ‘z

Here, n and nz are the components of the unit normal to the cross section and
ds is ax element of arc of the cross section boundary. The first term represe.nt.s

q, the mOment Of the applied fOrces, while the second term is just S when, aS
assumed here, Fx is either constant or zero. There are two contributions to the
applied bend ing moment: that due to the torsional stiffness of the foundat ion
and that due to the axial force F. Both are proportional to the mean angle of
rotation of the cross section. Specifically,

q=krY+FY (A-n)

where kr is the foundation modulus for rotational deformation and F is the axial
compressive force. Finally, substituting Equations (A-2), (A-7) and (A-1O) into

Equation (A-9) gives

&
2

ax+ (kr+F)Y -S=- ~lq (A-12)
at

which is the second equation of the model.

A relation between the bending moment and the rotation is obtained next
from the Hooke’s law equation for deformation in the x-direction,

aux . ~
ECX =Em ~-~(cy+oz) (A-13)

Following Cowper, the stresses Oy a“d ~z sre considered to be negligible in

comparison to ox and are dropped. Then, multiplying (A-13) through by z and

integrating over the cross section, it is found that

aIi=&ff Z.x dy dz = ‘rJJ =X dy dx

Substituting Equations (A-7) and (A-1O) then gives

-E1aY=M
ax

(A-14)
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which is the third equation of the model. Notice that in

for the first time an assumption other than that normally
elasticity was used.

deriving this relati.m,

arising in 1inear

The Hooke’s law equation for shear deformation in the plane of the cross
section is

Integrating over the cross section gives

Now, defining a “residual ,,diSplaCe~ent U: such that

‘~~~uxdydz-zy+~‘x

(A-15)

(A-16)

Then

au au’
2=-Y+*
az

Using this result together with Equation (A-1), then, gives

~~{-y+~:d ydz+~x{ Aw}=+, f~~xzdy dz

The raison d ‘etre of Cowper’s work is the evaluation of the integral in

Equation (A-17) and its interpretation of the “shear coefficient” K which, in
effect, is defined such that

(A-18)

The evaluation of this integral involves the further assumption that the shearing
stresses do not vary too rapidly along the length of the beam. Given this, X can

be evaluated fox a number of cross-section shapes. Of interest here is the result
for a rectanszular cross section which is K = 10(1 +v)/( 12+ llv). Consequently.

the fourth and final basic equation
and (A-18) to get

which relates the shearing force to

A more convenient form is
Equations (A-6), (A-12), (A-14) and
two unknowns. This is accomplished

of the modei is given by combining EquatiO~s (A-17)

(A-19)

the deflection and rotation of the beam.

obtained by eliminating x a“d S from
(A-19) i“ order to have two ?Cuat ions in

by first s“bstituti”g (A-19) into (A-6) to g’?t
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Then, substituting (A-14) and (A-19) into (A-12) gives

2

-EI ~ + (kr + F)Y - HGA
ax

{&yj=-p Iq

Finally, the two gover”i”g equations can be written in terms of a foundation

partially supporting the beam by introducing an arbitrary (at this point at least)
crack extension parameter e. Then

and

(A-21)

where e= denotes a critical value of the crack extension parameter and
H,’,is the ordinary Hea”iside step function.

,1, x>l

H(x) =( O,X<l (A-22)

which is modified to allow a switch from unity to zero but not vice versa.
Equations (A-20) and (A-21) are the governing equations for the Timosbenko
beam-gemralized elastic foundation model of the DCB specimens that are used
in this work.
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APPENDIX 3-B

DERIVATION OF THE COMPONENTS OF ENERGY AND
THE CRACK-EXTENSION CRITERION FOR THE TR40SHENR0

BEAM-GENERALIZED EIASTIC FOUNDATION DCB MODEL

.4 completely general statement of the strain energy per unit volume in
three-dimensional isotropic elasticity theory is

dU = ~ ‘{OXEX + u z +OZ8Z + ‘r y +T +
YY ~Y ~Y yz ~yz

+T
~xz 1

(a-1)
Xz

Consistent with the derivation ziven in A~wendix A. all of the stress coumonents
in the Timoshenko beam can be neglected with the exception of Ux and TXZ. Hence,
for the beam, exclusive of the foundation

or

(B-2)

it is necessary to integrate over the beanIn order to use the results of Appendix A
cross section separately, deferring the integration over the length (i.e., in the
x-direction) until later. Hence, let

Ub = ~ Ub,xdx

S0 that

u
b,x ‘+ ff{ax%+ ’xzp++’+l}’yd’

(B-3)

(B-4)

where the integration is taken over the beam cross section.

To evaluate the integral in Equation (B-4), it is convenient to introduce
two “residual” displacement components such that

.W+u;‘z (B-5)

and

.Ix-zy+u;
‘x

(B-6)

where, by definition

A J,rUx dy d’;x=~
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and other quantities are as in Appendix A. It should be recognized that u; and
u’ would be exactly zero if the beam cross sections remain plane in bendimg and,
t~ere fore, are likely to be small with respect to tbe total displacements .

Subs-tituting Equations (B-5) and (B-6) into Equation (B-4), noting that

w, Y and iix are functions of x only, gives 6 result, that can be written

ax.1’s
zubx=. ~ %Xdydz + {~ - ,} ~ j’T dydz +

Xz

(B-7)

Now, on the basis of tbe statement made above and consistent with the assumptions
introduced by Cowper, the third integral in Equation (B-7) can be assumed to be
negligible. Then, the remaining two integrals can be evaluated using results
derived i“ Appendix A. In particular, by combining Equation (A-1O) with (A-14)

and Equation (A-2) with (A-19), it is found that

. f.
jjzoxd,d= = - EI~ (B-8)

a“d
,,

jj~xzdydz .HGA{ *-,) (B-9)

Substituting these into Equation (B-7) and the result into Equation (B-3)
then gives

(B-1O)

for the strain energy of tbe beam.

Tbe strain energy of the foundation and the kinetic energy of tbe beam
can be written down by inspection. These are, respectively,

u, = + j’ {kew2+ krY2} dx (B-n)

and

(B-12)

To the energies given by Equations (B-1O), (B-11) and (B-12) must be added the
energy FY2 which then completely accounts for tbe energy contained in a Timoshenko
beam on a generalized elastic foundation. For tbe DCB model, b~wever, the energy
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released by crack extension must be accounted for as well. To evaluate this,
Equations (B-1O) and (B-11) are first combined to obtain the strain energy of
a DCB specimen of length L using a beam partly supported by an elastic foundation.

This is

L

)2+ ‘GA (% - ‘J2 + “2 +
r ‘EI ‘w

“=Jl (3X
0

(B-13)

+ Hi:(ec-e)
}

~kew’ + krY2; dx

where H;: is the function defined by Equation (A-22) . Notice that the factor ~
has been omitted because U now represents the total strain energy of the DCB
specimen which is considered co be composed of two identical beams. Similarly,
the kinetic energy of tbe DCB specimen is

To both “erify the correctness of Equations (B-13) and (B-14) and as a preliminary

step in deducing the appropriate fracture criterion, the time derivative of the

total tmergy of tbe system will now be calculated.

Beginning with (B-14), upon differentiation with respect to t, it can
readily be seen that

Next, differentiating Equation (B-13) with respect to t and simplifying by

appropriate use of integration by parts gives

(B-15)

(B-16)
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The final term in the above is the rate at which work is being done by shearing
forces and moments acting at the ends of the specimen. Under the conditions

being cons idered here, these contributions are zero. This term can be dropped,
therefore.

Now, it is unlikely that the crack-extension criterion will be simulta-

neously met at more than one position, but the possibility can nevertheless be

N

H~c(@-ec) = H(x-rye) + . {H(X-LYi) - H(x-Bi))

i=l

Recalling that the step function H~r permits a transition from 1 to
vice versa,

similar positions
untracked material,

(B-17)

O but not

i .=0

where A denotes the Dirac delta function. Substituting this into Equation (B-16)

then gives L
du -2rdyr
z= j ~ iEI ~ + XGA :$ -Y] - FY - krH~(B -e)Y] dx +

c
0

Adding Equat ions (B-15) and (B-18) then gi”es

L
2

+ F’!+ krH*(Bc-e)Y} d. .+ 2 j’~ {pA ~ +
a.(JL

o

aJ
-Xwpidl + keH~:(gc-9)w

}
dx +

-axz

(B-18)

-j.: ;kewz+ kr,2]
X=cii
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(A-2O) and (A-21) shows that the two integrals are

%+ R=‘f(%)“ [kew2+‘r’’lxw,
i-O 1

(B-19)

which proves that energy is conserved for a nonrupturing foundat ion and, there fore,
shows that the basic formulation of the energy terms is consistent with the
governing equat ions of mot ion.

Under the condition that no external work is done on the specimen
during crack extens ion, the total energy of the system is IW’Iminus the energy

absorbed at the crack tip. Let Ri denote the energy absorbed in the foundation of

new crack surfaces per unit area of crack advance at the point x = ~i. Application

of the fundamental energy balance print iple of fracture mechanics then requires that’

where bi denotes the thickness of the specimen at x = Q’i. Combining Equations (B-19)

and (B-20) then gives

(B-21)

which is for the general situation wherein “islands” of untracked material exist,
each being ruptured at a different rate.

In the simpler situation of a unique crack tip at the point x = Q. in a
constant-thickness constant-toughness specimen, Equation (B-21) reduces to

‘d!= [kewz + kryzj
(B-22)

X=a

which reveals that the crack-extension parameter must be associated with a
critical value of the bracketed quantity. Notice that for a Winkler foundation

(where ke = 2Eb/h and k, = O), Equation (B-22) defines a critical beam deflection

This is‘c “ ~

.(; :)2 (B-23)
‘c

which remains useful as a reference length even in tbe more general s itu tion

now being cons idered.
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APPENDIx 3-c

SOLUTION FOR INITIAL CRACK EXTENS ION IN
THE TIMOSHENXO BEAM-GENERALIZED EL4S TIC FOUNDATION DCB MODEL

The governing equat ions for a DCB specimen modeled by a Timoshenko
beam and a generalized elastic foundation for initial crack extension can be

obtained by simply omitting the inertia terms in Equations (A-20) and (A-21) ,
This gives

EI

and

Note that it is convenient here to take tbe

keH(x)w = O (c-2)

origin at tbe crack tip and the
Heaviside step function has been adjusted accordingly. The boundary conditions
are those corresponding to an applied shearing force P and zero bending moment at
the cracked end with stress-free conditions at the other. Using Equations (A-14)
and (A-19), these can be expressed as

KGA [w’(-a) - Y(-a)l = P

and (c-3)

Y’ (-a) -Y’(c) =W’(c) -Y(c) =0

f,”ncrackedtrlength of tbe sPec imen.where c = L+ is the Notice that i“ tbe case

of the semi-infinite beam considered below, the dimension c is considered to

greatly exceed all other beam dimensions.

The procedure to be followed here is, (1) to separate the problem into
the two regions where the differential equations (C-1).a“d (c-2) ha”e constant
coefficients, (2) to determine the solutions for the two regions independently,
using the Laplace transform technique for tbe x > 0 region, (3) satisfy the
boundary conditiom on the extremities of tbe region, and (4) match the solutions
ac tbe interface between regions. From the result so obtained, expressions can
be deduced for tbe strain-energy -rcle.ase rate and, in turn, the Stress -intensity

factor.” The latter quantity will then be compared with known experimental and
two-dimensional computational results to establish the “alidity of the mode I for
the dynamic situation. As a second benefit, the sOlution will pi-o”ide the initial

conditions for the dynamic solution in closed form. Thirdly, the exacL value of
the total energy so obtained ca” be used to help judge tbe accuracy of the finite
difference calculation.
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Preliminarv Analysis

In the region x < 0, the beam is free and Equations (C-1) and (C-2)
reduce to

2

EI~+l@~~-y..0
J

dx
and .

These can be integrated easily. TO facilitate tbe mat.cbing requirement, the results

are most conveniently written as

w(x) .2 {x’+ 32.2-~ x}+,,0-,. +“(0-)
6EI

(c-4)

and

Y(x) = & {X2 + Zax} + Y(o-) (c-5)

where W(O-) and Y(O-) denote the values at the interface between the regions.
Notice that Equations (c-4) and (c-5) already satisfy the boundary conditions
at x - -a; i.e., Equations (C-3).

In the region x > 0, the beam is supported by the foundation whereupon

Equations (C-1) and (c-2) become

(c-6)

d, -3-’.”-0~~A {+ (c-7)

The integration of these two equations can be accomplished by use of the Laplace
Transform. That is, let

.
, -Sx

Z(S) = \ e W(X) dx
.
0

v(s) - ‘j.-SW(X)Cfx
0

Applying these to Equations (c-6) and (C-7) then gives
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,-
HGAs= + IEIs2 - (k, + KGA)] ; = EI [Y ‘(0+) + SY(O+): + )tGAw(O+)

L

!- 2
IMGAs - k,; ~ - XGAs~ = I(GA[W’ (0+) + SW(O+) - Y(O+)j

By defining the parameters

and solving the pair of simultaneous algebraic equations, it is found that

;(s) - .;W(O+)S3 + W’(O+)S2 + [Y’ (o+) - @:w(o+)] +
.

(c-9)

-[ f+ e.;_
2., .-1

2’ rw’ (o+) - Y(o+)] } . 1S4 - [B2+B:;S* + B:[g:+c ;}
L.r

and

T(S) = {Y(O+)S3 + Y’(O+)S2 - [B:Y(O+) + .2(W’(0+) - Y(o+)) ; s +
(c-lo)

-1
-e:[Y’ (o+) + C2W(O+) j} . {s4 -LB: +O:]S2+B:!B:+G2]}

The inverse transform can be obtained from Equations (C-9) and (c-1O) by standard
techniques. As is often the “case, the form of the solution will depend on the

relative sizes of the parameters appearing in the problem. In particular, it is

assumed that

or, using Equation (c-8), that

(C-n)
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Provided Inequality (C-II) is satisfied, the solutions to Equations (c-6) and

(C-7) are

+ 25~(0+) cosh 5X Cos lx1
and

1.

1 [i’(O+)(E2 - II’+ ez - B:) - ezw (0+)] Sinh @ sin IIX+
y(x) ‘m

!32 ‘.,
- E] COsh <X sin TIX++ pl(o+)(l - *)5 - W(o+) *

< +~

2 22
(C-13)

+ ~’(0+)(1 + -,)1 + W(O+) - 1] sinh 5X
Cos ‘llX+

+ 25~(0+) cosh 5X Cos T’x

1

where

(C-14)

Notice that Equations (C-13) and (C-14) are general solutions and do not satisfy
any particular boundary condit ions or cent inuity condit ions.
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Determination of the Foundation Constants From the
Stress-Intensity Factor for a Semi-Infinite Specimen

In the special case where the “untracked” length of the DCB specimen
greatly exceeds its other dime”siorm, the appropriate boundary conditions to
be applied to Equations (C-12) a“d (C-13) are for the vanishing of w(x) and Y(x)
as x becomes large. It can be show” that this condition is satisfied by taking

(52+ lf)Y (0+) - 24W(O+)
“’(0+) =

<z+f+~:

and

i3:c2w(o+) + 2<(<2 + f) Y (0+)
y!(l)+) = -

<z+f+~:

(C-15)

From Equations (C-4) and (C-5) , the solutions for the cracked portion of the
spec imen, it is found that

W’ (o-) =Y(o-) - &
and (c-16)

Y’ (o-) =%

Now, referring to the relations given in Appendix A, continuity of deflection,
slope, shearing force and bending momeflt require that W, Y, W’ and y‘ all be
continuous. (Note that when Q and M are acting at the interface, this is
not the case. ) Hence, equating the right-hand sides of Equations (c-15) and
(c-16) allows a determination of w(0) and Y(0) to be made. This is

w(o) . {’2Q+ M“ J-
,2 }IWA
e

(C-17)

where the distinction between O- and 0+ is now superfluous and has therefore
been dropped.

The compliance of the DCB specimen--the deflection of the free end per
unit of applied force--can be obtained from Equation (c-4) by setting 6 = w(-a) .
‘I’hisgives, in general
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6 -g{l +(*) +} -Y(o)a +.(0)
a

or, substituting Equations (C-17) for the semi-infinite specimen

where

The stress-intensity factor can now be obtained since

Using Equation (C-19) to eliminate b in favor of P and using I = bh3/12, then,
for crack extension under constant load

2 1/2

K = 2J3
- {1 + + Cli;) + i Cz($) }

Notice that if C;
- 3C2,

Equation (c-22) reduces to

_(1+3h’
K=2J3 ~

~h3/2 \ 3 a )

which is identical to Equation (1) provided Cl = 3 a.

(c-18)

(C-19)

(C-20)

(C-21)

(c-22)

(c-23)

Values of the beam and foundation constants that will p“t the model of
the OCB specimen i“ good accord with experirne”tal and with the more precise two-
dimens ion.alcomp”tat ions, can be obtained by using the express ions for the foundat ion
parameters given as Equations (13) and (15) . It is the” found that
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C1 = 3./5 14

C2
= 3/2

C3
= 3./5 /16

Upon substituting these into Equations (C-19) and (c-22) , the results given as
Equations (16) and (17) are obtained.

Finally, a comparison between the values of the coefficients obtained
with the various analytical models can be made with the empirical values of
Mostovoy, et al. This is shown in Table c-1. Unfortunately, there is little
basis upon which to choose one set of these over another, Ho”ever, it is
instructive to notice that if the values give” by Mostcwoy, et al. , were
substituted into Equation (C-22), the result

K‘*{1+ 1“2(3+“4:)2)1’2
would be in relatively poor agreement with the values sho”n in Figure 2.

TABLE I - COEFFICIENTS IN THE RELATION FOR THE COMPLIANCE OF THE

DCB SPECIMEN AS GIVEN BY VAR1OUS DIFFERENT ANALYTICAL
MODELS .-

~
P

Q’3 { 1 +c,& + C2($2 +C3($)3 j
‘E

Analytical Model

Enler-Bernoul Ii beam on a rigid
foundat ion

Timoshenko beam on a rigid fou’ndation

Euler -Bernou lli beam on a Winkler
foundation

Timoshenko beam on a Winkler foundation

Timoshenko beam on a generalized
foundat ion

Semi-empirical extension of simple
built-in beam model given by

Mostovoy, et al. (12)

L

o

0
1.92

2.43

1.68

1.80

2 3

0 0

0.75 0

1.22 0.39

1.98 0.50

1.50 0.42

2.08 0.22
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APPENDIX 3-D

FIN ITE-DIFFERENCE APPROX D?IATION TO EQUAT IONS FOR
DYNAMIC -CHACK PROPAGATION IN THE TIMOSHENKO BEAM-GENERAL IZEO

EL4STIC FOUNDATION DCB MODEL

The governing equations for dynamic-crack propagation in a DCB specimen
modeled by a Timoshenko beam on a generalized elastic foundation in dimensionless
form are given by

. .
Y“ + 41J’ - 4Y . 2H+:(1-9)Y = * Y (D-1)

and

..

v“ - Y’ - 6H~:(l-cI)W= ~ W (D-2)

Here the prime notation indicates differentiation with respect to 5, the dot wj.th
respect to T. Hence, replacing the derivatives by finite -difference approximations

gives

=+ {Y(,,T+AT) - 2Y(5,T) + y(E>T-AT)}
12(AT)

and

+ {W,+A,>T) - 2W(,,T) + W<-AE>T)]+
(A<)

- * @(<+hE,T) - Y(*-L~,T)} - 6H::(l-O)W(~,T) =

.+ {W(,,T+AT) - 2W(5,T) + W(,,T-AT)}
4(AT)

(D-3)

(D-4)
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Upon solving these for Y(E,T+AT) and W(~,’T+AT), respectively, the following
formulas are obtained.

+ 24 ~ {W(E+A5, T) - W(E-AE, T)}+
(D-5)

- {’4‘\fi)2-2 + 24(AT)2[2 + H~:(l-@] } Y(~,T) - Y(~,T-AT)

(D-6)

- {8 (~)2 - ‘ + 24(AT)2H(I-E3)} W(<,’r) - W(,,T-AT)

These are the recurs ion Kelat ions used in the computat ions.

The components of energy can be computed from the finite-difference

aPPr Oxidation as fOllOws. It has been shown that

and

I Hence, using central differences for the spatial derivatives

(D-8)

(D-9)
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and, using forward differences for time dei-ivatives

~

RA
= +~’ { [~~~”’) - ~~~”;;:’) + ‘(<”T-2A’) 12+

2AT JJ

(D-1O)

Y.where .. unplies summation over the beam
the computing program.

The final step preparatory to
is to decide on suitable step sizes for
and D-2 show the results of a number of

length. These relations are also used in

carrying out a large number of computations
the finite-difference procedure. Tables D-1
computat ions in wh ich only the step sizes

were varied. It can be seen that the solutions obtained are remarkably insensitive
to these values and that, for the purposes of this report, the values A< = .05 and

AT = .01 are entirely adequate. Most of these computations used these values.
Nevertheless, a number of further check runs were carried out using more precise
values. No substantial changes in the results were ever noted, however.
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TABLE D-I -

a-a
.__g

~

0.2
o.&
0.6
0.8
1.0

1.2
1.4
1.6
1.8
2.0

2.2
2.4
2,6
2.8
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COMPARISON OF CMCK LENGTH VS TIME RESULTS COMPUTEDUSING
DIFFERENT FINITE-DIFFERENCE STEP SIZES

specimenconftg.rationA, KqlKd- 2.0

Ac . .200 AC = .100 h< = .050 A< = .025

A,=.010A,=.005b~ =.001 m ..010~AT ..001 b,-.010AT =.005 AT =.001 AT = .001

0
.210
.640
.900
1.130

1.580
1.820
2.040
‘2.41O
2.710

3.090
3.390
3.640
4.000

0
.215
.6h5
.905
1.130

1.590
1.825
2.050
2.480
2.715

3.105
3.400
3.655
&.015

0 0.110
.216 0.360
.649 0.810
.907 1.040

1.134 1.430

1.592 1.770
1.827 2.010
2.053 2.410
2.481 2.660
2.718 2.990

3.102 3.360
3.399 3.600
3.652 3.980
4.014 4.2f40

0.110
0.365
0.810
1.050
1.440

1.770
2.010
2.415
2.660
2.985

3.365
3.600
3.980
4.245

0.115 0.160
0,367 0.IJ80
0.8i4 0.860
1.053 1.100
1.463 1.520

1.775 1.780
2.014 2.050
2.417 2.460
2.664 2.690
2.989 3.060

3.370 3.390
3.604 3.620
3.984 4.020
4.249 4.300

TABLE D-11 - COMPARISON OF COMPUTATIONAL
RESULTS USING DIFFERENT
FINITE-DIFFERENCE STEP SIZES

SpecimenCo”fi,g.r.ti.aA, Kq/Kd . 2.0

(.) SteadY-State Crack spe~

_&

.200

.100

.050

.025

AE-

,200

.100

.050

.025

Vlc.

AT . .010 AT = .005 AT = .001

.1868 .1862 .1863

.1783 .1786 .1783

.1797 .1796 .1796

.1785

ariao

b. = .010 AT . .005 AT = .001

3.33 3.33 3.33

2.87 2.87 2.s7

2.93 2.93 2.93

2.93

0.165
0.685
0.865
1.105
1.520

1.785
2.060
2.470
2.695
3.070

3.390
3.630
4.020
4.305

0.167
0.489
0.869
1.108
1.524

1.789
2.065
2.472
2.698
3.072

3.393
3.634
4.023
4.312

0.195
0.563
0.897
1.135
1.573

1.819
2.130
2.512
2.751
3.137

3.4k5
3.668
4.051
4.339
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APPENDIX 3-E

COMPUTER PLOTS OF RESULTS FOR DYNAMIC -CRACK
PROPAGATION IN STEEL DCB TEST SPECINENS

In this appendix the computer plots obtained for a large number of
different specimen geometries and loading conditions are p-resented. Two plots
accompany each run: a crack length-time plot (using material constants appropriate
for steel) and a plot of the energy apportionment as a function of crack length.
Individual runs for single-section specimens are identified by a string of nwmbers

under the abscissa. I“ order, these numbers correspond to Kq/Kd, RTfKs, h(mm),

UC.(mm), L(mm), A<, and AT. These values suffice to identify a particular specimen
so that dimensions not specifically given can be obtained from Table I.

ACKNOWLEDGMENT S

The authors are grateful to J. K. Magor and George Mayer of the Army

Research Office-Durham for their advice and encouragement. Valuable discussions

have been held with members of the Advisory GrOuP III Of the ship Research COm-

mittee.

At Battelle-Columbus, the contributions of P. N. Mincer, C. R. Barnes,

C. Pepper, J. Jarvis , and R. Speraw were particularly helpful.



...- . ..—. -. .—. .

-99-

l_.......c.

*Hs/A2ti3N3



50. 100. 15

T1. E lPIICRO SEC,

E-3. 150 ,.00 63.5 92.* 3607 0.0500 O.otoo
E-4

,J

,,

,!

‘1 R

9,

R ~T1

r 1
‘1

R, ‘T

‘1
’11,

@l
T

nr ‘l, T

~
0. 20. .0.

O-AO

1.50 ,.00 63.5 +z,q 360.7 0.0500 0

$0

100

,



r .-—

-101.

.



-1o2-

. . .



..—

-1o3-

.C . .

.



———

-1o4-

. . .



-1o5-

-





100

25

0.’
0.

V, C2: 0,0751 ~

9

0

0

0

0

0

0

G

0

0

0

50. 100. 150. 200. 25o.
T1mE (m[CRO SEC)

B-17. ,,50 > 00 63.5 18+8 121.? 0.0500 0.0100

2

2

:,

-.
>
.

:

:

1

0

0

E-18.

u

IJ

u
!1

!J

‘J

u

!!

u ,
‘1 F

.

ITT,

‘l, T
1,, ,

‘TT

25. 50. 15. 100
h-ho

1.50 I 00 63.5 18, .8 721. ~ 0.0500 00100



0. 100. 200. 300. “00. 500.

TINE (“l CRO SEC,

E-19. 2.0o 1.00 &3.5 18, .8 121. ~ 0,0500 0,0100

!,

I
50. 100, 150. 200. 250.

A-no
E-20 2.00 1.00 63,5 18, .8 121.’! 0.0500 0.0100

I



V, CC,O ,173*
/

/

200. “00, 600.
Tln E (nl CRO SEC)

ix-21. 3.OO 1.00 63.5 I@*. @ 121.’4 0.0500 0.0100

12

10

5

2

0
100. 200. 300. $00. 500

n-~o

F.-22. 3.00 1.00 63.5 18, .8 121. $ 0.0500 0.0100



’30

80.

10.

30

20

1(

TEST 5ECT1?NV, CC=O 1062

-..— ..--—--_.. ..

/

0°
:

,
STARTFRSECTION v/c0=016q T

0
25. 50. T5

100. 1~~

T1” E (mlc Ro SEC)

0-23. 2.00 2 00 h3.5 9*,, ,60,1 0,0250 0.00!0
E-24.

,, :

0



TEST 5ECTrc N V, CC, 0.20. I

/

/

\

. . L
--.—. .

6

.,

5T, RTER SE CTkON v, CO= O. 5321

50. 100. 150. 2°0. 250
T1. E lP!l CRO SEC]

Z-25. 3.00 2.00 k3.5 q2. q 360.1 0.0250 0.0010
E-26.

50. 100. !50. 200. 250
,%. AO

3.00 2.00 63.5 q2. , 360.1 0.0250 0.0010



--’-’--’-~—
—

-112-

.,

‘2

:. .
.



-113-

UH8/A~M3N3

-... ,



None
security C1.ssiric.tio.

DOCUMENT CONTROL DATA .R & D
(--”,0 Cf-’sdf)cB#ton‘[ ‘181-,- ‘f abst-ct ‘d ‘“de=)- ‘o-,!- ‘“., b- .“#e--d ‘he” the O--r-,$ “PO,, t. =J-.,fj+

0.8.,..78”. .CTI.8T. (cower.,..“*=., 2.. . ..0.. ,,.. .,.” . . . . . ..( . ...0.4

Battelle, Columbus Laboratories
Unclassified

2,. . . . . .

FAST FRACTURE RE S1STANCE AND CRACK ARREST IN STRUCTURAL STEELS

OESC. IPT8VENOTES (lY*. .1 mp.=t-id 1..1..1.. d-l..)

PROGRESS
AU TWO.,,, (Fir,, Mm. mlddk 1.1114 l@of .--.)

G. T. Hahn, R. G. Hoagland, M. F. Kanninen, A. R. Rosen field, and R. Sejnoha

.,.0.7 ..,. >.. ,C..AL No. 0, . . ..$ ,b. NO. 0, .,,s
June 1973 113 72

.0.....70. ....7.!0 9....,.,..,0..s.,.0.,..”.,.,s,

NOO024-72-C-5142
.,..0,EC–r.0: ssC. 242

.. 0,,OT.H~~’n;POR,.0,,,(A.,.*- n-b.,.*.I-y b. ,..lmed

d. I...,,,. ,..,,0,. ,, AT IEME,4T

Distribution of this document is unlimited.

Naval Ship System. Command

‘.‘“’TRAc’This report presents findings of an Amy Research Office supported study con-

cerned with the response of high-strength steels to fast running cracks, and a separate

Ship Structure Committee program dealing with unstable fractures in ship plates. Togeth

the results provide a new basis for measuring and characterizing the properties of
structural alloys that control fast fracture and crack arrest. Measurements and calcu-

lations of unstable fracture and fracture arrest in 12.7 UQ- and 25.4 nun-thick, high-

strength SAE4340 steel and A517F steel plates are described. The unstable fractures

which propagated at steady-state velocities in the range 185 ins-l to 1180 ins-l, were pro

duced in wedge-loaded DCB - (double-cantilever-beam) test specimens. The study demon -

strates a new concept: the “duplex” DCB-specimen. This consists of a high -strengthllow

toughness 4340 steel “starter section” which is electron beam welded to the A517F test
section. The fractures are initiated in the starter section, and this makes it possible

to confront test materials with a fast moving crack under controlled conditions close to

the transition temperature. A fully dynamic analysis of unstable crack propagation and

arrest in the iX2B-test piece is derived. The technique is based on the beam-on-elastic

foundation model of the OCB specimen used previously but with the simple beam and foun-

dation representations replaced by a Timoshenko beam and a generalized elastic fcmndatio

Crack speeds, energy levels, and the crack length at arrest are calculated with this

model using a finite-difference method and are compared with the measurements. The cal-

culations and the measurements reveal that unstable propagation in the tCB-test piece

proceed from the start with essentially constant, steady-state crack speeds that depend

on specimen geometry and the starting conditions. The calculations also predict instant

of discontinuous propagation at high speeds. The kinetic energy imparted to the test

)iece is recovered and contributes to the crack driving force. It follows from (Continu
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is that fracture arrest is controlled by the his to :y

energy dissipation throughout the entire propagat .on

ent, rather than on Ka, a single static toughness
lue calculated at the arrest point. For the 4340
eel, increases in crack velocity up to 86o ins-l at

>m temperature are accompanied by a 4-fold increas ?

the dynamic fracture energy (a 2-fold increase
the dynamic fracture toughness) , and by increases

the size of the shear lip. Dynamic to“ghness
lues for the A517F grade at -78”c for crack speeds

>m 475 ins-l to 780 ins-l were also about 2 times th?
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