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* ABSTRACT

A steel structural 1:50 model test program has been conducted
for the 942-ft., 33-knots, SL-7 Containership. This report describes devel-
opment of the model, through the test program and then to the tesf results.
The principal stresses measured were longitudinal normal stresses and shear
stresses. The model was loaded by means of calibrated steel weights and
precision pulleys. The vertical and lateral bending responses corresponded
closely to elementary beam theory; the vertical shear amidships pattern
appeared to have the correct shape for the known boundary conditions at the
keel and deck edges; and the torsional responses indicated that the bow and
stern sections and machinery box offered considerable warping restraint. A
finite element analysis of the model and ship midship sections indicated that

nearly the same torsional response was observed for each.
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Section I. INTRODUCTION

Modern containerships are constructed with extremely
large hatch openings in the main deck so that the containers
can be loaded into the ship directly with an overhead crane.
The tendency recently has also been to increase the speed
6f these ships, thereby resulting in very fine hull forms.
The combination of these two features leads to a hull which
is much more. flexible in torsion than ordinary break-bulk
cargo ships and tankers, since the ability of the open main
deck to carry shear loadings is virtually nil. Probably one
of the most significant examples of the state~of-the-art in
containership design is the Sea-Land containership SL-7.

The principal features of this design are

Length between perpendiculars 880'-8"
Length overall au2t-p"
Beam ‘ 105'-g"
Depth 6y '-0"
Design Draft 307-0Q"
Service Speed 33 knots

This report details a structural model test program on
this ship. The purposes of this study were many. First,
since it would not be possible to provide a large amount of
instrumentation on board the full scale ship and since the
seaway loadings of the ship are not known in any real detail,
a structural model could provide a more comprehensive view

.0of the structural deflections and stresses for various compo-
nent loadings than the real ship data. Second, even though
the structure of the ship is amenable to analysis by finite
element techniques, no comparisons are available of torsional
response calculations with those of a typical ship structure.
It is hoped that the structural model data will provide suf-
ficient information witli which to check and validate the
finite element calculations, or to determine which effects
need to be included in order to model accurately the
structural mechanics. Third, the effect of warping res-
traint afforded by closed sections of the hull on torsional
response is not clearly known for hull forms with a signi-
ficant amount of shape, such as this ship. The test program
has been designed to investigate this specific point.

The following sections outline the development of the
model, the instrumentation, the test program and procedures,
and, finally, the test results arrived at in this study.




II. Development of the Model

Introduction

In the development of the actual model, the model scale
was of primary concern. From the point of view of ease of
construction and amount of structural detail, the larger the

madal +ha hatt+an Hawaevar Tawrogse madela ars svrnanceive and
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require very large loadings in order to produce significant
stress levels. A study was conducted to consider all of
these factors and a model scale of 1:50 was decided upon.
This corresponds to a model length of 18'-10" (overall).

In order to construct a scale model so that it will
have exactly the same structural response as the full scale
ship, 1t 1s necessary to:

a. construct the model from the same material as the
ship, using the exact ship geometry.

b. scale the thickness of the material by the scale
ratio.  For instance, this would mean that the
model plating thickness would be one-fiftieth of
the prototype plating thickness.

c. ineclude all of the structural components (including
dall brackets, plates, rolled section, etg.)

d. duplicate in scale all of the welds.

Clearly it is not feasible to achieve this perfect
scaling. Constructing the model from the same material
is feagible; reducing the plating thickness by a ratio as
small as 1:50 is also feasible, but it is mot feasible to
scale the welding. TFurther, plating cannot be obtained
commercially to an accuracy better than +0.001". Consider-

3 - r - -
ing that there are literally thousands of pieces in the

structure of this ship, it is also clearly impossible to
construct a model including all of these pieces except at
an extraordinary expense. Further, since many of the
smaller pieces are only a few inches in full size, they
would have to be tiny indeed in the model scale.




As a result of these practical considerations, one
is forced to retreat from the concept of perfect model-
ling. This retreat must also be made along several
fronts. First it is necessary to increase the thickness
of the structural components to reasonable commercial
sizes; second, to greatly reduce the number of parts;
and third, to simplify the complicated three-dimensional
form of the ship hull. The following sections detail
the rational steps used to perform these simplifications.

Scaling Laws

An examination of available steel plates and
feasible welding techniques led to the selection of a
plating thickness three times that required by exact
scaling. Thus if

nL = length of the model = Lm ,
length of the prototype Lp
and
n, = thickness of plate in the model = tm
thickness of plate in the ship tp
the values of n. = E and n = 3 were selected.
L 5o t 5o |

In order for the shape of deformation of the model
to be the same as that of the prototype under loading, i.e.,
true scale displacements, the loads had to be scaled such
that the strains in the model equaled those in the prototype.

ng = strain in the model =1
strain in the prototype

The strains of the model {(or prototype) can arise from
several different loading situations. These are discussed
below.




a. Axial load. . The strain arising from a given
dxial force F acting on an area A is given by
e £
S 7
Consequently,
ne = (€ ) mode L = N,
(e ) prototype p—
P ngh,
where
n, = Fm
F Fp
ng = Em
E Ep
n, = Am
A Ap

In order feor n, to be unity, the force must be scaled by
the factor

Lt

b. Bending. The bending strain is related to the applied
moment M by using elementary beam theory.

e = Mr
ET

where r is the distance from the neutral axis
I is the section moment of inertia




Consequently
e T ™y
"E"I
where e = IO
rp
ny _im
I = Tp

In order for n_ to be unity, the moment must be scaled by
the factor =

For the distorted scale model nr = nE ny and np=Hp,

The approximation requireg that the ship have thin plating
with respect to overall dimensions such as beam or depth,

L 1 H mh
4 5ituation CﬁFLaluJ._y met here. +10ius
" = TE"Lt

c¢. Shear. The shear strain is related to the local value
of shear, Q, by (elementary heam theory).

gm(s)

. T
4

Qe
o

where

s .

m(s) = [~ =ztds the moment of the section about the neutral
axis from a point of zero shear stress up to the point on
the section periphery at s. G is the shear modulus.

Thus " n
n, = S0
'r !it'bGrlI
For the strains to.be the sanme, = 1. Forathe distorted

scale model n_ = nz n, and, as be}ore ny ¥ n and thus

L ™t
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n.nn
t ¢ I _
Q = _.__n___ - nGnLnt
m

n

d. Torsion. For similarity of deflected shape, the

total angle of twist, ¢, must be the same at corresponding
points for model and prototype. Thus, if I;; is a distance
to a particular section (say, aft of the bow) on the

model and is the distance for the corresponding section
for the prototype, then

o (In) = ¢, (Ip)

Consider the total twist angle at an adjacent section

located at L + ALm in the model and the corresponding
adjacent section on the prototype L_ + AL . Then if the
angles of these sections are also egual,

o (L_+AL_.) = L -
m'“m m N¢ o’ - ¢p (Lp‘l"ALp) ¢(Lp) . ALp ‘
AL A AL
i Lp I

If AL >0, and since we are dealing with corresponding
sections ALp»0 also, then 8 = Op (dLP)

ALy

where

d
& = Hﬁ' » the angle of twist per unit length and

finally, for the distorted scale model

3IH

8
n = i =
0

eP

L

Torsional deflections arise from both free torsion
and from warping effects. These will be considered
separately.

l. Free Torsion

Almost all of the free torsional rigidity arises from
the tube-like parts of the ship's section since the
contribution from the single walled regions (St. Venant
torsion) is negligible. The relation between & and torque,
TF ,can be expressed as
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de
*TF§-t—
-
4G I 4,
T
where

t is the local plating thickness.ﬁlneans that a
line integral is to be performed about all tubes,
presumed in this case to be separate cells. The analysis
of adjacent cells iz more compllcated but since the

result is the same, the analysis is not presented here.

A: is the enclosed area of each of the separate cells,

n, N, n,2
Whence 'TF = TFm = o 4
n.
Fp 1
om
where n@ = 33
N, = gm
G Gp
(L 2)
2 . 4.
N 1°m
(Z4.)p
27 F
- _ fds/t)m
v @ds/t)p
For the distorted scale model nA2 = nL and n; = = np/ng.

Using these results and the previous result ng = l/nL, then

2

= m-n
7 -

“pp % Pe Pt
2. Warping Torsion

The relation between 6 and the torque, TW, carried by
a structure due to restraint against warping can be written
as

Ch d%e

W =
dz?




where C,; is called the warping rigidity and is defined as

m 8 2
€, = Ef (f rds)“tds,
o o

where v is the distance from the neutral axis, as before
It follows from the previcus argument that for equal
total angles of twist

(&h
ds = ngzg = 1/np
dze

dx%)p

also fr ]
ne, =t =g ™
m, .8 2
"q - (fo(fords) tds)m
(fgrfifds)2tds)p

For the distorted scale model, nq = nint and, thus,

-« {Ledm =
"y T (Tedp - "e "ate = "E Pt/TL

e. Buckling. The compressive, in-plane force at which
buckling occurs in a flat plate buckling is given by:

2
_ =T°DK
F, = b

where
b is the plate width

K is a constant depending on the plate aspect ratio

and edge boundary conditions. (the same for model and
prototype)

3
D = Et , the flexural rigidity,
12(1-u?)



thus
~ 3
n = (Fe) m M
e (Fe) p - ny
where  __ _ (E/(1-p%))m
ng =
(E/(1-u?))p
b
n, = M
O
P

For a scale model n, = nL and thus

71~
n = E-
4]

tf\J%

Summary of Scaling

In summary, for the distorted scale model,

Torces . {criterion)
np = nphpng (axial strain)
ng = ngnpn {shear strain)
- 2~ 3 A .
n, = nEnt/nL (eritical buckling force)
Moments
1 . "
ny = n_n bendi tra
M nnon {bending s in)
- 2 - .
N nGnLnt {free torsion strain)
Ny = nE nt/nL (warping strain)

If the model is loaded with forces which are equal to

(nEnLnt) times those forces which act on the prototype,
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then the,model moments which arise from these fzrzcas

are (nrn,n } times those acting on the prototype.

The abové summary shows that if np = ne then the zzlel
will develop the same strains from these primary lcaii:gs
as would exist on the prototype. For simple elastic

materials

E
¢ = Z71+u)
where U 1s Poisson's ratio. Therefore np = n. as long as
4 is the same for both model and prototype. oisson's

ratio for most structural materials (steel, aluminum, etc.)
is little different from 0.3. Some plastics have different
Poisson's ratios.

When the critical buckling force criterion is
examined, the loadings which yield the same strains for
both prototype and model do not yield the same scaled
buckling force unless n_=n In other words, only for an
undistorted scale model wiYl the buckling be properly
modeled. In particular, if ng>n; then the scaled force for
buckling on the model will be re&atlvely larger than for
the prototype. Therefore if a loading exists for which the
prototype exhibits buckllng effects, the corresponding
buckling may not occur in the distorted scale model. Care
must be taken, therefore, to limit the loadings of a dis-
torted model to those which would not lead to buckling in
the prototype.

Selection of Material

A wide range of materials was available for use in
the structural model. Foremost amongst these were steel,
aluminum, plexiglass, brass, PVC (polyvinyl chloride).
All of these materials were given careful censideration
for the SL-7 model.

In addition various castable plastics of the resin
and epoxy types were also investigated. The final selection
of a material depended on many factors, as discussed below.
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Plastic Materials: All of the plastic materials considered
had one very attractive property, that of a very low
modulus of elastiecity. Typically the plastic materials
hadavalue of E#5x10° which is 1/60 that of steel. This
implies that the model loadings required to obtain compar-
able strains in model and prototype can be quite moderate.
Unfortunately, all of the plastics considered exhibited
qualities which were undesirable. These were creep (non-
elastic stretching under lcad), extreme sensitivity to
environment (temperature and humidity) and questiocnable
joining techniques. TFor these reasons, all of the plastics
were not considered further.

Metals: The selection from amongst the various metals
available was made primarily on two bases: fabrication and
commercially available thicknesses. Brass was considered
briefly but was considered toc expensive. Also, brass can
best be joined by brazing. The problem of brazing a model
with over 500 pieces seemed insurmountable. Aluminum appeared
to be a prime candidate since it was readily available.

N . . .
Tunthen aT1mainim hae a madnlne Af alactipi+y Aana-thind +tha+
e AL LAt A , L S R R R LY LA A= AR Nd VAL WO L ALl UL L L,J AL L O T il L

of steel, an advantage in the lcading of the model. In order
to uncover any problem areas, a 1:50 scale midship section
(between adjacent bulkheads) was constructed. Unfortunately,
this model showed large welding-induced distortion of the
plates (that is, large relative to the plate thickness).
Further, exploraticn of this welding problem indicated that
it was virtually impossible to aveid this distortion when
thin plating is used. It was also determined that the
non-linear stress-strain characteristics of aluminum could
lead to difficulties in interpreting the data. In conclu-
sion, steel was selected since it was easily welded, and
supplied in a large variety of gages. Hot-rolled steel was
chosen since cold-rolled steel is not as isotropic and also
not available in as wide a selection of gauges. The dis-
advantage of steel is that its modulus of elasticity is

high and the resulting loads required became quite large.

After some experimentation with shipyard welding techniques,
it was determined that it was possible to join plates
thicker than 16 gage (0.0598").
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Scantlings The model was designed with a geometric scale
ratio of 1:50. The plate thicknesses were increased most
in the scale ratio of 3:1. The tables below give the
distortions of the major components.

Bottom plating: Model: .0598"(1.519 mm) Ship: 35 mm

. .0598-25,4 _ 1
Ratio: -—“—33—-—— =_§§
Distorted scale: 329 ., 2.17
23 1
Inner bottom plating: Model: .0598"(1.51% mm) Ship: 32 mm
. . .0598-25.4 _ 1 |
Ratio: 32 = 311
Distorted scale: 30  _ 2.37
21.1 ]
Side plating: Model: .0598"(1.519 mm) Ship: 20.5 mm

. . .,0598.25,4 1
Ratlo: —=5F==— = 13-%

Distorted scale: .30 « 37
13.5 1

Torsion box between decks: .

Main deck: Model: .120"(3.05 mm) Ship: 50 mm

:o: .120°25.4 _ 1
Ratio: 225557 ° T6.4
Distorted scale: 290 _ 3.05
le.4 1 .
Second deck & sides: Model: .120"(3.05 mm) Ship: 42 mm
. . 1.20°25.4 _ _1_ :
Ratio: 3 = 13.6
; ‘ . 50 _ 3.62
Distorted scale.i§T§ =

Tranegverse torsion box between decks;

Main deck: Model: .0598"(1.519 mm) Ship: 15 mm

.0598-25.4 _ 1
— 18 " 93788

Distorted scale: . 50 _ . 2.06
$.88 1

Ratio:
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Second deck, bulkheads: Model: .0598"(1.519 mm)} Ship: 12.5mm
0598-25.4 1

Ratio: t———m—— 35 = .23
: . 50 _ 6,08
Distorted scale: 533 = =

The following conclusions were made when looking at the
scale distortions of the plate thicknesses.

torsional stiffness of the to
+ 1 +

v otiffar Aan +ha madanl
A7 b whe e ale A S kb Ll A AN ke Y e
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rsion box between decks
han on the ship

!J}ld_ri -
2. The torsional stiffness at the transverse torsion box
was relatively stiffer on the model than on the ship.

3. The torsional stiffness of the double bottom was
relatively stiffer on the ship than on the model.

4, Since the distortion was not constant over the c¢ross
section, the ship and the model did not necessarily have
the same relative position of the center of shear.
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Structural Details of the Model

It was of course J.lllpUbb.LDJ. to il_Cl de all of the
structural details of the ship in a 1:50 scale model. 1In
fact the number of component pieces was reduced by several
orders of magnitude. This meant that all of the brackets
and small details, and many of the stiffeners, longitudinals,
etc. were eliminated. Since these latter elements were
part of the primary structure of the model and as such could
not be eliminated altogether, they were lumped together in
some reasonable fashion.

Another important consideration in building the small-
scale model was the shape of the hull itself.. Ship hulls
are of a complex shape with a wealth of double-curved plates.
On the model scale these shapes are particulary difficult
to reproduce, since it was not possible to break the hull
~surface into as many pieces as used in the full-scale ship.
Thus a simplification of the hull form was alsc required
for the model.

.
aAd nrala ] nf n mrndal shown
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Figures 1 through 11. The simplification of both the hull
form and the number of pieces were made in accord with the
type of measurements that were to be made. Where the
response of a localized section of the ship was required,

that portion was modeled in great detail. The simpli-
fications appropriate for investigation of buckling character-
istics would be different fromthose used for primary bending
response. For these particular model tests, the point of
view was adopted that primary torsional responses was of
the major interest. Late in the development of the model,
a desire was expressed for modelling transverse and vertical
primary bending responses, insofar as they would not affect
the torsional response of the model.

Aravy
LS
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The torsional response of a ship or model is a very
complicated process involving several phenomena. These
include: free torsion of the individual elements (such as

the twisting of longltudlnal stiffeners); torsion of closed,
‘1’1_1]19—111((-‘-\ el nmph-f';: and the affeots of warnine restraint

MEm L NT = Chaiva (S L A WOl ALy LoD sl

offered by the shell of the hull and deep transverse bulk-
heads. Current analytical techniques were not sufficiently



well developed to determine the combined effect of these
responses, and thus the finite-element method (FEM)

was used Finite element calculations described in
nppenu¢x A were yc;;u;mcu on various critical subsections

of the hull to determine the proper lumping of parameters.

It was also decided to omit the raised forecastle
deck, since the closed forward section of the ship already

e s = e

provided nearly perfect warping restraint.
a. Midship Section

Figure 12 shows the midship section of the SL-7. The
inner bottom has a center vertical keel, several side girders
and a multitude of longitudinals. The sides of the ship
are transversely framed with a series of heavy longitudinal
girders and deep web frames. Just below the deck, at the
sides there is a heavy tube-like structure (presumably to
enhance the torsional rigidity). This tube contains many
closely spaced longitudinal deep girders. The purpose of
these members appears to be for providing sufficient section
modulus for vertical bending.

Reduction of the elements used included consideration of the
following: '

1. Innerbottom structure. Clearly, on the 1:50 model
it would be impossible to duplicate the myriad of small
longitudinal stiffeners. These stiffeners are primarily
for local strength of the inner bottom and have a very small
contribution to the torsional stiffness of the ship. A
calculation of the total area of the longitudinals available
for axial stresses compared to that of the inner bottom or
bottom shell was only about 7-8%. Another consideration
is that of the floors. For the most part floors provide
local strength to the bottom plating and interact very little
with the overall structural response of the ship. As a
result thege r.-+1 ffeners were 'nacr'l anted. A more diffigult
consideration is that of the 10ng1tud1nal side girders.
Thes e girders break up the inner bottom into a number of
joined torque tubes. However, practical considerations
of model constructlon obviated the possibility of including
all of these girders. It was felt that a lumping of the
side girders into one girder, port and starboard, and the

retention of the center vertical keel represented the
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FIGURE 3

BODY PLAN
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FIGURE 8
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maximum acceptable complexity for construction. In order
to test the effect of this lumping, two different models
were tested in torsion using FEM: one model with all side

girders, and one with only 2 side girders. Sketches of the
structure are shown below.
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Figures 13 and 1% show the mesh, the boundary conditions
and the applied loads. The same loading and the same
boundary conditions were applied on both structures, ,
yielding the following deflections along the free end,
Figure 15.

two side girders

+ + + + all side girders

Figure 15. Response Of Bottom Structure

It is interesting to note that the numerical difference in
the results are very small. The two points outside the
straight line of nodal points 25 and B85 seemed to be caused
by the use of spar-elements because no forces in the vertical
direction can be transmitted between elements at this point.
However, the shear flow due to torsion of the structure is
transmitted as it should be, and no noticeable error will
occur if this disturbance is neglected.

Both structures were not restrained from warping.
However, the importance of warping is relatively
small because the section is a closed tube.
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From these caleculations it can be concluded that the effect
of lumping side girders together is very little. There-
fore it is justified to make these simplifications on the
model.

2. 8Side Structure. The side structure consists of the
hull side stiffened by a grid of frames (regular and deep
web) in the vertical direction and a set of three horizontal
flats. These flats are, in fact, deep longitudinal stringers.
As far as both kinds of frames are concerned their major
function is to provide local stiffness of the shell plating.
They are not important as far as the primary structural
response of the hull is concerned and were therefore not
included. in the model. The situation with the longitudinal

stringers is different. They are prlmary structural elements

and must be accounted for. These stringers were too closely
spaced for ease in model construction and it was decided

to replace them with only one stringer. One of these
stringers is continuous with a deck within the machinery

box and it was felt that it was important to preserve this
continuity. Straps were placed on four sides of the long-
itudinal box beams. Their purpose was to reflect the deep
stringers inside of the box, so that the section modulus of
the ship for both vertical and horizontal bending is correct
to the same scale as torsion. As a prefabricated tube of
rectangular cross-section was used to model the longitudinal
torsion boxes, it was not possible to fit them with interior
stiffening. The stringers do, of course, carry warping
stresses in torsion too.

The finite element calculations of a midship section described
in Appendix A indicate that the structural responses of the
ship and model are almost identical.

b. Bulkhead Structure.

In addition to the midship section studies, a separate
FEM study of a typical transverse bulkhead was made, since
it was impossible to model the myriad of stiffeners which
exist in the real bulkhead. A crucial comparison appeared
to be the warping restraint offered by a modified bulkhead
model. The computations are described in Appendix A, p.
A-31.

Deflection and Shear stress distribution results show that
it is justified to assume lumping the stiffeners on the
bulkhead together, and that that assumption will not change
the response significantly.



Construction of the Model

The model was constructed from hot-rolled steel plates
of the dimensions given in a previous section. Although
cold-rolled steel would have been preferable, particularly
with regard to the surface finish(thus easing the applic-
ation of the strain gages) it was not possible to obtain
this steel in the range of sizes required. Even though
the model was designed to have a plate thickness three
times that required for absolute structural scaling, the
plates were rather thin and required special care in
construction. Of particular importance was the weld metal
deposited. With one exception, all longitudinal welds were
made intermittent so that the effect of this weld metal
is minimized, particularly with regard to primary bending
stresses. The exception is the longitudinal welds joining
the hull plating which were made continuous, since it was
felt that it would be difficult to get satisfactory
intermittent butt welds and that these curved plates
might tend to separate under loading. Special care was
taken to minimize the added weld metal along these seams.

Figures 16 through 22 show the model in various
stages of the construction.

The Test Frame A test frame which straddles the model and
provides the loading to the model was designed and
constructed. The frame was constructed out of heavy H-beam
sections and welded together. A reduced scale drawing of

it is shown in Figure 23. Mounted on this frame were a
series of "Unistrut" channel sections which were used to
attach the pulleys for the loading system and anchors for
the ends of the ropes used in leading.

The test frame rested firmly on the concrete floor of
the test facility and was carefully leveled.

The Deflection Reference It was desired to measure the
deflections of the model as well as the strains at various
locations on the ship. This requirement led to special
problems since the technique of loading (described in a
subsequent section) would not necessarily lead to the same
vertical or horizontal position of the model before and

after loading. It was decided therefore to mount the
measuring reference to the ship itself. A very stiff
rectangular aluminum torque tube was designed and constructed
which was supported at the bow and stern of the model.

The support at the bow was a single ball joint mounted at the
ship's centerline (see Figure 24). The vertical support at
the stern was provided by two casters riding on flat
horizontal plates mounted on the model. The transverse
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support was provided by an automotive-type Hotchkiss link
arm, provided with two ball Jjoints. One end of this long
1ink was mounted to the model, the other to the torque
tube (see Figure 25}.

As a result, the references for the displacement
measurement were the transverse line connecting the two
flat plates at the stern (that is, the deck at the stern)
and a straight line connecting the ship centerline at the
deck at the stern and that at the deck at the bow. A series
of displacement gages were placed at the deck edge at
several longitudinal locations along the model and attached
to the torque tube. These gages measured the horizontal
and vertical displacements of the deck edges.



Transverse Bulkhead with Stiffening and Transverse Box
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Fig. 18 - Stern Plating Details
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19 - Forward Bulkheads

Fig
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Section III: TEST SETUP AND PROCEDURES

Introducticn

In order to subject the structural model to a reason-
able set of loads and accurately determine its response,
it was necessary to control all aspects of this process
‘extremely carefully if meaningful results were to be obtained
at all. The following sections describe in detail the
measurement techniques and the locading procedure, including
the precautions which were taken to eliminate extraneous
loads and strain signals.

Strain Gages

A series of strain gages were placed on various sections
of the ship so that several different types of responses
could be measured and categorized. Figure 27 shows a
profile of the ship and the locations of the gages. These
locations were:

a. TFrame 10. A series of strain gages were applied
on the port side of the ship just forward of the aft-most
hatch opening, and two additional gages were applied on the
deck just aft of the hatch opening. The gages forward of
the hatch were located so that. the effect of the warping
restraint of the stern could be measured. Four gages were
applied to the torsion box at the main deck and additiochal
gages were placed on the side shell and near the keel. One
of the gages on the torsion box and two on the side shell
were rosettes. The gages on the deck aft of the hatch
opening were placed so that the gross effects of any stress
concentration due to the hatch could be determined.

b. Hatch corner at Frame 62. In this location the
hatch size changes (smaller width aft than forward). The
corner of the hatch was instrumented to determine the effects
of stress concentration and also the warping stresses
developed in the transverse box-longitudinal box inter-
section.
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c¢. Section Between frames 78 and 96 (5.4" fwd. of
frame 78 on the model). This section is at the center of
the three full width hatches aft of the machinery box and
was chosen because it is a typical aft section. A series
of gages were placed around the main deck torsion box, as
well as on the side shell, near the bilge, and near the
keel. The gages were placed only on the port side.
Rosettes were used for most of the gages.

d. Frame 142. The section just forward of frame 142
(2" forward on the model) was completely gaged, port and
starboard. The major purpose of this instrumentation was
to determine the effects of the warping restraint offered
by the machinery box on the open sections forward of the
box and to determine any gross stress concentrations due to
the dramatic change in geometry at this location. Both
port and starboard sides were fully instrumented with
several of the gages being rosettes.

e. Hatch corner at Frame 178. This hatch corner is
typical of the forward hatches and was instrumented primarily
to determine the stress distributions at the intersection
of the longitudinal and transverse boxes. O0f fundamental

interest was the warping restraint offered by the transverse
box.

f. BSection Between frame 178 and 194. This section
is almost exactly amid ships and was, by far, the most
instrumented section of the ship. Strain gages were placed
port and starboard, internally and externally. Many of

t+hege gagsesg were rogsettes so that the complete gtate of

LT uT pRipgtoe Wos L= U S =] wiila o LaiT LT LT

strain could be determined. Gages were placed around the
torsion boxes and in the inner bottom in order to determine
the free torsion response of these closed tubes.
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hatch size changes and h corner was instrumented in the
same way as the hatch at frame 62 (see b. above.)
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h. Frame 280. This section was instrumented to deter-
the Warplng restraint of the bow section in a fashion
lar to the section at frame 10 (see a. above).
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PROPOSED ARRANGEMENT FOR MEASURING STRAIN AND DEFORMATION.

Vertical displacements of deckedge over the total length - angle of twist -+ measured by
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Warping stresses at hatch corner.

Strain gage rosettes for bending and shear stresses.
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FIGURE 27. STRAIN GAGE ARRANGEMENT FOR SL-7 STRUCTURAL MODEL
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The strain gages used in these experiments were of
the foll type (Micro-Measurements #250 BG single component
gages, and #250 RA and #125 RS rosette gages). These
gages were selected to have a coefficient of thermal
expansion the same as the steel plating used on the model.
The gages were bonded to the model using Eastman 910
adhesive, after the steel surface was carefully cleaned

- A + o a A Tha ~Acravio ot ma aF ammle o F L wro

allui CLL.IJ.CU.- LIIE UVCJ.CLJ.J. 83 Z€ 0OI €4acn oI Lllt: aLLJ.VC:

elements of the 250 RA and 250 BG gages was %" x %" and
that of the 125 RA was %™ x 1/8". This means that the
larger gages covered an area approximately 2' x 1', full
scale, and the smaller gages 1' x %', full scale. It is
clear, therefore, that these gages are too large to
detect the fine scale variations in stress one might be
likely to encounter around a stress concentration.

Figure 28 shows a schematic of the electrical hook-up
of each of the strain gages. The gages were set in a
bridge configuration and a constant value of 6 volts was
applied to the bridge. Measurement of the voltage across
the bridge is indicative of the value of resistance (and
thus strain) of the gage. The three completing resistors
for the strain gage bridge were specially selected, precision,
wire-wound resistors. The resistors directly connected to
each of the strain gages were chosen to have the same

temperature coefficient of resistivity as the strain gages.
These resistors were placed next to one znother in an insulated”
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box.

As a result of the selection of strain gage type and
resistor characteristics, the measurement system was
nominally temperature compensated. However, temperature
problems did arise for a variety of reasens. TFipst, the
completing resistors for the strain gages (see Figure 28)
were located in junction boxes below the model. In other
words at a different physical location than the strain gage
on the model. Whenever significant temperature variations
occurred in the room in which the model was kept, it was
reasonable to assume that the gages and completing resistors
were also at a different temperature. Thus, in this
situation false strain readings can occur.

A second and equally important result of temperature
variations within the room is the development of thermal
stresses in the whole ship structure itself. The matching
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Figure 2 8. Schematic of Strain Gage Bridge
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of the gage and the steel coefficients of linear expansion
only assures that no false strains will be read if the
whole model undergoes a change in temperature. However,
thermal gradients along the model w111, in general, lead
to significant internal thermal stresses (and therefore
strains). This pattern will be superimposed on the strain

pattern induced by the loads. There is no known way of

.
sorting out the resulting strain readings short of measuring

the actual gradients on the model and computing the thermal
strains resulting. This process would indeed be as com-
plicated as computing the structural response of the model
and would, in fact, obviate the need for a model in the
first place.

Two details of the model arrangement made these two
uncompensated thermal effects of paramount importance.
The model itself was placed in a room which was not uniformly
‘heated. This was the result of the geometry of the room
and the placement of the forced hot-air heaters. 0Of equal
importance was that owing to the model's being constructed
of rather heavy gage steel, feasible loadings of the model
resulted in very small strains. During a typical test the
maximum strains observed were in the order of 100 micro-
strain. This is an order of magnitude below the value one
might like to achieve during structural model tests.
Temperature induced errors of the order of 10 to 20 micro-
strain were unacceptable in these tests, whereas they would
have been entirely acceptable for more normal structural
model tests.

After several attempts were made to alleviate this
serious problem of measurement accuracy, only one solution
seemed forthcoming. This solution was to test only on
cloudy or foggy days which were warm enough so that little,
if any, heat was required in the building. On these days,
the air temperature varied by only a few degrees during the
day and no significant radiate heat loading of the model
existed. The latter condition was a problem on cloudless
days, since the southwest wall of the steel building in
which the model was housed could get quite warm in the

afternoon sun. Waiting for "good" days to test caused a
very q'lo_ifioapt delav in the test gschedule.
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Measurement Instruments

The voltage supplied to the strain gage bridge was
typically 6V D.C. Higher voltages were attempted (in
order to improve the size of the bridge unbalance) but
had to be discarded since they led to problems of heat-
ing of the gages. The voltage was supplied by a very
heavily stabilized laboratory power supply. This supply
was zener diode controlled and produced an output which
varied less than 1 millivolt throughout any experiment
(an error of less than 0.02%). The leads from the center
of each gage-completing resistor pair was led to a Honeywell
crossbar scanner. This device permitted automatic,
successive scanning of all of the gages. The relays used
in the scanner had extremely low resistivity, gold-plating
contacts. Throughout the experiments there was no indic-
ation of any difficulty resulting from the scanner

operation.

The voltage difference across the center of the bridge
was measured by a NLS digital voltmeter, capable of

resolving one microvolt. In order to obtain this accuracy,
it was necessary to use the built-in high-frequency filter
(with a one-second time constant). Scanning therefore took
place at the rate of about one gage every 6 to 8 seconds.
The digital voltmeter was also attached to a teletype term-
inal through a special serializer. Thus, all of the
measurements were printed out and punched out on paper

tape for permanent reference.

Figure 29 shows the instrumentation in adding the
scanner (lower instrument in rack), digital voltmeter
(upper instrument), serializer (middle instrument) and
teletype terminal.
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Data Reduction

The strain gauge measurements were reduced by a
standard digital computer program written explicity for
the purpose by the Civil Engineering Department of the
University of California. The microvolt readings
inserted into this program were always obtained by sub-
stracting the values read for the strain gauges when no

load was applied from those read after the load was applied.

The assumption involved here is one of linearity.
Before the loads are applied, the model is not in a state
of zero stress. Manufacturlng of the model by welding (the
model was not annealed) certainly introduced some stresses.
The support of the model at both ends leads to a bending

moment amidships due to the model's weight, and this
imnlieg an addit+ionzal stress digtribution of the model
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What is assumed is that the changes in the stress pattern
due to the loading is the same as what would occur if the
model were originally at zero stress. For an ordinary
structure this is true, as _long as non- -linear problems
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The scaling of the model (the plating thickness three times
the geometric scaled thickness) all but precludes any of

these non-linear effects. However, the response of the real

ship under similar loadings (scaled up to full size) may
perform differently, since it is relatively more prone to
buckling.

In conclusion, the assumption of linearity is probably
correct for the model, but difficulty may be encountered
in interpreting these results for the full scale ship,
particularly for the very high load cases. In any event,
the measured data will demonstrate that linearity is a
good assumption for the model.
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The Displacement Measurements

Measurements of both the horizontal and vertical
motions of the deck edge were made by an array of
precision dial gauges located at intervals along the
length of the model. These gauges were attached to the
aluminum reference frame previocusly described. Since
this frame remained aligned between the centerline of the
model at the bow and at the stern the gauges read the
deflections relative to this line.

The Loading Arms and Model Attachments

It was necessary to load the model. at a finite number
of locations rather than to apply distributed loads, as
would occur in the real ship. As a result, it was decided
to provide these loading locations at bulkheads, since
this would best provide for a good distribution of the lead
around the girth of the model.

Further, the addition of brackets at the bulkheads
would least interfere with the structural response of the
model, since the model {(and ship) have great transverse
stiffness at these points anyway. The purpose of the
loading bars was to introduce discrete vertical, longitudinal,
and twisting loads into the model. In order to introduce
a torsional moment into the model two attachment points were
required. It was attempted to provide these attachments
as far apart as possible so that the local forces would
not be excessive.

The locations at which the loading arms were attached
were:

Bulkhead at frame 30 (mounted on deck)
Bulkhead at frame 78 (mounted on bottom)
Bulkhead at frame 112 (mounted on bottom)
Bulkhead at frame 160 (mounted on bottom)
Bulkhead at frame 210 (mounted on bottom)
Bulkhead at frame 242 (mounted on deck)
Bulkhead at frame 274 {(mounted on deck)
Bulkhead at frame 311 (mounted on deck)
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From the configuration of the test frame and from the
test plan, mounting the loading bars on the ship bottom
was preferable. This location provided the opportunity for
a 2:1 purchase in the pulley system for bhoth up and down
forces, whereas mounting on the deck permitted a 2:1
purchase only for the down forces. Further, it was desired
to load the model in transverse bending as well as
vertical bending. In order to avoid introducing unwanted
torsional moments in the model due to these transverse
forces, it was desired to provide all of transverse loads
in one plane, at the baseline of the ship. Loading bars
along the bottom could then be used for both horizontal
and vertical forces. However, near the bow and stern,
the bottom was so narrow that it was not possible to
locate the bars there. In these locations the bars had
to be mounted on the deck. Also, at these locations,
additional brackets were welded to the hull at the bottom
for supplying transverse loads when these were desired,
through the use of additional loading structure.

Great care was taken to assure that the distance between
the model centerline and that of the load attachment was
the same port and starboard. In this way, when torsional
moments were applied to the loading bar (by means of an
up force on one side of the bar and an equal down force on
the other side), no net vertical forces were simultanecusly
introduced inte the structure.

The bars themselves were manufactured from "unistruts",
commercial deep channel sections. A detailed view of the
locading bars can be seen in Figure 30.

The attachment of the bars tc the model was by means
of simple bolts. The holes in both the loading bar
brackets and model-mounted brackets were purposely drilled
somewhat oversized and the bolts were not tightened very
securely. This procedure assured that the loads were
introduced in a statically deterministic fashion, with no
locked in loads.

LT M

3§ .



-55-

In the case of the largest bending moments applied to

t+he aehin the lpoads on the two center 1lnading bars were
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so large that an appreciable twist of these bars occurred.
In the special situation, a structure between these two
loading bars was added which prevented their individual
twisting. Since the attachments to the model were some-

1. 1 R -
what loose, this J.ul.er'v'enlus structure caused no re-

distribution of the lcads.

The Loading Method

L] P F-g

A series of weights for loading o
manufactured from ordinary hot-rolled steel. These weights
were disks approximately 13 inches in diameter with a
slot cut in them for the support. Disks of three thicknesses
were manufactured: 0.25", 0.50", and 1.00". These disks
were to have the nominal weights of 5, 10, and 20 pounds,
respectively. However, since the disks were cut (using an
acetylene torch) from the raw steel plate, variations did
occur. Fach weight was carefully weighed to within 0.01
1b. and the exact weight was stamped onto the disk edge.

In this way a combination of disks could be carefully
selected to obtain any given weight. A totxal of 6000
pounds of disks were manufactured and certified in this way.

The loads were applied to the model through a nylon
rope which ran over a series of pulleys, some attached to
the test frame itself, others to the loading arms. Omne
end of the nylon rope was attached to a weight pan, in
which the steel disks were stacked. The pulley system was
arranged so that no more than a 2:1 mechanical advantage
was achieved. It was feared that any larger purchase would
lead to intolerable friction losses within the pulley
system. All of the pulleys were precision type with either
ball or aircraft-type needle bearings. Figure 30 shows the
pulley arrangement, weight pans, and loading bars near the
bow of the model. The two lecading bars on the left have
a 1:1 purchase; that on the right has the loading bar
below the model with a purchase of 2:1. A separate pulley
arrangement was made for up forces than for down forces at

eaarh loading arm
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For any given loading the weights were selected and
stacked in front of the appropriate pan. The loading of the
model was performed as quickly and as evenly as possible
to avoid any local overstressing. That is, a few weights
were added to each pan all around the model and this procedure
was continued until all the loads were applied. As an
extra precaution, the model was vibrated to eliminate any
residual pulley friction. Figure 31 shows the model just
prior to a test with all of the weights set out.

Model Support

When a ship floats in the water, it is in stable
equilibrium with regard to vertical motions. That is, the
weigcht of +the g'h'ln is exactly counterbalanced by the

vertical hydrostatic force distribution, and no external
forces are required to maintain this position. It is
difficult, or even impossible, to duplicate this arrange-
ment in the model scale. First, since the plating thick-

nacoeace arna nnt =2nslad 9n +tha cams nranantisan ae +he r\‘ra'n:lTT
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dimensions of the ship, the ship is too heavy for immersion
into water. The use of other liquids, such as mercury,
bromine, etc. would be too dangerous. Second, it is
difficult to work with electronic equipment such as strain

gauges in any kind o

Fh

It was decided, therefore, to simulate the model
floating without requiring support from a liquid. The model
wae attached to the test frame by three load cells,
manufactured in the same way as one manufacturers a tensile
test specimen. One of the two stern cells can be seen
c¢learly in Figure 25 and the bottom of the bow cell can be
seen in Figure 24. The applied loadings to the model
were calculated so that they would reflect the floating
condition. That is, so that they would require no wet
vertical force or moment for equilibrium. Before the model
was loaded, the stresses in the load cells reflected the
three forces necessary to support the model. After loading,

@ e e
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if fthe§e three forces remained the same, then this implied
that the lcading did correspond to a realistic seaway
loading system: that is, one which does not require

external loads for equilibrium. TFurther, since the initial
loadings were specifically chosen to reflect the floating
situation, confirmation of this by means of these load cells
demonstrates that the weights used were correctly selected
and that the pulley friction had been effectively eliminated.

In about twenty of the early tests (before meaningful
data were obtained) this check was performed and the
locadings confirmed. During the later tests, efforts were
made to develop the maximum structural response of the model
and, in order to do this, it was necessary to provide a
simple support of the ship bow and stern. The load cells
were not of sufficient capacity for this purpose and were
thus not attached. These end reactions were calculated
from statics instead. Clearly, our earlier experiments
demonstrated that no difficulties were encountered with the
pulleys. Accordingly, the only checks performed for these
tests were double-checking of the weights.

The Test Procedure

Before any particular test was performed, the type of
loading was analyzed and the exact weights to be used at
each leocading station determined. The appropriate weéeights
were assembled near each weight pan. The electronic power
supplies and meter were left running for at least 24 hours
before each test so that no problems with a lack of steady
state heating of the strain gauges occurred.

The first step in the actual test process involved the
reading of all of the dial gauges and strain gauges in
their initial state. This took about 30 minutes. The
weights were applied to the model in a distributed fashion
(as described above). When all of the weights were on the
weight pans, the model was vigorously vibrated to eliminate,
as much as possible, any effects of static friction in the
pulleys. After about 10 minutes was allowed for the model
to relax, the next step was performed. The second step
involved a reading of all of the dial and strain gauges
for the loaded model. Following this (usually performed
twice to guard against any reading error), the weights were
removed and the first step, above, was repeated. Rereading
the dial and strain gauges provided an indication of
gsignificant drifts of the instrumentation or, more likely,
significant thermal effects occurring during the test.
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The data reduction of the strain gauges was done by

taking the difference between the average loaded readings
and the average unloaded readings. This process eliminates
linear time drifts of the readings. Further, whenever the
difference between the two loaded readings of any one

=)

gauge (taken before and after the application of the load)
was larger than 20 percent of the average measured
difference due to loading, the point was thrown out.

That is, it was required that the non-repeatibility of the
gauge zero be no more than one-fifth of the net gauge

reading.

No similar problems occurred for the dial gauges and
thus no such procedure was required for them.
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Section IV. TEST PROGRAM

Introduction

The purposes of the test program were many. Of course,
it was desired to characterize the structural response of
the ship under a variety of different loading conditions.
However, before such test results can be relied upon,

gsufficient t \.cal.a must be HGLfULulcd to demonstrate that

the model is constructed properly, that the strain gauges
are working, and that the data reduction program is
working. At one point or another during the early testing
of the model each of these possible pitfalls was uncovered
and corrected. The overwhelming difficulty was the thermal
stress problem mentioned in the previous section. This,
too, was overcome.

The model test program was then divided into two major
parts: a demonstration phase and a combined loading phase.
During the demonstration phase, the model was subjected to
a series of simple loadings, such as vertical bending,
wherein the structural response could be quite well
characterized in advance. In the case of vertical bending
it is reasonable to assume that Navier theory will apply.
The combined loading phase concentrated on typical combin-
ations of expected loadings wherein no simple known solution
would be adequate; for example, a combination of horizontal
bending and torsion.

The demonstration phase also concentrated on another
feature of the basic assumptions, that of linearity. It
was necessary to assume linear structural responses to
develop the model and to reduce the strain gauge readings.
As a result, a series of tests incorporating similar loading
distributions but with differing magnitudes and signs were
conducted to demonstrate the linearity of the response.
Any non-linearity would indicate buckling, or more likely
LY L |
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A major part of the emphasis of the combined loading
phase was to develop a picture of the response of the
structure to antisymmetric loadings, i.e., torsion and
horizontal bending. In the full-scale ship, if stresses
are measured at the same locations port and starboard, it
is possible to separate the effects of vertical bending
from those due to the combined action of horizontal bending
and torsion by a symmetry argument. There is no practical
way of taking full-scale measured raw data and separating
the individual contributions of the last two effects. Of
particular importance for this container ship is the
torsional response and the effect of warping restraints
afforded by the bow, stern, machinery box, and the many
transverse deck box beams. At sea one obtains only combined
horizontal bending and torsion and, as a result, it is
impossible to answer the question of torsional response
directly from the at-sea measurements. The tests here
involved separate loadings of the model under torsion alone
and horizontal bending alone, as well as tests combining
these loadings. An additional test series including all
three loadings, lateral and horizontal bending as well as
torsion, was performed.

Finally, an additional set of tests was conducted in

which the ship was subjected to a torsional loading compar-
able to the dockside trials.

The Test Program

The test program was the following:

i. Demonstration Phase

a. Vertical Bending

b. Lateral Bending

c. Large Midship Shear
d. Torsion

e
=

a. Lateral Bending and Torsion
b. Longitudinal Bending, Lateral Bending, and Torsi

iii. Dockside Torsion Trial
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At least two tests of each of these combinations were
performed by reversing the sign of the loads. In addition,
several tests were performed using half of the required
loads (both signs) so that linearity could be tested. The
individual results of each of these tests were submitted
to ABS as they were performed and the data reduced.
Accordingly, these individual run data will not be presented
here. The data of similar runs have been combined into
comparable data and these are presented in Appendix B.

The subsequent section will discuss these results in detail.
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Section V. THE TEST RESULTS

Introduction

The test results in Appendix B are combined into
five different groups:

1. Vertical Bending

2. Lateral Bending

3. Large Midship Shear

4, Torsion ,
5. Combined Lateral Bending and Torsion 1

For each of these groups that data is presented in a
similar fashion. First, the model scale loading actually
used in each individual test is presented. This includes g
the weights used, the mechanical advantage cof the pulley |
system employed, and the net force on the model. The
loading is integrated to show the shear and bending moment
distribution, or for the case of torsion, the torsion l
moment distribution. Following this is a series of ]
sectional views of the model at each of the measuring |
stations on which the various stresses are plotted. The |
principal stresses measured were longitudinal normal stresses
and shear stresses. The plots are arranged so that if the

model responses were absolutely linear and if no reading

errors were encountered, all the points would fall on top

of one another. Finally, the measured vertical and horizontal
deck edge deflections are presented both in tabular and
graphical form.

Vertical Bending

A series of tests of the vertical bending response of
the model were performed. In these tests the model was
simply supported at the ends so that very large midships
bending moments could be developed. It was discovered after
the tests were performed that the vertical bending moment
distributions for the model were almost, but not exactly,
similar. As a result, the data presented here has been
normalized in a special way. The measured stresses were
divided by the local bending moment at each station. If
Navier bending applies, then this ratio would be constant
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and equal to the inverse of the section modulus at each
location. That is, the resulting values should be equal
to ¥/I where y is the distance from the neutral axis of
the station to the point in question and I is the moment
of inertia of that station. The three tests that were
performed are:

Label Max. Bending Moment(B.M.) Sense
(-) Large B. M. 325,725 in/1b. hogging
(-) XLarge B.M. 170,480 in/1b. hogging
(+) % Large B.M. 170,480 in/1b. sagging

In examining the bulk of data one sees that most of the
points lie on top of one another or nearly so, indicating
good linearity and repeatable measurements. The following
are worthy of special note.

1. Section 2 inches forward of Frame 10. The results for
this section show an almost linear variation of longitudinal
stress with depth, indicating a nearly perfect elementary
beam theory distribution. Of particular interest is that

the two gauges located about one inch aft of Frame 10, that
is, aft of the hatch opening, indicate a stress level

almost twice that in the box beam just forward of the hatch.
Further, the inboard gauge indicated yet a further increase
over the outboard gauge, presumably indicative of a stress
concentration around the hatch opening itself.

2. Section 2 inches forward of Frame 142. This section was
instrumented both port and starboard so that the effects

of symmetry could be noted. In both port and starboard
sides there is a slight bending of the line connecting the
longitudinal stress point in the neighborhood of the main
deck. There is also an increase in stress across the

deck edge box beam. It is felt that both of these effects
are a reflection of shear lag effects caused by the drastic
change in section occurring here, that is, because of the
change from the closed machinery box to the open hatch.

The stresses on the bottom are relatively constant, but with
an apparent dip in the center, again presumably due to shear
lag effects.




-6b-

3¢;* Section between Frames 178 and 194. This section is

the mldShlpS section and was the most highly instrumented .
section. The longitudinal stress distribution is almost
linear along both sides, but the distribution is not as
symmetrlc as that of 2. above. In particular, the rosette
on the starboard bottom bilge (gauges 87, 88, 838) appeared
to lead to a much lower longitndinal stress reading. This
gauge was replaced no less than five times in an attempt
to improve readings in this area, but to no avail. It
must be concluded that some manufacturing defect exists in
this neighborhood, although none was apparent. The stress
distribution on the bottom of the model on the starboard
side shows the lower stress pattern behavior. The port
side does appear to behave as one would expect for Navier
bending. The measured stresses on the tank top also
appear reasonable on the average. It is not known why

the stress near the centerline is about 20 percent less
than that near the edge.

4. Section 1 inch aft of Frame 290. This section clearly
demonstrates Navier bending.

In conclusion, one can see that the data are very
repeatable and consistent. With the exception of a small
area on the starboard amidships bottom, the stress pattern
is very nearly that predicted by elementary beam theoly.

Lateral Bending

A series of tests were run in which the lateral bending
response of the model was tested. In these tests the ends
of the model were free, so that no end restraints were

necessary. Two tests were performed, in one of which the
bending moment deformed the midship section to port

(SRR A e

(relative to a line between the bow and the stern) and in
the other the midship section was bent to starboard. The
model is much larger in beam than it is in depth, and as

a result the stresses measured were quite small. Further,
since the loads were applied at the base line, (the loading
holes were all located within 1/32" of the base line) some
torsion was introduced because the shear centers of the oper
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sections were below this line and those of the machinery
were above this line. 1In ofder to put the stresses on a
comparable basis, the stresses for the lateral bending
moment were changed in sign. If the readings were

exactly repeatable, then the points would fall on top of

one another. The following sections are of special interest.

1. Section 2 inches forward of .Frame 142. The longitudinal
stresses show fairly good symmetry and repeatability
considering the very low magnitude of strains. Again
elementary beam bending theory seems to be a reascnable
approximation of the situation with nearly constant stresses
in the sides and a linear variation of stress in the bottom.

2. Section between Frames 178 and 194. Elementary beam
hanAdino Fhoanarny annoane +mn ha avhihidad harna hunt +he Aiesnrnan=
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ancy on the starboard bottom still persists. The shear
stress distribution also is close to that predicted by
beam theory, but these stresses were so low that it is not
possible to draw many conclusions from them,

3. The deck edge deflections. The Norizontal displacements

of the deck edge appeared to be reasonable, if somewhat
small. The vertical deflections were vanishingly small.

Large Midship Shear

Both the vertical and horizontal bending loadings
discussed above did not lead to large shear stresses within
the structure. In order to validate the shear response of
the model, a loading was developed which yielded a very
large vertical shear amidships. The loading was performed
twice, once with the opposite sign of shear to the other.

The recunlt+ing gtregses were 'r\'l otted 'hv 'nn\rn'hr_-'lﬁc' +he gion
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of one run so that the stresses would be comparable.

In this case, the end of the model was simply supported
so that a larger midship shear could be obtained. The end
reactions due to these supports were calculated by staties.
Except at midships, a very substantial bending moment also
occurred, so that at other stations a substantial Navier
bending pattern could be observed.
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At the midship station (between Frames 178 and 194)
the longitudinal stresses are very small all around the *
periphery. This is an indication of the small bending
moment in this region. Since this is a symmetrical
loading, the shear stress distribution should likewise be
symmetrical. TFurther, the shear stress should become
zero at the top of each side and also at the centerline
at the bottom, again, from symmetry. For the most part
all of these conditions are met. An exception is the
starbocard bottom which has positive shear stresses when,
from symmetry, it should have negative stresses. This is
the same region which produced incorrect results in the
other simple loadings.

As expected, the model deflected very little in the
horlzontal direction, but did deform with an "S"™ shape
curve in the vertical direction as expected.

Torsion

A series of four experiments were performed in which
the model was loaded in pure torsion. The loading was
performed so that the ends of the model were free of load
and it was unnecessary to provide any end supports. Two
of the tests used a distribution which yielded a maximum
torque of 93,000 in/lbs. amidships (one test of this was
a clockwise moment, the other test was a counterclockwise
moment). The remaining two tests used distributions similar
to the previous distributions, but with a maximum torque
-exactly half that of the previous two cases. The results
of these four cases should correspond exactly if one
accounts for the signs and factors of two. This arithmetic
has been performed in a way such that the data points
presented in Appendix B should fall on top of one another,
if the tests and electronics were perfectly repeatable.

The following aspects of the presented data are worthy
of note: .

1. Section 2 inches forward of Frame 10. Although the dis-
tribution of loads leaves this section free of load, there
are small but not negligible longitudinal stresses here.

These stresses in the side shell and in the torsion box
indicate that the stern section (1tself a closed box) is
offering a considerable amount of warping restraint to the
twisting of the forward part of the ship, which is under load.
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2. Section 5.4 inches forward of Frame 78. This section
is roughly in the center of the three full width hatches
aft of the machinery section. The gauges indicate a
significant shear stress around the section, which one
would expect in this situation.

2 Sent+tinn 2?2 inchese forward of Frame 1L2. A+ +hig gerntinn.
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the longitudinal stresses in the 31de shell are linearly
distributed with depth, indicating significant bending of
the shell. This means that the machinery box is affording
a considerable amount of warping restraint. Also, the
longitudinal stresses in the torsion box at the deck edge
are very large. The stress pattern in this box indicates
a significant amount of transverse bending of the box,
further indication of the warping restraint offered by the
machinery box. The overall response of this section is
nearly antisymmetric, as it should be.

4. Section between Frames 178 and 13%4. Here the longitudinal
stress pattern is rather less linear in the side shell, in-
dicating a somewhat reduced effect of warping restraint.

The antisymmetry is nearly preserved again, however, the
outboard bottom gauge again yields stresses not in keeping
with the rest of the stress pattern. The shear stress

pattern indicates that both the side shell and the closed
tubes are participating nearly equally in response to the
loading.

5. Section 1 inch aft of Frame 290. The response of this
section is similar to that of Station 10 near the stern.

There is no torsional lecad in this area, but the linear
distribution of longitudinal stress indicates that the closed
box section is offering a large warping restraint. Notice
also that the stresses in the deck edge torsion box are

large and vary in sign between the deck at side and the hatch.

This indicates a vervy etrano transversgea hendine of +he box
e b d ke T et 2 35 T TR L R Ry -l VLJ Ubﬂ-vlla e Dl d AT ¥V Sl U\.‘llu-l—l&b -l A A NF AN

in this area and evidence that the warping restraint of the
bow includes not only the 51de shell but the torsion box
as well.

The deck edge deflections under this loading give a
good picture of the overall hull respouse. The vertical
deflections show that most of the twist of the hull occurs
in the forward section of the ship, that is, between the
machinery box and the bow. This is not surprising since
the applied torques are highest here and there is a long
run of open hatch sections. The horizontal deflections also
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show this, but one must remember that the reference line

lies between the centerline of the stern and the bow. ’
Relative to this line, the horizontal deflections appear

to be an "S" curve. The fact that both the vertical and
horizontal deflections do not appear to go to zero at the

stern is merely an indication that the reference line is

at an angle to the local direction of the ship centerline

at the stern. Clearly, the deflections show that the

section of full width hatches forward of the machinery

box have the least torsional stiffness.

Lateral Bending and Torsion

In order to develop a composite picture of this type
of combined loading, five separate tests were performed.
In all of the tests, the distribution of lateral bending
and torsion loads remained the same in shape and magnitude.
Two of the tests were conducted under the same conditions
of lateral bending and torsion. One test was conducted in
which the signs of both the lateral bending and torsion
were reversed. '

The remaining two tests included a vertical bending
distribution superimposed on the lateral bending and
torsion distribution. The first of these tests used one
gign for lateral bending and torsion; the other used the
opposite sign for these distributions. Thus, the difference
between these runs eliminates (if the response is linear)
the effect of the vertical bending distribution. The results
of all of these tests are presented in Appendix B in a ‘
compatible form, as before.

The results for the stress distribution appears nearly
the same as for the case of torsion alone, since the
magnitude of stresses introduced by the lateral bending
are, in general, much smaller than those introduced by the
torsicnal loading.
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Section VI. SUMMARY AND CONCLUSIONS

This study included several facets: a model develop-
ment, model construction, and an extensive test program.
A summary of the important highlights and conclusions
follows.

The Model

1. It is possible to develop a satisfactory, relatively
small scale structural model, but it is necessary to have

the plating thickness larger than scale. The model developed
here had a plating thickness approximately three times
thicker than scale. Due to the availabiltiy of standard

sizes of steel plate, some elements were thicker than desired,
others were thinner.

2. It was not possible to include all of the structural
complexity in the model. All of the secondary structure
(brackets, stanchions, etec.) was omitted and much of the
primary structure was greatly simplified.

3. A finite element analysis of the model and ship midship
sections indicated that nearly the same torsional response
was observed for both. No analysis was performed for either
vertical or horizontal bending.

4, Peculiar stress as ent ngistently occurred on
the starboard side of the midsh ection (halfway between
Frames 176 and 194). No irregularities in the model could
be observed in this location. In spite of repeated changes
in strain gauges, the peculiar results persisted. One must
conclude that some internal irregularity must exist in the
unexposed portion of the double bottom structure in this
region.

+r
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1. The strain gauges used provided nominal temperature
compensation. However, due to the combined effects of small
measured strains and large thermal gradients in the test
facility, unacceptable large thermal stresses were observed
during either hot or cold days. As a result, the tests

were performed only on those cloudy or rainy days in which
the heaters were not on and the outside temperature varied
only slightly.

2. Individual gauge readings were rejected if the drift
(presumably dwe to thermal effects) was greater than 20
percent of the gauge reading due to load. The repeatibility
and linearity of the retained readings was exceptionally
good.

3. The deflection measurements were made by precision,

mechanical dial gauges. No difficulty was encountered with
this system.

The Loading

1. The model was loaded by means of calibrated steel weights
and precision pulleys. The purchase of the pulleys was
limited to 2:1.

2. The loading was performed through lcocading bars which
were attached 'hv brackets to the model at several bulkheads.

The selected bulkheads were at least one hatch length away
from any strain measuring station.

Tests of vertical bending yielded results which show that
e model responds closely to elementary beam theory. There
some evidence of stress concentratlon on those sections in
S _=1 £ A o e e am m m

ich the hull structure changes UId.II.ld.L.LLd..LJ._y, 10T 1nSTance,
t forward of the machinery box.
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2. Tests of horizontal bending show that Navier bending
occurs for this loading as well. However, because the
ship is very stiff transversely, the resultant stresses
were quite small and not as well defined as for vertical
bending.

3. Tests involving a very large vertical shear amidships
developed a shear stress pattern in this area large enough
to measure accurately. This pattern appeared to have the
correct shape and meet the known boundary conditions at the
keel and at the deck edges.

4., The response of the ship to pure torsion demonstrated
several things:

a. Both the bow and s
warping restraint.

b. The machinery box is a particularly effective
warping restraint.

c. Transverse bending of the deck edge torsion box
yields very large stresses on the hatch side of this
box just forward of the machinery box. This is a
further evidence of the warping restraint offered
by the machinery box. Similar large bending stresses
were observed in the deck edge torsion box just aft
of the forecastle.
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APPENDIX A
EVALUATION OF MODEL DESIGN BY FINITE ELEMENT METHODS (FEM)

A finite element calcudlation was performed on a
parallel section of the ship and a similar section of the
ship model. Additionally, FEM calculations were also
performed for a typical transverse bulkhead - both model
and full scale.

A. Midship Section

For the midship study, both sections included one 1ong
container hold and one short container hold (a total section
length of 91.868 ft.full scale). The finite element mesh for
the ship is shown in Figures A-la through A-lc, and that for
the ship model in Figure A-2. The following assumptions

.
were made in this analysis:

i. Symmetry. Because of symmetry, torsional loading could
be applied as a pure antisymmetric load and only half of the
structure needed to be analyzed.

ii. Boundary conditions. Along the symmetry line: No
deflections occured in the longitudinal and vertical directions.
In the case of full warping restraint at the section x=0,

this section was completely fixed in all directions. For

the case of no warping restraint at the end x=0, all nodes

were free to move in the x-direction at this section (except
nodal points at¢).

iii. Structural Simplifications.

a. Several sidegirders and floors in the inner bottom were
lumped together.

b. Stiffeners were lumped together and included in the
structure as bar-elements.

¢. Plating thicknesses for bottom, sides, deck and bulkheads
were not changed. However, the thickness of the bulkhead

at the end of the section was reduced with a factor %.

The finite element model did not include a bhox beam on the
forward most bulkhead as shown in Figure A-2. As will be
shown later, these boxeg have little effect on the total
torsional response and their omission (or inclusion) does not
appear crucial.




The loads were applied uniformly as vertical forces
along the free end bulkhead. The torque applied to the
model was 5 x 103 1lbs. in. and the torque applied to the
prototype ship was 8.68x108 1bs. in. The loading applied on the
ship is 4.3 times the corresponding load applied on the
model after scaling. Thus, for comparison, the results
of the ship were divided by 4.3, and the stress sign is
reversed since loading signswere also reversed. In the
finite element analysis only one-half of the structure,
and the loading were used.

Figures A-3a through A-3j show the resulting stress
distribution from the finite element analysis of the model.

Figures A-ka through A-4j show the corresponding stress
results of the ship portion.
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Figure A-3b Shear Stresses at Section IV (Model Results)

Fig. A~3a and A-3b can be compared directly as the difference
in stresses is caused by the fact that the lengths of the
holds are not the same. However the stress distributions
correspond quite well. The term "Predicted distribution™

is used because the program gives averaged stress at the’
nodal points, and this is not correct when the stresses are
averaged over a closed and open section.
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Shear stresses over longitudinal cross section at transverse
Bhd.
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Figure A-3c. Shear Stresses At Bulkhead
Section I(Model Results)
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Figure A-3d. Shear Stresses At Bulkhead
& Section III(Model Results)

The very high peak in shear stress is caused by the
transverse box girder at the bulkhead. The stress
distribution along this girder will be drawn later.
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Shear stresses in transverse box at deck
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0f particular interest in this study was the warping
of the transverse box girder (Figures A-5a & A-5b). With
regard to these figures which show the normal stress
distribution,

1. The curves show a remarkable similarity with highest
stresses near the longitudinal box girder at the ship side.
This is expected because the box girder is restrained from
warping at the ship side, but free to move at the centerline.
Hence, there chould be no stresses at the centerline. The
calculated stresses are also relatively small. The error,
(difference from 0) is caused because the nodal point
stresses are averaged stresses.

2 The high difference in stresses at necdal points at the
3

cngitudinal box girder at the ship side is caused by the

AR A vWMd LI DUA o aT L LT Dada s ST “Gustu & L 4

averaging of stresses. Especially, the averaging of
stresses in transverse direction along the longitudinal
box girder tends to reduce the transverse stresses in the
bottom and top plating of the transverse girder.

3. An interesting investigation is to check the horizontal
deck displacement of the model and the ship, also taking
into account warping and displacement of the transverse
deck girder. Previously, the displacement and warping have
been discussed separately. The deflected shapes of the main
deck both for the model and the ship are drawn in Fig. A-6.
It is interesting to see the similarity of the two decks.
(Note that the direction of the deflection is changed for
the ship and adjustments were made for the model in order
to make the results comparable).

The transverse boxes have very little influence on the
torsional rigidity. This should indicate that the effect
of warping rigidity caused by the transverse deck-strip
is very little, and it is most correct to scale the model
according to free torsion. Previously it has been shown
by Roren that the influence of a thin deck strip is very
little. However, at the deck corners high warping stresses
in the transverse box girder were obtained. But because
of the large elements used in the calculation, a more
detailed study is necessary if the actual stress concentrated
effects are to be obtained.

Figures A-6b and A-6c show the computed measurements,
both vertical and horizontal, of the deck edge.
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The warping deformations at the free end of the
midship section were also compared. If the same angle of
twist exists over a comparable length of the ship and the
model, the warping at the end section should be to the
linear scale.

Hence it is necessary to multiply the obtained
ordinates with the factor.

4.3 x 50 x 2.54 = 547

To obtain comparable values on the model, when the displace-
mentsare multiplied by this factor (the numbers in paren-
thesis), the warping corresponds very well, aand the mcde’
pretty well represents the behavior of the ship in free
torsion, see Figure A-7.
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Comparisons were made of the angle of twist over the
section by measuring the deflections at the deck edge at

the forward most bulkhead.
The deflections of this point were:

vertical horizontal total distance
! deflection in em
(inches)
model 0.0198 0.023086 0.0304 (0.01197)
(0.0078) (0.0908)
ship 4.307 4.862 6.50 (2.559)
(1.698) (1.9142)

The distance from the .centerline at the keel to the deck
edge is 20.0" for the model and 984 in. for the ship.
Using these results, the total angles of twist become:

gme0-01297 _ o oo o

20 v

P |
LUl

. _8.50 -
¢p— z5sc = 2.57210 *rad.

The loading of the model was 4.3 times too small (as
discussed previously) and thus the corrected angle of twist
for the model for a comparable load is

dm= 2.57z 10° pad.

The values ofdp and ¢m theretore concide to 3 decimal _
places for this case of free torsion. Thus, the simplifi-
cations introduced in the model do not lead to differences
in twist deflections.

B. Bulkhead Structure.

In the bulkhead structure study a ship-like bulkhead
: was used (see Figure A-8a) and another representing those
i used in the model (Figure A-8b).
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Boundary conditions used in the calculations were as
follows. Along bulkhead at centerline the nodal points
were completely fixed in all directions. The rest of the
nodal points at the centerline were fixed in the vertical
and longitudinal direction, but were free to move in the
transverse direction. These boundary conditions were
required to take advantage of symmetry in the calculations.
To prevent the structure from rigid body rotation about
a vertical axis, one nodal point at the shipside was fixed
(the upper one on the bulkhead).

Calculations were made for two bulkheads, one similar
to the real one, and cne where the stiffeners were lumped
together. No material was "thrown away,” in the simplified
case, except for the stlffenlng plates inside the transverse
box 5;1 der. This would have no influence on the result,
since the box girder was very stiff in itself besides being
stiffened by these bulkheads.

A warping moment of 0.868x108 1bs. in. on the full scale ship
was applied by means of longitudinal forces applied to the
outer hull of the ship. The loading was introduced by
forces at the nodal points along the ship side. Referring
to Figure A-8a forces of 46737.9 1D. yere applied at nodes
78 and 64 and of *t46737.9 1b. were applied at nodes 36 and
50. Although these loads did nect correspond to any known
real situation, they were qualitatively correct and represented
a reasonable loading for comparison purposes. Figure A-8
shows that longitudinal deflections of the 'ship side caused
by this loading.
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Ship Bulkhead

Figure 8a.
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A further study of deflections compared the longitudinal
deflection at the inner bottom (Fig. A-10a), transverse
girder on the bulkhead (Fig. A-10b), the lower (Fig. A-10c)
and upper (Fig. A-10d4) plating on the transverse box
girder, and at the vertical girder (Fig. A-10e).
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Figure A-10d. Longitudinal deflection in the upper plating (main deck) of
transverse box girder.
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- Figure A<lCe. Longitudinal deflection at vertical girder 214.2 inches from
centerline.

It is interesting to see that the deflection of the real and
simplified bulkhead do not differ significantly, even if
the lumping of the stiffeners in the simplified case
is pretty rough. In general the displacement follows
the same pattern with the simplified bulkhead values a

little larger than those of the real bulkhead.

Results for the shear stresses in the bulkheads were
also analyzed (Fig. A-l1la through A-11d). All numbers
in ( ) refer to the simplified case. The curve is
dotted in this case. Nodal points are underlined. The
model simplifications lead to no significant differences.

As a result of these rather comprehensive finite
element calculations it can be concluded that the 1:50
scale model exhibits the same structural behavior as
the full scale ship. Differences do occur, of course,
but these appear to be relatively minor.
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STRUCTURAL TESTS OF SL-7 SHIP MODEL

APPENDIX B: TEST DATA

NORMALIZED STRESSES Dut TO

VERTICAL BENDING

(-} LARGE. B.M. MAY 26 ¢ JUNE 27, 1972
-1 % LARGE BM. JUNE 22,1972
) J» LARGE BIM, JUNE 19,1972
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R S 0 ] s S .
geu = i A ]
at" —l-ze 3 —-'rzo 4 -L—ﬂi-ﬁ —=i+= 30 -*Lw 2 'Jt‘“'z"l'?? 2" 258 :3-2“
220,18" >
850.82 84]8.5?_
- T ‘O"‘
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P 3394.08
3403 8A A
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14 3572
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FORCE x10”
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14
BENDING | — -
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“ iosN) T ///
14 -325725 | - >9%38p

Date of Experiment 29 March, 26 & 27 June 1972




f

B-3

T 10 30 :gs 62 TB 112 120 142 160

I / l 178 1914 210 226 zuz esa 2714 299 311

rﬂ

W2 FP LOA

\J\

A |
DD .[—.D Df‘i\r‘i'\

L]

fem 24" e 28.3“——-,oao.h"-|-— 28,8" —~f~— 3p," —-L 19.2" s 19-’-‘"*-*22.2"«'-' 27.58"-—3.2"
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SECTION 2'_‘ FORWARD OF FRAME 10

LONGITUDINAL STRESSES DUE TO LONGITUDINAL
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SECTION 2" FORWARD OF FRAME 142

" LONCITUDINAL STRESSES DUE 70
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SECTION 2" FORWARD OF FRAME |42
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SECTION 2" FORWARD QF FRAME 142

LONGITUDINAL STRESSES DUE TO
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BHD 10 (porT SIDE)

LONGITUDINAL BENDING MOMENT

GAGE LOCATION (=) LARGE (—)1/2 (LARGE) | {+)1/2 (LARGE)
R T | ot [ [T [ [ e | S WD
0 |1.97 49,568 3,606 0.727 | 25,739 | 1965 0.763 | 25,739 | 2037 0.791
| % ' % ‘
1 2.99 49,955 315.5 0.0682 | 25,940 | 203.5 0.785 | 25,940 | 68.5 0.026Y
8 12.25 50,471  |-18u8 -0.366 | 26,208 | -937 -0.358 26,20§ -1119 0,427
9 |2.06 43,858 |-3507 -0.703 | 25,890 |-1797 -0.694 | 25,890 2019 |-0.780
10 2.00 49,665 | -3352 -0.675{ 25,789 | =1702 -0,660] 25,789 { -1999 (-0,775
13 0.38 {41,990 | -5376 -1.280{ 21,804 | -2781 -1.275| 21,804 | -3096 [-1.u420
14 0.24 | 42,119 | -7335 -1.741] 21,871 | -3786 -1.731) 21,871 -4272 |-1.953

61-49



BHD &2 (PORT SIDE)

LONGITUDINAL BENDING MOMENT

GAGE LOCATION (—) LARGE {=)1/2 (LARGE} ¢ {+1/2 (LARGE)
Gﬁg_E Fw??‘ ,ft:F A?I ‘:EF LB slﬂn:e% L Nm}?ﬁ‘:})w EM sL{T?:E?Ls qunf{AéL_lf}ED (LB% -Trl) SL{?]I{:E?LS Noqri?a!..tf,en
15 g0.94 130,572 |-2313 -0.177 69,311 =-1170 —b.159 69,311 -1341 ~-0.193.
16 0.94 130,572 |-3294 -0.252 69,311 -1689 0.244 63,311 |-1866 ~0.269
17 2750 141,459 —5334 -0.1B65 75,080 -1134 -0-159 75,090 =1317 =0.175
18 i 2.47 141,364 | -34498 -0.247 75,039 -1791 -0.239 (75,039 -2001 -0.267
26 141,364 | ~428Y -0.303 75,039 —2226 -0.2987 (75,039 -2442 =-0.325
27 141,459 -2418. -0.171 75,090 -1257 -0.,167 75,090 ~1.398 -0.186

02-4
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LONGITUDINAL BENDING MOMENT

BHD 142 (PORT SIDE)

GAGE LOCATION (=) LARGE {(—=11/2 (LARGE} [ (+)1/2 [LARGE)
GAGE |FWD OF [AFY OF M LONGL Nunmuaz_ﬁ oM LONGL [NORMALIZED] o LONGL plm}mu;'zn
M. 1 : STRESS 01783} oW STRESS 1/IN7)
no. | PO | BN | wesik STRESS | T | uesiny () AT 1 usssi {psi x10~
30 |[2.53 298,506 | -2136 | -0.072 ]156,068 | -1107 {-0.071 |156,068| -1271 [-0.081
36 {2.25 297,126 | -u4086 | -0.138 {155,597 | -2097 |[-0.135 |[155,597| ~2319 |-0.1u9
38 |2.25 297,126 -6507 | ~0.219 |[155,597| -3342 |-0.215 |155,597] -3585 |[-0.230 | o
R
) [a%)
39 [2.16 296,837 -5100 | -0.172 | 155,uu45| -2620 |-0.169 | 155,445| -2871 | -0.185
42 0.94 | 286,874 -5604 | -0.195 | 150,228| -2%01 |-0.193 | 150,228| -3108 | -0.207

43 g.84 [ 287,195} -u4788 -0.167 150,386] -2481 -0.185 150,386| -2667 -0.177




LONGITUDINAL BENDING MOMENT

BHD 142 (STARBOARD)

GAGE LOCATION {(—) LARGE {=)1/2 (LARGE) | +)1/2 {LARGE)
Gﬁg.E Fw??| N?I:F Aﬂ | uBBs' -a:‘m SL(T?:E?S}LS NUIET?ET )ED u,sBs' -Tﬁ.} sL(T(:{E%Ls muqn‘:&g})m' HB%H‘m é{t’f‘?Ls Inmini:&l..l})ﬁ)
48 | 2.06 296,516 -2071 | -0.070 | 155,277| -1665 | -0.069 | 155,277] -1144% | -0.074
54 | 2.00 296,323 -u173 | -0.141 | 155,176| -2166 | -0.140 | 155,176} -2289 | -Q.1u8
56 | 2.09 296,612| -6315 | -0.213 | 155,328] -3285 | -0.211 | 155,328| -3489 | -0.225
57 |} 2.00 296,323| -4639 | -0.157 | 155,176| -2413 | -0.156 | 155,176f -2617 | -0.169

£¢-4



BHD 142 (Bottom)

LONGITUDINAL BENDING MOMENT

GAGE LOCATION {—) LARGE (—)/2 {LARGE} © H#)1/2 (LARGE)

TR | ot | 0 O ot | 9 T ot [V T
28 [2.19 296,933] 4113 0.139 155,496| 2181 | 0.140 155,496 2310 0.149
29 | 2.34 297,415] 5283 0.178 155,748 2775 | 0.178 I155,71+8 2832 0.182
47 | 2.22 297,030 5319 0.179 155,546 2766 | 0.178 155,546 2853 0.183
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LONGITUDINAL BENDING MOMENT

BHD 186 (PorT SIDE)

GAGE LOCATION (-} LARGE {=i1/2 {LARGE} U {+)1/2 {LARGE)

GAGE |FWOD OFAFT OF

no. | BHD | BHD | | BMG | STRESS

LONGL WNOF}W"A‘LI )ED

LONGL iNO MALI}ED ' LONGL INO MALI}ED
B.M. B.M.
(LBSHR) STRESS 1 I}'lll } {LBSANY STRESS 't'l/i )

LN {l {psi) x10~ {psi x10° {psi x10~
772 4,94 } 322,973 ] -1274 -0.039 170.247 | -689.9 [-0.039 170,247 | -707.8 | -0.042
78 4,88 | 322,963 ~5143 [0.159 170,248 | -2682 -0.158 170,248 { -2868 -0,168
81 4,53 | 322,900| ~7386 [0.229 170,254 | ~39u49 -0.232 170,254 [ -4183 -0.246 -
R
(o)
8Y 4.5% | 322,911 -7713 [-0.239 170,253 | -4068 -0.239 170,253 | -4376 -0.257
161 4.53 ] 322,900 5709 0.177 170,254 3012 0.177 170,254 3126 0.18uy

177 5.00) 322,984 3302 | 0.102 170,2u8 1746 0.103 170,246 1768 0.104




BHD 19y (STBD SIDE)

GAGE LOCATION (~] LARGE (-)1/2 {LARGE) | {—)1/2 [LARGE)
“ﬁﬁf F\t\;ﬁ4 N{g; AEEF (LBB§ -Tﬁ.) '_SL(T[:RSE:';LS lnoqnfﬁhl?z}m usas'?ﬁ;) sL{Tt:ﬁlEt:%Ls Inho{AflJL!llJz)eo (LBB§ ﬂ"m sl.ﬁﬁlEt:Ls mhoﬁlﬂi‘?ﬁ—
90 5.19 | 323,218 ~-1333 | -0.038 [170,2u3} -737,5 {-0,042 150.243 -789.1 [ -0.046
96 u.si 322,950] -7082 | -0.239 |170,249] -3790 [-0.223 [170,2u40] -3980 1-0.23Y4
125 4.56 | 322,906 | 10341 | 0.320 170,253] 3078 0.181 [170,253| 3162 0,186
141 5.16 | 323,012] 2730 [ 0.085 170,244 | 1457 0.086 170,244 | 1537 0.090

L2-4



LONGITUDINAL BENDING MOMENT

BHD 194 (moTTOM SHELL)

GAGE LOCATION {~} LARGE =)1/2 {LARGE)  H)1/2 [LARGE)
Gag.e Fw?% N{gF AFﬁ ’?E: (LaBs' -Trl.) si.?_l:ar:E?Ls TNUI}EO\{AS..I})ED usas' -Tﬁ.) s"ﬁr'xje?s:s WNUQT%L‘I ED (Lass' -Tﬁ.) SL(T?:E%L Wumﬂ:&i )ED
60 4,84 | 322,955] 5616 0.174 170,2ué 2962 0.174 170,249| 3085 0.181
66 4.78 | 322,945| 5974 0.185 | 170,250} 3132 0.184 170,250 3186 0.187
87 4.81| 322,950| 2842 0.088 | 170,249| 1477 0.087 170,249 1567 0.092
138 4.81| 322,950( 8458 0.262 | 170,249] 4568 0.268 170,249 5029 0.295

82-4
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LONGITUDINAL BENDING MOMENT

BHD 226 (PORT SIDE)

| W)1/2 (LARBE)

GAGE LOCATION (=) LARGE {=)1/2 (LARGE)
GGE.E F\l\%l?4 N§F AF{E';TI ﬁF {LB% —Tﬁ.) sL(T:A:E?Ls {Nm}nl:&t‘g]ﬁo m% -PfﬁJ sLlT[:,!::E?Ls INDI}E'I{AEL.I})ED! (LBBS- Plnﬁ.} sL{T?:Eti;Ls m'}“!:al:#)m
117 1.09| 289,024] -u4635 |-0.160 154,1387 -2484 | -0.161 | 154,138] -2619 -0.170
118 1.13| 289,167} -5757 {-0.19% [154,214 | -3072 | -0.199 | 154,214| -3273 -0.212
119 | 1.66 279,232 -4338 |-0.155 [1uB,916 | -2289 | -0.154 | 148,916 -2481 -0.167
BAD
120 | 1.59 279,481| -8169 |-0.292 |149,049 READING - 149,049 -3519 -0,236
121 1.07{ 289,024 -5031 |-0.174 154,138 | -2876 -0.174 | 154,138 -2859 ~0.185
122 1.13| 289,167 -9456 |-0.327 |154,21Y4 { -5025 -0.326 | 154,214 -5373 -0.348

0g-14




-

BHD 299 (poRT SIDE)

GAGE LOCATION {=) LARGE (=) 1/2 (LARGE) | 4+)1/2 {LARGE)
Gﬁﬁ‘ F%F AF?T' 'ﬁF A sL'Tl;n:E? L uunﬁLﬁz)sn . S’Lﬁ'{:f?ﬁ% wunqnﬁgj ED : L éﬁ{sfls_ﬁ\mq??gj?ﬁ
99 1.13 | 155,940 6492 | 0.u2u 81,248 | 3uss 0.425 | 81,248 | 3543 0.436

* %

100 0.63] 151,154 -1:0 0. 80,299 | 18.5 0.002 | 8o,299 |-109.6 { -0.01u
106 0.91| 152,154[-2370 -0.156 | 80,830 [-1257 ~0.156 | 80,830 [-1395 -0.173
108 0.91| 152,154 -3711 | -0.2ud4 | 80,830 [ -1947 ~0.241 80,836 ~2118 -0.262
109{0.88 145,759 -3699 | -0.254 | 77,433 | -1953 ~0.252 | 77,433 -2091 ~0.270
110 0.84| 151,904 -3469 | -0.228 | 80,697 | -1823 -0.226 | 80,697 | ~1947 -0.241
113 | 0.94 145,545 -3306 | -0.227 | 77,319 | ~1743 -0.225 | 77,319 | -1872 -0.242

Ig-8
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AL_BENDING

+ LATERAL BENDING AUGUST 21 1972
- -LATERAL BENDING) AUGUST 22,1972
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42 160 178 194 210 226 2k2 258 pqy 290 311

sh2 PP LOA

|
/ : 1
T e
le— 24" i 28.8-"—-_-4-20.’4"-1-—_28.8 —=p— 30," —---;19.2“'—-1 19-2"'L22.2"-0"—-' 27-58"""3.2"*—
‘ 220,18" -
R 850 | 850
850 |75 50
A A A A
PORTS
LOADS .
LBS
(L83) STBD/ ,
" * VY * " N o
75 850 850 [850
14| 850 [2253] as0
LATERAL
SHEAR,
FORCE
(LBYS)
x 102 i -850 -850
i2 -1700
67,830
16
Ls510
14 #3,350
LATERAL 480////
BENDING 12 24; 18870
MOMENT \\\\\\
(LBS-IN) .
x 104
¥ Tncludes a méchanical advdntage of pulleys.

2, by the

Date of Experiment 21 August 1972
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T 10 30 hs 62 78 112 120 142 160 17B 19& 210 226 zha 258 oTh 290 311 342 PP LOA

VAN ] il

I ] 1
UDDJQH¢_QL;U e
L—
e 24" e 28, 8“—-—-.-4-20.14" aa.e"—--L— 30,7 —-* 19 2"-|- 19.2" -Lza 2" -L 27. 53" —=i3,2"
-‘ 220,18"
* * ]
8 858850
¢7S A 50 A A8
PORT
LOADS
LBS
(183) sTep’
Voss Yost| Yss0 Y853
2 1700
LATERAL 4 850 850
SHEAR
FORCE
(LBS)
3
x 19 [ -850 9251 -850
LATERAL .
BENDING ! . 218
MOMENT -24480 \ 18,819
(LBS-IN) 14 43,350
x \O -5i,510
6
~-67,830

*Includes a mechanlcal advantage of 2, by the pulleys.

Date of Experiment 22 August 1972

e
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~ SECTION 2" FORWARD OF FRAME 10

LONGITUDINAL STRESSES DUE TO LATERAL BCNDING
NO. OF ROSETTES - 3(i25 RA)

SINGLE GAGES- 6(250 BG)
DATE OF EXPERIMENT AUG. 21¢22, 1972

SCALE OF STRESS
0 5 . _IKS

| T

) + BM.
v - (-Bm)

LOOKING |,
FORWARD

Fin.
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SECT!ON AT HATCH CORNER
PORT SIDE FRAME 62

LONG!TUD.INAL STRESSES DUE TO LATERAL BENDING

GAGE 15,16,17,&
18 ARE NOT

SHOWN IN THIS
VIEW. THEY ARE
LOCATED ON THE
OUTBOARD SIDE

Of THE SHELL PLATE.

NO. OF ROSETTES
-{{250 RA)

SINGLE GAGES

-10{250 BG)
DATE OF EXPERIMENT

Ors —=1 80O

T
-

._.l,{.__.l.-l
--..\

LOOKING OUTBOARD
SHELL ' PLATE

i—-—_—26—7—o
2770
a
Sl
5o

LOOKING OUTBOARD
TORSION  BOX

FiG. 2

AUG. 21t 22,1972
SCALE OF STRESS
0 5 IKSI
== i =
[0} + BM.
v - (-BM)
FWD ——>~
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'SECTION 5.4" FORWARD OF FRAME

SHEAR STRESS DUE TO LATERAL BENDING

NO. OF ROSETTES - 2(i25 RA)
- 4(250 RA)
SINGLE GAGES - (250 B8G)

DATE OF EXPERIMENT AUG2(i22,1972

SCALE OF STRESS
0 5 —_IKS

t X
[ o |
I

o tBM
v - ~BM)

165
164 163 162 |

|56>| 159 '
55— | @ 150
G- BAD

LOOKING FORWARD

\\
S

152 ({
)

~
o
o

|
(5

e BT

: : 151
e§
|‘9 35

Filg. 3~

78




B-38

SECTION 2" FORWARD OF FRAME 142

LOCATION OF GAGES
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SECTION 2" FOR

WARD OF FRAME 142

LONGITUDINAL STRESSES DUE TO LATERAL BENDING

NO. OF ROSETTES -4 (125 RA)
-2 (250 RA)
SINGLE GAGES- 2(250 BG)

DATE OF EXPERIMENT- AUG, 21¢22,1972

SCALE OF STRESS

1
' 0 5 | K¢
, o — _ = : ==
o 38t '*"—_.43"“——-@\
\Ov—sg%!\m F="2__1 5 o +BM
| . 40 v -(-BM)
<— FWD 39 38
: — 42 40> |
39 41
4,0 \f\c 4|
36 o 36— | — 37

o e e— e m— o mv

fer . —— e — e ——— —

So 1— 44
3|7I l\45
46

LOOKING —

FORWARD
29

FIG. Axn
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SECTION 2" FORWARD OF FRAME 142

LONGITUDINAL STRESSES DUE TO LATERAL BENDING

NO. OF ROSETTES - 4 (125 RA)
- 2 (250 RA)
SINGLE GAGES.- 9 (250 BG) °

DATE OF EXPERIMENT AUG.21i22, 1972
SCALE OF STRESS - -

C_ 5 1KSI i
— t 1 "
. ok —— L
o +BM - =56 /O—-v
v - (-BM) VA T —
| 58
. 5T . : FWD ———
56
o <53 59/5]8\57
59 .
+ 7 -
55—— ——54 +—54———D0
L . T T L
N
o |
Trear TR i
27 53] 35 ° o 33 “°
T
o |
—_— I ——, —|-— _ —————_—— —_—
I
I
|
| }/
LOOKING ___f*_—___f””"
7 FORWARD ——
47

Fig. 4 b
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SECTION 2" FORWARD OF FRAME 142

LONGITUDINAL STRESSES DUE TO LATERAL BENDING

NO. OF ROSETTES - 4 (125 RA)
. -2(250 RA)
SINGLLE GAGES - 9 (250 BG)
DATE OF EXPERIMENT AUG.2K22 ,1972

SCALE OF STRESS
9 e __I Sl o *BM,

Q 7 — | v - (-B.M) /

< ——

|29 . 23’- , .47[

" LOOKING FORWARD

!
|
l .
_ 4 BHD 142, |

1]29

a7

|
|
|
|
-
!
{
|
|
i
]

BOTTOM PLATE
Fia. 4.



GAGES 169,170,
I71,8 172 ARE
NOT SHOWN iN
THIS
THEY ARE LOCATED
ON THE OUTBOARD

SECTION AT HATCH CORNER
PORT SIDE FREME 178

LONGITUDINAL STRESSES DUE TO LATERAL BENDING
: GAGES 131,132, 83173
ARE NHOT SHOVN,
THEY ARE L.OCATLED NQ. OF ROSETTES
ON THRE AFTER
il S -1(250 RA)
CORNER CORRESPORDING SINGLE GAGES

TO 133, 134, & 175 )
RESPECTIVELY. - 12(250 BG)

DATE OF EXPERIMENT
AUG. 21E22 ,1972

SCALE OF STRESS

/ T 2 "1l o
[ . f I —

0 h

QN L

VIEW.

SIDE OF THE SHELL PLATE. o tBM
v - (-B.M)
: ‘ :70—7"[——i?2 _ /‘a
\or 169 t==17] ©
LOOKING OUTBOARD —3>= FWD
SHELL PLATE
Cfr‘—"——wfxf—‘i\* — 176 /O‘
G#/_______.WIB:_, l—!=='—175--———————-@
Qi
oI~
LOOKING OUTBOARD — = FWD

TORSION BOX



B-43 -

SECTION BETWEEN FRAMES

194

178 &

LOCATION OF GAGES
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SECTION BETWEEN FRAMES 178 & iS4

LONGITUDIRAL STR'ESSES DUE TO LATERAL BENDING

SINGLE GAGES - 2(250 BG)
NO, OF ROSETTES - 4(i125 RA)
- 12(250 R’A)

DATE OF EXPERIMENT AUG 21¢22,1972

SCALE OF STRESS
0 5 TKSI

I
I

o T B.M..
v - (-B.M))

85
(NP

ol
=l

a Pz
g2

<— FWD , ' . 81 86
' 82— 85
01/4:\83 ' 33:><i 84
o
) 79 80

73\\J///-‘

+ 2

73 74l- _ o / 2% 74 |77 76
A\ o N

72 \ .72 5
N E R 179 |
178\ [179 176
77—} _ od 77 1
L / 70 6%
ol— /" LOOKING X
ee;ﬁ o FORWARD” 63
677 &a ) GT;it

;'. ! (J ‘r‘ (‘:‘
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SECTION BETWEEN FRAMES 178 & 194

LONGITUDINAL STRESSES DUE TO LATERAL BENDING

SINGLE GAGES - 2(250 EG)
NO. OF ROSETTES - 4(I25 RA)
-12(250 RA)

DATE OF EXPERIMENT AUG.2122, 1972
SCALE OF STRESS

0 5 1 KSI
e tBM
v - (-BM) | | 98,/ o6 P
97
' 96 . FWD ~—~
o7
{QB | | 98/]}95 .
.94_95[92 o E 92 o
93_N + M—éo A .I/go : /J
4 ——
] |Z'43 141 /142 /L
143 —4s_____
/
o L /.
t— 125 ——7
89 \125 ‘I_GT“’
88 \ae

FlG., &4
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SECTION BETWEEN FRAMES 178 & I94

LONGITUDINAL STRESSES DUE TO LATERAL BENDING
SINGLE GAGES- 2(250 DG)
NO. OF ROSETTES - 4(i25 RA)
| - 12(250 RA)
DATE OF EXPERIMENT AUG 2i22,1972

SCALE OF STRESS

Q 5 | KSI ‘ |
' " ’ o +BM.
. 70\6'9 64 \GI?J v - {-BM)
77— . 65 —
/\ U 1 {_//\ 125
&8 t : 89 h
1GI 62 40
677s|s GIZ 139 Bsze?
. 60 138

140
' 139'//1:33

1 ' ] ’ e
BOTTOM PLATE

<—— FWD
o

5
4
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SECTION BETWEEN FRM#‘ES 78 & (94

LONGITUDINAL STRESSES DUE TO LATERAL BENDING
SINGLE GAGES - 2(250 BG)
NO. OF ROSETTES - 4(125 RA)

-12{250 RA)

DATE OF EXPEPIN‘"NT AUG. 21¢22,1872

SCALE OF STRESS
O .5 _ _ IKsl
i L i @ + BM.

70 69 6a . 63 | v -(-BM.)
\nll os

. FWD —

! ::ﬂ N ' | 88
66 6175 139 “ 30

—— . e Smmk Wy v sws cEma e mEm e wem e s s s

“TANK TOP
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SECTION BETWEEN FRAMES

178 & 194

_DUE TO LATERAL BENDING

SHEAR STRESSES

OF STRESS

SCALE

| KS!

Cevind0d ONIX0OT
02

o+ BM
v-(-BM)

i8 get 9 e9
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SECTION AT HATCH CORNER
PORT SIDE FRAME 226

LONGITUDINAL  STRESSES DUE TO LATERAL BENDING

GAGES HT, 118, H9,120, NO. OF ROSETTES
& (2] ARE NOT SHOWN - {250 RA)

IN Tj:;st {f&{;‘zzs SINGLE GAGES
- 10(250 BG)

DATE OF EXPERIMENT
AUG 21622 ,1972
SCALE OF STRESS

0 5 |

F i i
O + BM.
v- (- BM)

LOOKING OUTEOARD
SHELL PLATE —> FWD

& 22—+

\

Op———— 2=+

Oy O
T (N
[aV]

m

LOOKING. OUTBOARD

TORSION BOX
o Fig B
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SECTION 1" AFT OF FRAWME 290

LONGITUDINAL STRESSES DUE TO LATERAL BENDING

NO. OF ROSETTES -2(250 RA)
- (125 RA)

SINGLLE GAGES - 6(250 BG)
DATE OF EXPERIVENT
AUG 2li22,1972

- 8CALE OF STRESS
12 O 5 1K
© + BM.
v -{(-BMm)
o |%Im|n
109 _ —= -2
106__]
_____ .
i
=
|
IR
10
|
e — o — _i_a.
("))
| od
|D
T
| @
_____ __i. -t
| & . _
99— ’ 99[
LOOKING
FORWARD

F1. 9
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+ LATERAL BM,
AUG. 21422

—_——

+ AT BM. D>
- FLAT BM)e=D

BED.

B-53

oA

Q

O‘?}OPT

SO

L RUN NO. J

[ NTT—
MODEL DEFLECTION FROM THE
NO-LOAD GONDITION, IN INCHES

25 0.00 - 0. 0Ol 0.001 0.00
T 0.002 - 0. 0OL o. 001 -0.001l
"o.oo -p.00b 0.0006 6.00
290 6.002 -0.008 o.008 -0 004
- 0.00L ~0.01l oL o1l +0.00L
226 + 0,000 - 5.0 0.0 —0.003
~-0.60% ~0.010 0. o\ +6.008
. 142 +0.00! -p.o\0 0.0 -0.0072,
_ T ~0.001\ - 0,007 0.0 07 +0.008&
96 + 000t - 0.008 0.008 0,007
0.00 - 0,002 0.007%. *0.005
: IO 6.00 ~0.00} .00 ~0.002

EQUIVALENT DEFLECTIONS Or

FULL SCALE SHIP, IN INCHES.

0.00 -~0.05% 0. 0% .00
342 .10 -0.D 0.05 -0.05
290 600 . -5.30 0.%0 O.00

o5 - 0.40 0. 40 -0.20

(){\’/\ -D.\0 —-0.58 055 +D-lD
£20 +0.10 ~0.55 ©.55 L TDAS
2 -0 10 ~-0.50 0.50 +0.2.5
lﬁf +0.05 ~-0.50 C0.50 —D. 1D
9 -0.08 -0.3S 0.28 + 040
6 L10.0% ~0.40 040 -0.\6
6.00 -0, 10 D10 +00LS

I O I ate] —~ ~ a o - 1o
P bt bl Y & e ] 0D -0 10




HORIZONTAL MCDEL DEFLECTION (IN.)

HORZ. : —  HLAT. B.M, Aug. 21,1972
MODEL
DEFLECT, - ——-—~ -(-LAT. B.M,) Aug. 22,1972
(IN.)
025 |
STBD
Q — + 4+ + 4 ::_:_—‘ +
APIO —————— T =" 3hp FP FRAME
PORT 96 142 226 290 NO.
-.025 |

¥5-4



VERT

MODEL

DEFLE
(IN.

-

1

[

~——

0257

_0025 b

VERTICAL MODEL DEFLECTIONS (IN.)

+ LAT, B.M. Aug. 21,1972
-_—— - ={" LAT. B.M.}J%Lg 2251—9?2
STBD PORT

e 4 _

e e e A e e O T — =F —_—— = — ——
; ) = T T Cen FRAME
AP 10 96 142 226 290 grpp/ 342 FP NO.
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SECTION 2" FORWARD OF FRAME 10

LONGITUDINAL STRESSES DUE TO MIDSHIP SHEAR
NO. OF ROSETTES - 3(125 RA)

SINGLE GAGES - 6(250 BG)
DATE OF EXPERIMENT JULY 6il1,1972

SCALE OF STRESS
o .3 6 KS|
e o + SHEAR

v -(-SHEAR)

LOOKING
FORWARD

FIGURE |
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SECTION 5.4" FORWARD OF FRANME 78

SHEAR STRESS DUE TO MIDSHIP SHEAR

NO. OF ROSETTES - 2(125 RA)
- 4(250 RA)
SINGLE = GAGEES - 1(250 BG)

DATE OF EXPERIMENT JULY 641,172
SCALE OF STRESS
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NO. OF ROSETTES - 4 (250 RA)

- 2 (125 RA)
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SECTION 2" FORWARD OF FRAME 142

LONGITUDINAL STRESSES DUE TO MIDSHIP .SHEAR

NO. OF ROSETTES -4(125 RA)
-2 {250 RA)
SINGLE GAGES~ 9 (250 BG)

DATE OF EXPERIMENT JULY 6¢11,1972

! SCALE OF STRESS
: 0o 5 gKs
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FIGURE 4
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SECTION 2" FORWARD OF FRAME 142

LONGITUDINAL STRESSES DULE TO MIDSHIP SHEAR

NO. OF ROSETTES - 4 (125 RA)
- 2 (250 RA)
SINGLE GAGES - 9 (250 BG)

DATE OF EXPERIMENT JULY 6é11, 1972
SCALE OF BTRESS
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FIGURE 4b
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SECTION 2" FORWARD OF FRAME 142

LONGITUDINAL STRESSES DUE TO MIDSHIP SHEAR

NO. OF ROSETTES - 4{I25 RA)
- 2(250 RA)
SINGLE GAGES - 9(250 BG)

DATE OF EXPERIMENT JULY &%11,1972
SCALE OF STRESS
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|29 28| _ 47|
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| FIGURE 4c



" SECTION AT HATCH CORNER
PORT SIDE FRAME 178

LONGITUDINAL STRESSES DUE TO MIDSHIP SHEAR
GAGES 131,132, 8 173

ARE MOT SHOWN.
THEY ARE LOCATED NO. OF ROSETTES
ON THE AFTER

CORMER  CORRESPORDING ~1(250 RA)

TO 133,134, & 175 SINGILE  GAGES

RESPECTIVELY, -12(250 DG)

DATE OF EXPCRIVENT
JULY 6411 ,1972

GAGES 169,170,
17L& (T2 ARE SCALLE OF STRESS
O ”3 j&'::i:g l<8|

.4)/
NOT SHOWN IN ' _ J , > S
THIS VIEW. ' )
THEY ARE LOGATED Q§$3 _
ON THE QUTBOARD

@ + SHEAR
SIDE OF THE SHELL PLATE. :

Vv -(-SHEAR)
'lf@ifa" Tﬁ?ﬂrz
i69 Vi 7 7
LOOKING OUTBOARD —>= FWD
SHELL PLATE ‘
!?4;77‘ Tjﬁﬂra
1730=] hv-175
2l
&l |
LOOKING OQUTBOQARD —= FWD

TORSION BOX

FIGURE &
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SECTION BETWEEN FRAMES

194

176 &

LOCATION OF GAGES
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f SECTION BETWEEN FRAMES

LOMGITUDINAL STRESSES DUE TO MIDSHIF

SHEAR
SINGLLE CAGES - 2(250 BG)
NO. OF RCSETTES - 4(125 RA)
- 12(250 RA)
DATE OF EXPERIMENT JULY 6411,1972
SCALE OF STRiESS
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FIGURE 6 g
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SECTION BETWEEN FRAMES 178 & IS

LONGITUDINAL STRESSES DUE TO MIDSHIP SHEAR

SINGLE GACES - 2(250 BG)

NO. OF ROSETTES - 4(125 RA)
-12(250 RA)

DATE OF EXPERIMENT JULY 6¢11, 1972

SCALE OF STRESS
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FIGURE 6b
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SECTION BETWEEN FRAMES 178 & 194

FWD

-

LONGITURINAL  STRESSES DUE TO MIDSHIP SHEAR
SINGLLE  GAGES - 2(250 BG)
NO., OF ROSETTES - 4(i125 RA)

- 12(250 RA)

DATE OF EXPERIMENT JULY B411,1972

SCALE CF STRESS
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FIGURE 6¢
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SECTION BETWEEN FRAMES 178 & 124

LONGITUDINAL - STRESSES DUE TO MIDSHIP SHEAR
SINGLE GAGES - 2(250 BG)
NO. OF RCSETTES - 4(125 RA}

- -12(250 RA)

DATE OF EXPERIMENT JULY.6411 ,1972
SCALE OF STRESS
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SECTION AT HATCH CORNER
PORT SIDE FRAME 226

LONG!TUDINAL STRESSES DUE TO MIDSHIP SHEAR

7 PR

GAGES 117, 110,119,120,  NO. OF ROSETTES
& 121 ARE NOT SHOWH _1(250 |"\)‘{‘)

IN THIS VIEW, THEY SINGLE GAGES

ARE LOCATED AS _
- 50 BG)
SHOV/I Il [0(250 BG)

OTHER VIEWS.

DATE OF EXPERIMENT
JULY 6ill,1972
SCALE OF STRESS
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FIGURE B8
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SECTION 1" AFT OF FRANE 250

L.OI\‘GITUDINAL STRESSES DUE' TO MIDSHIP SHEAR

NO. OF ROSETTES - 2(250 RA)
- 1(125 RA)
SINGLE GAGES - 6(250 BG)

DATE OF. EXPERIAENT
JULY &1 1972

SCALE OF S$TREESS
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TORSION

| +LARGE TORQUE JULY I8

2 -(-LARGE TORQUE) JULY 24
3 2(+),LARGE TORQUE) AUG |

| "4 -2(-)LARGE TORQUE) JULY 3|
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30 ns 62 78 g6 112 120 1“2 160 178 19h 210 226 aue 258 27h 250 311

| | L1/

77 T
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B@L,J,LA,»/ ]
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E-lczze «l—-z'r 58"

-3, 2"
220,18
69)c4" 530 550" 558 5%0* 4%5‘ 428 28*0.36*,
PORT?
LoADS
(LBS) sTBD/ \L
* Y
69l64" 5507550 530 550 4J§‘ 425 28036
10 93 000
63,300 &3, 390
TORSIONAL £
MOMENT 33600 39,50
(LBS- m) 15 70p
x 1ot 3900
o
colea™ 5307530° 53507 580* 425 425* 280.56*
4 A 4
LOAD PORTH
(LBS) 3
STBD !L
* * * ¥ 4 * %* * * *
6964 530 530 530 5%0 425 425 28036
0
TORSIONAL 73900 -15,790
-33,600 —
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* Includes a mechanical advantage of 2, by the pulleys

Date of Experiment 18 & 24 July 1972
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Q
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o .
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%* Includes a mechanical advantage of 2, by the pulleys.

Date of Experiment 1 August § 31 July 1972
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sr—:c ION 2" FORWARD OF’ FRAME 10
LONGITUDINAL STRESSES CUE TO TORSION

NO. OF ROSETTES - 3(!25 RA)

SINGLE GAGES - 6(250 BG)
DATE OF EXPERIMENT- JULY%I—\UG ' '97.2

SCALE OF STRESS
o__ .3 _ _ 6Kl

-

0 +LARGE

¥ —(~LARGE)
o z#@LARGa
-&zmma

LOOKING
FORWARD

1o

FIGURE |



SECTION AT HA%CH CORNER

PORT SIDE FRAME 62

ALONGITUDINAL STRESSES DUE TO TORSION

GAGE 15,16,17,8
18 ARE NOT
SHOWN IN THIS

VIEW, THEY ARE 7Nl
LOCATED ON THE 0" .

WO A
OUTBOARD SIDE © | g

OF THE SHELL PLATE.

G

NO. OF ROSETTES
-1(250 RA)

SINGLE GAGES
-10(250 BG)

.~ DATE OF EXPERIMENT

JULY¢AUG, 1972
SCALE OF STRESS

0 3 6 KSI
I@ ¥ ‘ |
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o 2(+‘/2u\ RGE)
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o
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@—f— 27
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©

R 1 4]
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TORSION BOX

FIGURE 2
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SECTION 5.4" FORWARD OF
éHEAR STRESS DUE TO TORSION
NO. OF ROSETTES - 2(125 RA)

- 4(250 RA)
SINGLE GAGES - 1(25C BG)

DATE OF EXPERIMENT JULY%AUG,I972

SCALE OF STRESS
0 3 6 KSI
mﬁ

i 165
164 163 162 |

TN
185,

LOOKING FORWARD

FRAME 78

o +LARGE
v - LARGE)
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" FIGURE 3
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SECTION 2" FORWARD OF FRAME (42

LOCATION OF GAGES
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SECTION 2" FORWARD OF FRAME 142

LONGITUDINAL STRESSES DUE TO TORSION
NO. OF ROSETTES -4 (125 RA)
| -2 (250 RA)
SINGLE GAGES- 9 (250 BG)
DATE OF EXPERIMENT JULY{AUG ,I972 . Kt
Q 3 _.5
: SCALE OF STRESS'_
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= | 3Gt =43 25D
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. 29

" FIGURE 4 a
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SEC""!ON 2" FORWARD OF FPAPM. 142

LONGITUDINAL STRESSES DUE TO TORSION

NO. OF ROSETTES - 4 (I25 RA)
- 2 (250 RA)

SINGLE GAGES - 9 (2£0 BG)
DATE OF EXPERIMENT JULY%AUG , 1972
SCALE OF STRESS
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FIGURE 4b



B-90

SECTION 2" FORWARD OF FRAME 4

LONGITUDINAL STRESSES DUE TO TORSION

NO. OF ROSETTES - 4 (125 RA)
- 2(250 RA)
SINGLE GAGES - 9 (250 BG)

DATE OF EXPERIMENT JULY ¢ AUG , 1972

" SCALE OF STRESS
O o G KSi

\

18]

2

tLARGE
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|29 2a|
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SECTION AT HATCH CORNER

PORT SIDE FRAME 178

- LONGITUDINAL STRESSES DUE TO TORSION

GAGES 169,170,
I71,8 172 ARE
NOT SHOWN IN
THIS VIEW.,

THEY ARE LOCATED V(g
ON THE OUTBOARD ©' N
SIDE OF THE SHELL PLATE.

GAGES i3i,i32,& i73
ARE NOT SHOWN,

THEY ARE LOCATED NO. OF ROSETTES
ON THE AFTER -1{250 RA)

CORNER CORRESPOMDING
TO 133, 134, & 175 SINGLE GAGES

RESPECTIVELY, ~12(250 BG)

DATE OF EXPERIMENT
JULYLAUG ,1972

SCALE OF STRESS
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SECTION BETWEEN FRAMES

o
$4
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SECTION BETWEEN FRAMES 178 & lo4

LONGITUDI.NA‘L 'STRESSES DUE TO TORSION

SINGLE GAGES - 2(250 BG)
NO. OF ROSETTES - 4(125 RA)

- 12(250 RA)
DATE OF EXPERIMENT JULYfAUG 1972
oA © +LARGE
. SCALE OF STRESS - (- LARGE
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SECTION BETWEEN FRAMES 178 & 194

LONGITUDINAL STRESSES DUE TO TORSION

SINGLE GAGES - 2(250 BG)
NO. OF ROSETTES - 4(125 RA)
-12(250 RA)

DATE OF EXPERIMENT JULY:AUG , 1972
SCALE OF STRESS ‘
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SECTION BETWEEN FRAMES 178 & 04

LONGITUDINAL STRESSES DUE TO TORSION

SINGLE GAGES- 2(250 BG)

NO. OF ROSETTES - 4(I25 RA)
- 12(250 RA) O *LARGE
A -(-LARGE)

DATE OF EXPERIMENT JULYAUG,I972 o 20t} LARGE)
' o -2(-',;2 LARGE)
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SECTION BETWEEN FRAMES 78 & IS4

LONGITUDINAL STRESSES DUE- TO TORSION
SINGLE GAGES - 2(250U BG) '

NO. OF ROSETTES - 4(I25 RA) o  +LARGE
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SECTION AT HATCH CORNER
PORT SiDE FRAME 226

LONGITUDINAL  STRESSES DUE TO TORSION

GAGES 17, !18,119,120, NO. OF ROSETTES
8 121 ARE NOT SHOWN

ARE LOCATED as OINGLE GAGES

- 10(250 BG)

DATE OF EXPERIMENT
JULY € AUG 1972

SCALE OF STRESS
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JULYAUG,1972

TORSION

B-102

. BHD.
: T T f
NO-LOAD CONDITION, IN INCHES.
L
h g B3N — y-&o.oa- - Q.00 4+ 0.0\b - 0.04£2
- (= LAREEY e +0.046 -p.00% ¥ 0.0 — 0.t
1 (H/ waneey 342 +0.0%0 ~0.006b 0.0\ - 5.0 Ak
-7 {~'r LaReE) +6. 0406 - 0.002 + 0. 0iB - 0.044
4 6.004 - + 0 1T.S - 0.2,
40, 113 G pily e G o, o - 0.%o
290 0. V08 —-8.V2O L 0.1 - 0.1
*D. 10O -0 130 + o - e.l4
+ 0.016 -0,0L + 0.0k -5.0497
“ 0.047 -0.0'% + 0,047 -0, 08k
?26 + 0,074 0.0 & + 0. 018 ~o.049%
- ¥ 0.047 — a, 02 * 0.08 ~-0.0%2
0,616 ~0.C3 0.0k I ~o.022
+0.03L +0.05 -5 0357 - 0.016
I 2 40014 +o0.056 -0.0 5% -0 . 032
ro. D3 4+ 9.058 -0.0 £6 -0.932 |
+p.0cS * Oop4s (F0.05 D, - c.ony
+0.0 1L + 0.0%% -6 O4n —o.0\veL
+0.002 + o.0%2 -0, 044 ~o.Cle
+ 0.0L6 + 0.0%4 - 5. G444 - 1. 2k
-06.00% 4 0.013 -0.019 -£.000
R +8.0'8 -o.onB +o.col
|O - 0,004 + .01k -p.061Q - p.0c8
4+ 5. 014 4+ 6.01% - 0. 0\VE - 6.007%

: i
EQUIVALENT DEFLECTIONS OF

A Talnin
FULL SCALE SHIP, IN INCHES.
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+1.30 -0.1% x0.10 -z.18
34‘2 *2.00 -o- %o +o. 80 -2.20
4 1.3 ~-&.10 + ¢.40 -
t4d.To ~ LD +6.15 -5.60
L1 +1.55 -2+ .00
290 +5.00 -bh.00 +6.10 - 5.0
L5006 - 4.50 + L.le ~ S50
1340 -0.L0 o Bo _4.&_,‘5
2 +d 65 ~0.48 +p.88 =420
+3.To -¢.70 Lp.40 4.0
+ 4.0 ~0.bD +8.90 -4 by
+o.€p ALB5 -2-8c -lte
4\.Lo 1.0 -2.8% -1.25
142 +0.70 47.@0 -1.1D -l. Lo
+1.70 «~1 Ao - 8c =\e0
+6.15 +l.20 +1.85 ~leg
+y.10 +1.%0 T Lo -o.ko
96 y0.10 ¥L.\0 -r.ro -l.00
+ .20 T 1o -1 1o -¢.40
-0,\G + 00 —-0.95 -0.45
10.55 *o-b0 ~p.q0 +6.05
lo -0. Lo r 0. R0 -6. 40 -0.%0
+ 0,70 + 0.%0 -0 .90 -
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+ LARGE TORQUE 1 July 18,1972

~ — —— =~(- LARGE TORQUE)2 July 2%,1972

- ~2(-1/2 LARGE TORQUE)
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LATERAL BENDING + TORSION

RIS e vy

| [(+LONG *LAT,+TOR) - (+ LONG,, - LAT,'—TOR.)%

| OCTOBER30 ¢ NGVEMBE K (7.1972
- 2 *LATCRAL BENDING +TORSION OCTOBER 5, 1972
3 +LATERAL BENDING, +TORSION CCTORBER {11972
4 -(-LATERAL BENDING,-TORSION) SEPTEMBER 251972
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VAR

112 120 142 1860 3

S|

o

78 19u 210 226 2h2 258 o7h pgo 311 342 FP LOA

T

DDrlE

—ooe

.-—-21l“~j-—28 a"——lvzoh -I-eae —

LATERAL
LOADS
(LBS)

LATERAL
SHEAR
FORCE
(LBS)
® {or

LATERAL

BENDING

MOMENT
(LBS-IN)
x |o%

VERTICAL
LOADS

(LBS)

VERTICAL
SHEAR
FORCE

(Les)xjo*

VERTICAL
PENDING

MOMENT
(LBS-IN)

x o4

- 1, ;
"afe02,2" < 27.58" —mq 2n i

660,36

¢éo

v o o

/

850

45 18?.44*2'18.46‘ 517,

285 319.7°

Lh

D45 28946 23846" 1T

%
b0, 3G

2437 30.12"

Q

oo

| 38,627

Date of Experiment

30 October 1972

o.x

12
TORSIONAL
MOME NT
(LBS-IN)

¥ Includes a mechanical advantage of 2, by the pulleys.
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1"2 160 178 19!4 210 226 2142 258 271, 290

311

342 FP LOA

LATERAL
LOADS

(LBS)

LATERAL
SHEAR
FORCE
(LBS)
¥ 1ot

LATERAL
BENDING
MOMENT

(LBS-IN) =10

VERTICAL
LOADS

(LBS)

VERTICAL
SHEAR
FORCE

(LBS)
* 0%

VERTICAL
BENDING
MOMENT
(LBS-IN) x 10%

*

Includes a mechanical advantage of 2,

41

3.2"

Date of Experiment

by the pulleys.
17 November 1972

TORSIONAL
MOMENT
(L.BE:-\N}“.O“

T T
rj?ﬁ_=ﬂﬁfﬂ7ﬂﬂﬂﬂgﬁﬁﬁ“hw\
fl 1 4
R
le 24 -.--—as ar ——[-—20 4" -|-—28 gt —-J—- 30." ——ng 2" ~l—19 2"nle22,2" s 27.58" -
220,18"
ccd»s* Bsor
PoRrT
sTBD/
660,38 * 830
850.
.r8 .
o .
e S AAIES] |
[o] ""__,-"
“‘*-,“ _’,—""
-5 SIRATe)
44045 28346:238.44 1722 530" 3(343%30.12%22.72"
PORT> { !
step/
245" (8T4613840° 517227 \342Ti29.8573T97F 425.7
5| 298 500
s}
8 -x342_79z-4¢142
Y 36,062
25243
| ] o
-o 0
- =12873 ]
12873
2571501 - -25,750
>8,627 ~51,505 38621 s
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30 46 62 78 o 112 120 142 160 178 194 210 226 242 258 o7h 290

EyEEEEEEs

311 342 FP LOA

'. 24" e 28,87 —=e- 204" 28.8" —=f=— 30.” ——L 19-2"'1‘19'2"--»22.2"'{" 27.58" ~+{3.2"
220.18"

T
|
|
|

?UWWHWB

L

||
m
o= ==

c60oL3e* 850
LATERAL PORT
LOADS
(LBS) sTap/
66Ool38* g%o*
60|28
L ATERAL ¢
SHEAR
FORCE
(LJbS)xlcf‘ 3
51,519 -850
LATERAL 5
AAC)N\EIQ'T* o
(LBS-IN)x|O
22976 2525%292.5% 25p.5% 252522 94* 249,96
VERTICAL & PORT;* 4
LOADS .
(LBS) srbo)# T- T
22990% 25)2.5%252.8% 2525 2.5%22994*129.94* 229.9C*
5 SIISCDS
38,627 38,6
ToR31ONAL 25750 ,
(LBS-IN)
*lC)+ o

¥ Includes a mechanical advantage of 2, by the pulleys.

Date of Experiment

5 &€ 11 October 19772
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30 46 62 78 g6 112 120 1112 160

| 1

B-

1/

111

178 1914 210 226 ak2 258 27:4 290 311

342 PP LOA

1

LATERAL
LOADS
(LBS)

LATERAL
SHEAR
FORCE

(LBS)~|0*

LATERAL
BENDING
MOMENT

(Las-IN) = 1O

VERTICAL
LOADS
(LBS)

TORSIONAL
MOMENT
(LBS-IN)

4‘.

7 H .}7 mww HBDm\m\
— RN
_ 4 L
2u” "l"* 28,8" 20-'4"-1- 28.8" —apu— 30." —ae 19.2" v 192" ke 22, 2" oo 27.58" —el3 2"
' 220,18" -
(eol38* 8bo*
PORT?
sTep/
¢6038% 850, *
850.
-8
iy
I3
—¢60|38
T o]
-5 ~S1,510
229.9¢  2525%2525°  250.5%  2502.522994%24994 229,96 *
PorTY + +
sTBD/
22976 25025%2825% 25R25%  252.5%2299422994%279.9¢ *
0
-12.871% -12,873
=38, 627 ~38 627
5 ~51,510

X |o+

* Includes a mechanical advantage of 2, by the pulleys,

Date of Experiment

25 September 1972



SECTION 2" FORWARD OF FRAME 10

LONGITUDINAL STRESSES DUE TO LAT BM.+ TORSION
) ‘ 1 : E . '
NO. OF ROSETTES ~ 3(125 RA)

SINGLE GAGES - 6(250 BG)

DATE OF EXPERIMENT o, leT2
SCALE OF STRESS
o . 3 __BKS)
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SECTION AT HATCH CORNER

PORT SIDE FRAME 62

LONGITUDINAL STRESSES DUE TO LAT BM. + TORSION

GAGE 15,16,17,&
18 ARE NOT
SHOWN IN THIS

NO. OF ROSETTES

~1(250 RA)
SINGLE GAGES
. -10(250 BG)
DATE OF EXPERIMENT
| 1972
SCALE OF STRESS
A S—
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LOCATED ON THE o |
OUTBOARD SIDE o2
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TORSION BOX

FIGURE 2
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SECTION 5.4" FORWARD OF FRAME 78

SHEAR STRESS DUE TO LAT. BM.+ TORSION

NO. OF ROSETTES - 2(125 RA)
- 4{250 RA)
SINGLE GAGES - I(250 BG)
DATE OF EXPERIMENT ., 1972

- SCALE OF STRESS
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SECTION 2" FORWARD OF FRAME 142

LOCATION OF GAGES
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SECTION 2" FORWARD OF FRAME |42

oSSR AV

LONGITUDINAL STRESSES DUE TO

NO. OF ROSETTES -4 (125 RA)
-2 (250 RA)
SINGLE GAGES- 9(250 BG)

DATE OF EXPERIMENT 1972

T
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|
i

2" FORWARD OF FRAME 142

LONGITUDINAL STRESSES DUE TO LAT BM. + TORSIGH

NO. OF ROSETTES - 4 {i25 RA)
- 2 (250 RA)
SINGLE GAGES - 9 (250 BG)

DATE OF EXPERIMENT '
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