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INTRODUCTION

This report summarizes the work performed by the Re-
search and Development Department of the American Bureau of
Shipping under U.S. Coast Guard Contract No. DOT-CG-63176~A.
This project is jointly sponsored by the Ship Structure Com-
mittee and the American Bureau of Shipping, and is part of
the comprehensive SL-7 Containership Research Program of ship
loads, model testing, structural analysis, response analysis,
full-scale measurements and data correlation.

The long~range objective of the SL-7 Research Program
is to advance the understanding of the responses of hull
structures at sea and to verify the current design criteria.
Emphasis is focused on the correlation of experimental (full-
scale and model) data and theoretical predictions at different
phases of the program. The overall research plan, historical
background and the interface of various phases of the program
were presented and discussed in Reference [1]*. The SL-7
Research Program was sponsored by the Ship Structure Committee,
the American Bureau of Shipping and Sea-Land Services, Inc.
The major phases which have been completed, either directly
under the SL~7 program or associated with it, can be summar-
ized as follows:

1. Full-scale Instrumentation

To investigate the structural responses of a high-speed
open-deck containership at sea, an extensive full-scale
instrumentation system was installed on board the SL-7 class
containership S.S. SEA-LAND McLEAN to measure wave heights,
ship motions, accelerations and wave-induced stresses in many
critical areas. The detailed information for this system is
given in Reference [2]. In addition, a micro-wave radar was
developed and installed to measure wave elevations. A finite
element analysis of the entire ship [3], using the ABS/DAISY
system of computer programs [4], and a steel structural model
test [5] were carried out at the planning and installation
stage of the instrumentation program. The results of these
two research projects were utilized to identify critical
regions for strain-gage locations.

After the instrumentation installation was completed,
a dockside calibration was carried out by Teledyne Materials
Research Company and reported in Reference- [6]. Subsequently,
a large amount of stress data has been acquired for three

* Numbers in brackets designate References listed at the end
of the report.



consecutive winter seasons, between September 1972 and March
1975. Some sample results are presented in Reference [7].
The wave-meter data was analyzed by Dalzell ([8].

2. Correlation of Calculated Structural Responses and Steel *
Model Experimental Data

Although the finite element method utilized in predicting
structural responses to quasi-static loads has been well tested
and verified with full-scale and model experimental results in
recent years, it is still desirable to validate the analysis
procedure and modeling techniques in dealing with a special
structure, such as an open-deck containership. 'Accordingly,
the American Bureau of Shipping has performed a structural
analysis of the SL-7 Steel Model, using the ABS/DAISY system.
The calculated results together with a comparison with experi-
mental data were presented by Elbatouti, Jan and Stiansen [9].
The predicted hull-girder responses to both bending and tor-
sional loads were generally found to be in good agreement with
the measured data. Consequently, the ABS/DAISY system and the
current modeling practice employed at ABS are considered satis-
factory in dealing with containerships.

3. Correlation of Ship-Motion Calculations and Model Experiments

Another significant phase of the SL-7 program was to verify
the wave-load prediction. Under the sponsorship of the Ship
Structure Committee, a ship-motion computer program, SCORES,
was developed in 1972 based on the two-dimensional strip theory
[10]. It was generally understood that the strip theory was

valid for full-form vessels, but its application to flne—form
ships was questionable.

To assess ship motions and wave loads, an SL~7 model was
tested in oblique seas in 1974 [11]. The first comparison of
the model test data with the SCORES results [12] showed signi-
ficant discrepancies between the RAOs (Response Amplitude
_perators)of ship motions and wave loads. Subsequently, Oceanics
Incorporated introduced a speed correction factor in the existing
SCORES program and obtained good agreement of the RAQO between
the model experimental data and the theoretical predictions 113].

Based on the results of the above three phases of the SL-7
research program, it can be seen that the finite element techni-
gues- and wave-load predictions have been generally validated.
The final phase in the verification of the analytical procedure
in assessing ship strength is a correlation of dynamic stresses
of ships at sea.



The objective of this phase of the SL~7 program is to
compare the stresses calculated using the ABS/DAISY system
to those measured on the SL-7, in corresponding sea and
dockside conditions, and to evaluate the results through each
of four different and progressively more severe technical
conditions. Accordingly, the work was divided into the
following four tasks:

TASK I - Comparison of the results of the DAISY stress
analysis with the results of the full-scale dockside
calibration.

TASK II - Comparison of the stress spectra calculated
from the DAISY analysis results with the selected full-
scale at-sea stress spectra.

TASK IITI - Comparison of the DAISY stress analysis results,
using measured acceleration and a specific, selected wave
profile estimated from the wave radar data in head seas,
with the instantaneous measured stresses taken simultan-
eously while the wave profile was developed.

TASK IV - Investigation of TASK III for oblique sea
conditions.



ANALYSIS PROCEDURE

The procedure utilized in the performance of this study
relies heavily on the ABS/DAISY system of computer programs.
A brief description of the system and the interface of the
associated element programs are presented in Appendix A.

The analysis comprises the following four steps:

1. Selection of Record Intervals and Acquisition of the
Wave and Full-Scale Stress Data

To compare the measured stress data with theoretical
predictions for a ship at sea, it is essential to have reli-
able information about the actual wave environment. Two
wave-measuring meters were installed on-board the SEA-LAND
McLEAN, a Tucker wave meter and a micro-wave radar. A cor-
relation and verification study [8] of the wave-meter data
shows that the Tucker meter data is in error for the high
ship speeds of interest, and the radar wave data appears to
be more realistic. Since there was no meaningful stress
data recorded with the ship in a "hove-to" condition or at
"near zero" speed, the Tucker wave meter data could not be
directly utilized for this study. Consequently, the wave
environment was solely determined based on recorded signals
of the wave radar, as presented by Dalzell [8]. However,
it should be noted that the radar wave data has not yet
been fully verified. Any possible errors incurred in the
wave-measuring system or in the data reduction procedure
would be essentially carried through the analysis and might
cause stress deviations in the calculation.

The selection of record intervals was based on the
availability of the measured stress data, the relative wave
angle and the relative directions of the wave and the swell.

Regarding the full-scale stress data, the RMS values,
stress spectra and stress-time histories of the midship
average bending sensor (LVB) are presented in Reference [8]
for all the selected record intervals at sea. For other
strain gages, the required stress data was reduced by Tele-
dyne.

For Task I (dockside calibration), all the test condi-
tions were taken into consideration. The detailed information
"about loading conditions, gage locations and the measured
data are presented in Reference [6].



2. Approximation of the Wave Environment and Prediction
of Wave Loads '

For each selected record interval, the wave environ-
ment was approximated either by an equivalent regular wave
or a wave-spectrum approach, depending upon the methods
utilized for each individual task. Details are discussed
under Tasks II and III.

Once the wave environment was determined, the ABS/
SHIPMOTION and ABS/DYNPRE computer programs were used to
predict ship motions, wave loads and hydrodynamic pressures
for input to the finite element structural model. The ABS/
SHIPMOTION program is a revised version of SCORES. ABS/
DYNPRE which is an extended subroutine of the SHIPMOTION
program calculates the hydrodynamic pressure distribution
on the wet surface of a ship's hull.

As mentioned in the introduction, the revised version
of SCORES, modified with a speed correction factor, has
been validated with a model test. This modified version .
is not available to the public. In the present study, the
ABS version of the SCORES program (designated ABS/SHIPMOTION)
was utilized for wave-load predictions. A speed correction
factor similar to that introduced by Oceanics has been in-
corporated into the ABS version. A sample comparison of the
RAO with the model test data is shown in Figures A-2 and A-3
of Appendix A, which shows that the comparison of the RAO
for the vertical bending moments at midship is very good.
However, the calculated RAQ for the lateral bending moment

at midship are generally less than those reduced from model
experiments.

3. Generation of Finite Element Structural Models and
Calculation of Structural Responses ’

In calculating the hull-girder responses, the entire ship
was first represented by a three-dimensional coarse-mesh
finite element model. Subsequently, fine-mesh three-dimen-
sional models were utilized to determine the stress distribution
at selected strain-gage locations. The ABS/DAISY computer
program was used for this step of the analysis. The struc-
tural models and the boundary conditions used in the analysis
are discussed in the following section.



4. Analysis of Calculated Results and Comparison with
Measured Data

After the completion of the fine-mesh DAISY runs for
each task, a selective output containing strains and stresses
for the selected strain gage locations was printed out.

The analysis of the calculated results varies task by task.
The detailed analysis methods and the comparison with the
measured data are discussed separately under each individual
task.



FINITE ELEMENT STRUCTURAL MODELS

The SL-7 is an 880'-6" x 105'-6" x 68'-6" twin-screw
containership with a displacement of 50,315 long tons at
34'-0" draft. A general arrangement is shown in Figure 1.

The structural analysis for the SL-7 Containership was
performed using the ABS/DAISY system of finite element com-
puter programs (see Appendix A) for one coarse-mesh model
comprising the entire ship and six fine-mesh models repre-
senting detailed structures of selected strain gage regions.
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FIGURE 1 — SL-7 GENERAL ARRANGEMENT (FROM REFERENCE ([3])

Three-dimensional Coarse—Mesh Model

The coarse-mesh model consists of 2602 nodal points and
9866 degrees of freedom. The major structural members are
represented by rods, beams, membrane plates and bending plates,



with a total of 7122 elements. The model comprised only the
port side of the vessel because of structural symmetry about
the centerline plane. A three-dimensional isometric plot of
this model is shown in Figure 2. Computer plots of the decks,
bottom, side shell and the centerline profile are shown in
Figure 3. Typical transverse bulkheads and web frames in the
model are shown in Figure 4. For asymmetric loadings, the
loads are divided into symmetric and anti-symmetric loading
conditions, as shown in Figure 5, with appropriate boundary
restraints at the centerline plane, as shown in Figure 6.

In order to prevent rigid body movements due to the possible
unbalanced forces on the model, certain additional boundary
restraints must be imposed on the model, as shown in Figure 6.
LOADER, one of the "DAISY" preprocessor programs, automati-
cally redistributes the unbalanced forces in the model,
therefore minimizing the effect of these local boundary
restraints on the accuracy of the results.

Three~dimensional Fine-Mesh Models

8ix fine-mesh models in the vicinity of selected sensor
locations, as shown in Figure 7, are utilized to determine
stress distributions and to facilitate comparisons between the
calculated results and those obtained from measurements.
Computer plots for these six models are shown in Figures 8
through 13, together with sensor locations and designations as
specified in Reference [6]. Detailed information about all the
sensors installed on board the $.S. SEA~LAND McLEAN is given in
Appendix B. Each fine-mesh model consists of rods, beams and

bending plates, and has the characteristics described in Table 1.

Displacements obtained from the coarse-mesh analysis are used
as boundary conditions in the analysis of the fine-mesh models.



FIGURE 2 - ISOMETRIC PLOT OF FINITE ELEMENT COARSE-MESH MODEL
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CHARACTERISTICS OF FINE MESH FINITE ELEMENT MODELS
Model Model Number of Number of Number of Degrees
Designation Location Nodes Elements of Freedom

- FR.182-190

FM1 (above str.no.l) 314 a02 1507

FM2 FR.190-198 432 802 2030

FM3 - FR.182~-190 391 536 1565
(below str.no.l)

FM4 FR.218-238 318 680 1764

FM5 FR.140-150 326 522 1350

FM6 FR.282-298 393 541 1405
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TASK I -~ DOCKSIDE CALIBRATION

l. Loading Conditions

The following six calibration loading conditions have
been analyzed:

Condition 1

Dockside initial loading condition, with all cargo hold
and deck containers, except holds beneath Hatches 3, 10 and 14.

Condition 3

Deck containers removed from Hatches 1 through 4 and
12 through 15.

Condition 4

Remaining deck containers on Hatches 5 through 11 removed.

Condition 5

Approximately one-half of containers removed from starboard
side of Hatches 1 through 7 and from the port side of Hatches 8
through 15, generating a torsional moment. Hatch covers placed
asymmetrically to contribute to the torsional moment.

Condition 6

Completion of unloading described in Condition 5. This
represents the maximum torsional load.

Condition 7

Nominally empty ship except for one propeller (47 long
tons) loaded into Hatch 3 and one propeller in Hatch 4, all
hatch covers on.

Loading conditions 1, 3, 4 and 7 are symmetric about the
centerline plane; loading conditions 5 and 6 are asymmetric
and include torsional loadings.

Note: The designated loading cases are identical with those
used in Reference [6]. Loading condition 2 was not
used during the calibration test.
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The "SHIPMOM" program was used to calculate static bending
moments and to generate hydrostatic pressures for the DAISY
model. These SHIPMOM results were compared with the results of
a previous less refined SHIPMOM computer run with fewer stations,
described in Reference [6]. The comparison indicated very little
difference between the two runs.

2. Comparison of Calculated Stresses and Measured Data -
Longitudinal Stresses :

The comparison of stresses measured by strain gages and
those calculated at corresponding gage locations is presented in
Tables 2 and 3. 1In Table 2 the comparison was made by subtrac-
ting loading condition 1 from each loading condition, taking
loading condition 1 as a datum loading. Similarly, Table 3
takes loading condition 4 as the datum loading.

A preliminary investigation of the experimental and
analytical stress results indicates some instances of agreement,
and some instances of disagreement. The correlation of full-
scale measurements and computed results can only be established
after carefully verifying the data and the environmental condl-
tions.

The experimental data for midship sensors 1 (LVB), 15 (LSTS)
and 18 (LSTP), where LVB measures the average longitudinal verti-
cal bending stress of port and starboard, LSTP and LSTS measure
the longitudinal stress at top, port and starboard respectively,
show some discrepancies.

Sensor number 1 should average the values of the longitu-
dinal stress components of the LSTS and LSTP sensors. However,
differences in the comparative stress values appear with the
change in the reference of datum loading condition, or the
so-called zero-stress reference case., Table 4 illustrates
these differences when referring loadlng condition 7 to
loading conditions 1, 3 or 4.

Loading condition 1 represents no change in mechanical
loading of the ship from the initial calibration condition (zero
reading for the strain gages) that took place when the ship was
navigating through the Maas rlver, but the measured stresses
range between -2677 and 1654 psi (Reference [6]). T

Loading condition 7 is predominantly a symmetric loading
case, but the measured stresses from the symmetrically located
sensors 15 and 18 indicate asymmetric response, especially in
loading condition 7-4.
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TABLE 2

COMPARISON OF CALCULATED AND MEASURED STRESSES (PSI)
USING LOADING CONDITION 1 AS DATUM LOADING

Loading
Cond. (3-1) (4-1) (5-1) (6-1) (7-1)

Sensor . Calc. |Meas. [Calc.|Meas.|{Calc.|Meas. |Calc. |[Meas. |Calc.|Meas.

1{LVB) ~1058}~1148| 104 =133 - 890 574 1352 883 | 2746| 2119

FM1< 15 (LSTS) ~1058(-1756| 104 [-1486 791| =-495| 1103 -180| 2746 2252

18 (LSTP) ~1058(-1369| 104 ~88 988 782] 1600 1286 2746]| 1789

F§4(TGM51) 75 467 | 437 2451 -9%40 409 |~1622) -583 435| 2568

95 (TGMS2) 142 993 |-112 386|-1399|-3033(-1988 |-2041 71| -1600

96 (TGMS3) 119 ‘228 471 ~684] 1569] -342| 2191 114 561)~1483

97 (TGMS4) ~107 396 -9 1016| 1803| 4230| 2795 5245 753 1974

FM% 98 (TGMS1X) 237] 1322 125 680)-1191]|-14211)~1833|-1888|,-291 38

99 (TGMS2X) 431 1225 115 -429 88) —-621 148 |—-1532 601| -464

100 (TGMS3X) 170 376 | 109 -365}) 1189| -822| 1803 | -365 ~-24f ~993

1L01 (TGMS4X) -123|-1882| 248 248 621{ 1037 863 | 1150 984| 1094

17 (LSBS) 531) 1785 16 1648| -236 961 ) -267 | 1099 |-1146 183

FMS{;O(LSBP) 531 589 16 453 | -453 272 | -802 589 [-1146 225

[73 (R11A) ~g5| ~115| 102 | -343 59| -115{ -10| 399 486 798

. 76 (R12R) -133 142 78 =77 402 687 515 687 671 796

FM-4<79(_R13A) -525[~1096 | 341 76| 18721 2653 2420 3257 | 2865| 3141

182 (R14A) -4541-1864{ 301 |-1032{ 1061| -307| 1300 -195]| 2391 864

(30 (AR1A) =719 =593 |-277 -209] 1033} 1217 | 1476 | 1491 507( -758

. (33(AR2A) =719 152 =277 1582| -975| =592 |-1297 |~1125 507| —-334

" 36 (AR3A) -1362(-1084 [-471 1882 |~1425| -513[-1884 (-1939 | 1003 912

139 (AR4A) -1212|-1964 |-459 -982 171 1363 266 | 1145 892. 600

[43 (R1A) 85| ~-937 ¢ 170 -334| -568[-1870 |~1136 |-2418 710}~1102

46 (R2A) 85| -725| 170 |~1562| 1150 3901 1974 948 710 335

o 6"49(R3A) 98| ~513 ) 202 |-1825 €35 0} 1386 343 814 199
52 (R4R) 111 -163| 230 ~382 -57({-1145 | -246 [-1254 902) ~436 |
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TABLE 3 COMPARISON OF CALCULATED AND MEASURED STRESSES (PSI)
USING LOADING CONDITION 4 AS DATUM LOADING

Loading (5-4) (6-4) (7-4)
Cond,

Sensor Calc. | Meas. | Calc. | Meas. |Calec. | Meas.
(LVB) 786 707 { 1249 | 1016 | 2643 | 2252
FM1 < 15 (LSTS) 687 | -991 | 1000 | 1306 | 2643 | 3738
18 (LSTP) 885 870 | 1497 | 1374 | 2643 | 1877
94 (TGMS1.) -1377 | 2042 | 2059 | -3034 -3 117
95 (TGMS2) ~1287 | -3419 | ~1876 | -2427 183 | -1986
96 (TGMS3) 1098 342 | 1720 798 89 | -799
97 (TGMS4) 1812 | 3214 | 2803 | 4229 | 761 958
2 98 (TGMS1X) ~1316 | -2101 | -1958 | ~2568 | -416 | -642
99 (TGMS 2X) -27| =192 33| -1103 | 486 -55
100 (TGMS3X) 1079 | -457 | 1694 0| -133| -628
101 (TGMS4X) 375 | 789 617 902 | 738 846
17 (LSBS) -251 | -687 | -283| -549 |-1162 | -1465
e 20 (LSBP) -469 | -181 | -818 136 [-1162 | =227
73 (R11A) -43 228 | =112 742 384 | 1141
76 (R12A) 324 | 764 437 764 593 873

FM4 <
79 (R13A) 1531 | 2577 | 2079 | 3181 | 2524 | 3071
82 (R14A) 760 | -1339 999 837 | 2089 | 1896
30 (AR1A) 1310 | 1426 | 1753 | 1700 784 [ -549
33(AR2A) -698 | -2184 | -1020 | ~2717 784 | -1926
P 36 (AR3A) -953 | -2395 | -1412 | -3821 | 1475 | -970
39 (AR4A) 623 | 2345 718 | 2127 | 1350 | 1582
43 (R1A) ~738 | ~1536 | -1306 | -2084 540 | ~768
46 (R24) 980 | 1952 | 1803 | 2510 540 | 1898

FM6 <
49 (R3A) 633 | 1825 | 1184 | 2168 612 | 2024
[52 (ren) -270 | -763 | -462| -872 672 | -54
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It can be seen that the degree of agreement between the
measured and calculated results varies significantly from
Table 2 to Table 3. This indicates some inconsistencies of
the measured data between different loading conditions, probably
due to changes in ambient temperatures.

According to Table IV of Reference [6], a temperature
difference of 15° F between port and starboard sides was recor-
ded during the calibration test. A temperature difference of
21° F between the deck and sea water was also recorded. With
these magnitudes of temperature gradient, the thermal stress
could be as high as 1500 psi. However, due to the lack of
sufficient information about the temperature distribution
during the calibration test, it is impossible to incorporate
thermal stresses into the analysis.

To evaluate the effects of these temperature changes,
longitudinal stresses measured at 17 selected sensors are
shown in Figures 14 through 1l6. The sensors are described in
Table 5.

Figure 14 shows the longitudinal stresses for calibration
loading conditions 3 through 7, utilizing loading condition 1
as the datum loading. The deviations of the measured stresses
from the calculated values are generally within a bandwidth of
+ 1,500 psi. Based on the temperature differential recorded
during the calibration test, shown in Table 6, the maximum
thermal stress may be as high as 1,500 psi. With this thermal
stress margin in mind, the overall comparison of the measured
and computed stresses shown in Figure 14 is reasonably good.

In an attempt to minimize the possible thermal effects,
changes in stresses between two loading conditions with the
least temperature differential were also examined. The results
of loading case 4-3, which represents pure vertical bending,
are shown in Figure 15, With a few exceptions, the stress
deviations fall within a bandwidth of + 400 psi. This magni-
tude of deviation is regarded as acceptable, considering the
sensibility and reliability of strain-gage readings. The
results of loading case 7-6, which reflects both vertical
bending and torsion, are shown in Figure 16, With the exception
of Sensors 30 and 39, the stress comparison is generally good.

To minimize the possible thermal effects, it is advisable,
for the future calibration tests, that other means of loading
be used to create appreciable mechanical strains and that
complete steel temperature data of the deck and side shell
(port and starboard) be recorded.
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TABLE 4

MEASUREMENTS OF LONGITUDINAL STRESSES (PSI) IN

MIDSHIP SENSORS

Hﬁhﬁﬁhﬁ“‘“ﬁuLQading Condition
Sensor No. (7-1) (7-3) (7-1)
15(LSTS) 2252 4008 3738
18 (LSTP) 1789 3158 1877
Average of 15 and 18 2020.5 3583 2807.5
1(LVB) 2119 3267 2252
TABLE 5 SELECTED SENSOR LIST
SENSOR SENSOR
NUMBER NOMEN . SIGNAL NOMENCLATURE
1 LVB Longitudinal Vertical Bending
15 L3TS Longitudinal Stress Top Starboard
18 LSTP Longitudinal Stress Top Port
17 LSBS Longitudinal Stress Bottom Starboard
20 LSBP Longitudinal Stress Bottom Port
73 R11A -
76 R12A R =Foreward Rosettes on the
79 R13A [ Main Deck, See Figure 11
82 R14A 7
30 AR1A 7
23 ARZA L AR = ATt Rosettes on the Main
36 AR3A Deck, See Pigure 12
39 ARHA )
43 R1A h
Lg E2A $ R = Forward Rosettes on the
49 R34 Main Deck, See Figure 13
52 RUA J
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TABLE 6

ENVIRONMENTAL CONDITIONS AT CALIBRATION
(FROM REFERENCE [6])

1
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Cond, Tire AMr, Dry Ay ¥et Water Port Tunrel. Stud Timnel Elavntion Azinoth (d Spced, mph Direction

9 Apr' 73 ' ' )
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4 1725 49 4§ 43 &9 6] 30 (Clesx) Al 13 110* Port
3 2130 33 36 43 43 52 - ~ 8 90° Port

10 Apc' 73
& 0105 6.5 35 41 +3 46 - - 12 §0° Port
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Sun Direction with Refercaca
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Another uncertainty in comparing the measured and calcu-
lated stresses is the influence of plate unfairness and local
plate bendings. So far as the longitudinal stresses in the
hull structures are concerned, this kind of influence is
considered insignificant. All the longitudinal strain gages
were installed on very thick plates where the effect of unfair-
ness, if any, would not be generally noticeable. Where local
plate bending was apparent, such as the bottom hull plating,
the strain gages were located at the quarter span between
frames (floors) to minimize local plate bending. In addition,
all the primary plating was represented by bending plate
elements in the fine-mesh models. Panel bendings are also
included in the calculation. Consequently, the plate unfairness
and local plate bending should not be regarded as an influential
parameter to the stress discrepancies in this case.
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3. Comparison of Calculated Stresses and Measured Data -
Transverse Stresses

The calculated and measured transverse stresses in the
transverse box girder at Fr. 194-196 are plotted in Figure 17
for loading cases 3-1, 4-1, 5-1, 6-1 and 7-1. Regarding the
difference between the measured and calculated stresses at
each gage location, these figures show approximately the same
results as those shown in Table 2. However, by comparing the
stress ‘distribution patterns, it can be seen that the measured
data reflects generally a higher degree -of bending and torsion
loads, probably caused by thermal expansions.

To minimize the thermal effect, loading cases 4-3 and 7-6
were again selected for comparison. The results are shown in
Figure 18. No improvement in stress agreement can be gained
for loading case 4-3, which represents a pure longitudinal
bending load.
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N N \D “
A #\
|
' A
98
100 - 105\ 98 100 \ 9
¥ \ o , ;\
\

/O
R
-

98 \9;" ag e\ j\@ 86 0\ 95
= - 99
39 o
COMPRESSION INBOARD
® CALCULATED
C \ SCALE
FORWARD
© MEASURED \
TENSION 0 1 2

KPSI

FIGURE 17 - CUHPARISON OF CALCULATED AND MEASURED TRANSYERSE STRESSES IN THE
TRANSVERSE BOX-GIRDER AT FR. 194-196

26



LOADING CASE 6-1 h LOADING CASE 7-1
101 101

.o

SENSOR NO. 97 9 a7 1

\ |
100 98 13 88

s kNN SO N &

99 39
+ CALCULATED COMPRESSION INBOARD SCALE
- - [
MEASURED \ “ : : B
: M= FORWARD
o TENSION B KPsS1

FIGURE 17 - CQMPARISON OF CALCULATED AND MEASURED TRANSYERSE STRESSES IN THE
TRANSVERSE BOX-GIRDER AT FR. 194=196 (CONT'D)

LOADING_CASE 14-3 ] LOADING CASE 7-6
101
SENSOR NO. 97 9u
SOR o

[
o
o
w
o

100

26 ) Fs
99
* CALCULATED COMPRESSTON INBOARD
FORWARD SCALE
© MEASURED TENSION
KFSI

COMPARISON OF CALCULATED AND MEASURED TRANSVERSE STRESSES IN THE

. TRANSVERSE BOX-GIRDER AT FR. 194-136

27



Since the primary loads of the transverse box girder are
induced by hull-girder bending and twisting, in addition to
thermal loads, manufacturing imperfections could also contri-
bute to the deviations of the measured data. Furthermore,
the strain gages have a single element which measures the
strain in the transverse direction only. The measured stress
data does not account for the Poisson's effect which may cause
significant stress variations. However, a reasonably good
agreement, particularly of the stress distribution patterns,
can be seen for loading case 7-6, with the only exception of
Sensor 95, '

In conclusion, a reasonably good agreement of the measured
stresses and the calculated values has been obtained for several
selected calibration conditions by minimizing the possible
thermal effects. '
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TASK II - COMPARISON OF RMS STRESSES IN HEAD SEAS

For Task II, a stress comparison between the calculated
and measured RMS values in head seas was carried out by an
equivalent regular wave approach and by a spectrum analysis,
based on a study of the relationship between computed wave-
induced stresses and wave heights.

In order to examine this relationship, a regular wave
with a length of 808.5 feet and with its crest at the midship
was selected for ship motion and stress calculations. Three
different wave heights as shown in Table 7 were taken into
consideration, with a ship speed of 10.9 knots in head seas.

TABLE 7 WAVE CHARACTERISTICS AND SHIP MOTION DATA - LINEARITY STUDY

(a) (b) (c) Location of
Load-{ Ship Wave Height Wave Crest
Wave | ing Speed Wave Length| (Peak-to-Trough) | Heave | Pitch | Forward From A.P.
Cond. | Cond. | (knots) (ft.) (f£t.) (ft.) {(deg.) (ft.)
1 8 10.9 808.5 3.28 0.62 0.32 Lhp.o
2 9 10.9 808.5 9.84 1.85 0.97 140.0
3 {10 10.9 |  808.5 20.92 3.93 2.06 440,0

Notes:

2 All conditions consist of full cargo loads and head waves

b Heave is positive down
€ Pitch is positive bow up

The ship's motions and accelerations which are required as
part of the finite element model input were calculated using the
SHIPMOTION computer program. A set of quasi-static pressures
(still-water plus wave profile) and inertia forces corresponding
to the calculated accelerations were applied on the finite ele-
ment model and a correction was made to ensure that the applied
vertical shearing forces and bending moments were gehnerally
identical to those obtained directly from the SHIPMOTION program.
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The calculated results are shown in Figures 19, 20, and 21
at three selected locations along the length of the ship. As
shown in Figure 19, the wave-induced longitudinal and transverse
stresses in the main deck plating at the midship section are
approximately in direct proportion to the wave height. They
depart from linearity at stations remote from the midship section
(Figures 20 and 21), even though the hull-girder shearing forces
and bending moments vary linearly with wave heights, as predic-
ted by a ship motion calculation.

The non-linearity is due to the combination of the local
bending in the transverse direction and the wave-induced forces
in the longitudinal direction.

Recent model experiments in towing tanks indicate that the
motions and wave loads do not vary linearly with wave heights.
A realistic trend cannot yet be defined due to the lack of
sufficient experimental data. Based on the results shown in
Figures 20 and 21, it can be seen that the hull-girder responses
(wave-~induced stresses) exhibit a non-linear pattern even with
linear shear and bending loads.
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In the equivalent regular wave method, a given wave spec-
trum can be approximated by a regular wave with equivalent
energy. With this approach, no assumption concerning the
relation between stresses and wave heights is necessary. On
the other hand, this equivalent regular wave approach will not
account for the variation in responses to different wave fre-
guencies.

A spectrum analysis, which depends completely upon an
assumption of linearity between stresses and wave heights,
is valid for performing stress comparisons only in the midship
region. '

After a thorough review of these two methods, it was
decided to perform the RMS stress comparison using both
approaches selectively. Three recorded intervals were selec-
ted for the equivalent regular wave approach. For comparison,
the same intervals were also used for the spectrum analysis.
Because of the non-linear effects, the spectrum analysis was
carried out for the longitudinal stresses at midship only.

The stress RAO (Response Amplitude Operator) generated for
these three intervals was then utilized to calculate the
stress spectrum for other selected intervals.

The detailed procedures of these two approaches and the
computed results are discussed in the following sections.

1. Method 1 - Equivalent Regular Wave Approach

A. Description of Method

a. Calculation of Equivalent Regular Waves

The equivalent wave encounter frequency, wave height
and wave length of the regular waves were calculated based on
the radar wave spectrum shown in Reference [8], using the
following formulas

Wa2
Jwel wesc(we) dwg (1)

Equivalent wave encounter frequency =

We2
Iwel S;(we) dwe
1/2

Ye2
Equivalent wave height = 2.5 J Sﬁ(we) dwe (2)
W
el
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2Ty
w

EQuivalent wave length =

(3)

w is derived from the equation

u
w = @ - B COsB 2

(4)

e g
where g = gravity constant
w = Wave frequency
Wy, = encounter frequgncy, measured directly
from the time history
B = heading angle
u = ship's speed
S;(me) = wave spectrum in the frequency domain
wel,wez = Jlower and upper bounds of frequency

Three wave conditions were selected for this task.

within the domain under consideration

The

detailed information and the equivalent waves for these three
wave conditions are shown in Table 8.

TABLE 8 WAVE CONDITIONS SELECTED FROM REFERENCE [8] FOR
COMPARISON OF RMS STRESSES IN HEAD SEAS
Equivalent Equivalent
Wave Ship Speed | Wave Length | Wave Height
Condition| Tape| Index | Interval Fun No. {(knots) (ft.) (£t.)
4 145 18 5 Los 10.9 808.5 20.92
5 145 24 29 429 18.7 808.5 21.97
6 145 29 50 450 28.1 561.5 16.47
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b. Calculation of Wave-Induced Loads

A computer subroutine was developed by ABS for the calcu-
lation of hydrodynamic pressures (ABS/DYNPRE) acting on the
ship in a seaway. However, it was found that the wave-induced
vertical bending moments obtained from an integration of the
hydrodynamic pressures were not in full agreement with those
obtained from the ABS/SHIPMOTION program. In order to elim-
inate such differences, the following two modifications were
utilized to correct the vertical bending moments obtained by
integration of the imposed pressures and inertial forces.

Method 1A - Quasi~static Pressures

A quasi-static pressure approach was used to calculate
the input load for the ABS/DAISY runs. In this approach, the
quasi-static pressures and the inertia forces at the instan-—
taneous ship position as determined by the ship motion
calculation were first applied to the structural model. Then,
the bottom pressures were modified to make the vertical wave
bending moments comparable with those obtained from the ship
motion program. This was the procedure used in the determin-
ation of the relationship between computed wave-induced stresses
and wave heights described at the beginning of Task II.

Method 1B - Hydrodynamic Pressures

The hydrodynamic pressure coefficients obtained from the
ABS External Pressure subroutine (DYNPRE) were modified at
each ship station to make the vertical wave bending moments
comparable with those obtained from the ship motion calculation.

In both the ship motion and the external pressure calcu-
lations, information is obtained only for regions of the ship
under the still-water line. To account for the actual wave
profile, the external pressures were linearly extended up or
deleted down to the wave surface, depending on whether the
wave surface was above or below the still-water line. By so
doing, the total external pressure, which includes both the
hydrodynamic and the static components, becomes zero at the
wave surface. The typical pressure distributions for wave
surfaces above and below the still-water line are shown in
Figures 22 and 23 respectively. The wave characteristics and
ship motion data used for Methods 1A and 1B are shown in Table 9.

c. Structural Analysis

After the calculation of dynamic and static loads, the
stress analyses for coarse-mesh and subsequently for fine-
mesh models were performed by using the ABS/DAISY finite
element program. For the comparison of wave-induced stresses,
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TABLE 9 WAVE CHARACTERISTICS AND SHIP MOTION DATA - METHOD 1 - TASK II

() (b) Location of
. . (c) t
Ioad- | Ship Wave Height Vave Cres
Vave | ing Speed | Wave Length | (Peak-to-Trough)|Heave |Pitch [Forward From A.F.
Method | Cond. | Cond. | (knots) (ft.) (ft.) (£t.)] (@eg.) (£t.)
11 10.9 808.5 20.92 -0.69 |{-2.30 220.0
1A b 12 10.9 808.5 20.92 393 | 2.06 I4o.0
13 10.9 808.5 20.62 -041 | 173 660.0
1 10.9 808.5 20.92 -069 |{-230 220.0
1B ] 12 10.9 808.5 20.92 393 | 206 byo.o
13 10.9 808.5 20.92 -041 | 173 660.0
14 18.7 808.5 21.97 102 |-1.93 220.90
5 15 18.7 808.5 21.97 7.30 3.27 4hp.0
1B
16 18.7 808.5 21.97 -2.65 | 1.2 660.0
17 28.1 561.5 16.47 -0.63 | 0.13 | 220.0
1B 6 18 28.1 561.5 16.47 0.84 | 0.01 hh0.0
19 28.1 561.5 16.47 -0.68 |-~0.15 660.0
Notes:
a, b, and ¢ see sign convention under Table 7

the net dynamic responses can be obtained simply by deducting the
still-water response from the overall results for each wave
loading condition.

d. Generation of Stress-time History Curve

In order to determine the amplitude of the wave-induced
stresses for each wave condition, a stress-time history of one
complete stress cycle, as shown in Figure 24, was plotted based
on three different wave-crest positions at the midship and the

quarter points, and each wave-crest position was treated as a
separate loading condition.
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Two assumptions were made in generating the stress-time
history. First, the time variation of stress was assumed to
be sinusoidal. Second, the calculated longitudinal wave-~
induced stress was assumed to be in phase with the wave-induced
vertical bending moment at the ship station under consideration.
In the comparison of the calculated and the measured RMS stres~
ses, the double stress amplitude (peak-to-trough) was utilized.

B. Calculated Results

For comparison, the calculated and measured RMS stresses
for the three selected wave conditions are shown in Tables 10
and 11 and are also plotted in Figures 25, 26 and 27. The
measured values were based on data reduction performed by
Teledynz2. The RMS stresses calculated by Methods 1A and 1B
are generally in good agreement, as shown in Table 10. These
stresses are generally of the same order of magnitude as the
measured values. The calculated and measured RMS stresses for
sensors AR1A, AR2A and AR3A in Table 11 show good agreement;
however, sensor AR4A consistently shows that the measured data

are much lower than the calculated values.

37



TAcuE 10

COMPARISON OF CALCULATED AND MEASURED RMS LONGITUDINAL

STRESSES (PEAK-TO-TROUGH, PSI)

Wave Sensor Calc. RMS Meas. RMS
Condition No, Location Stress Stress
: (Method 1B)
4 1 (LVB) MN.DK.MID- 9,673 6,743
SHIP SEC.
(AVG. OF
STED. AND
PORT)
3 8,469 6,344
6 6,887 5,368
6 15(L8TS) MN.DK.MID~ 6,887 5,840
SHIP SEC.
(STBD)
4 17 (LSBES) NEAR-BOTTOM 4,570 4,164
PL. (STBD)
6 3,039 3,297
4 18 (LSTP) MN.DK.MID- 9,673 5,367
SHIP SEC.
(PORT)
6 6,887 5,529
4 20 (LSBP) NEAR-BOTTOM 4,570 2,974
PL. (PORT)
5 4,623 2,743
6 3,039 2,876
a4 30 (AR1A) MN.DK.FR. 5,285 5,027
143-144
(PORT)
5 5,850 4,769
6 3,433 4,649
4 33 (AR2a) MN.DK.FR. 5,285 5,587
143-144
(8TBD)
5 5,850 5,767
6 3,433 4,939
4 36 (AR3A) MN.DK. FR. 10,505 7,537
143-144
(STBD)
5 11,657 7,563
6 6,844 6,576
4 39 (AR4A) MN.DK.FR. 10,499 4,333
143-144
(STBD)
5 11,450 4,017
3 6,930 3,786
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TABLE 11 COMPARISON OF CALCULATER AND MEASURED RMS
LONGITUDINAL STRESSES (FEAK-TO-TROUGH, PSI)
WAVE CONDITION 4
Sensor Calculated RMS Stress Measured
No. Method 1A Method 1B RMS Streass

1 (LVB) 9,243 9,673 6,743
18 (LSTP} 9,243 9,673 5,367
17 (LSBS) 4,320 4,570 4,164
20 (LSBP} 4,320 4,570 2,974
. 30 (AR1A} 6,121 5,285 5,027
33 (AR2A} 6,121 5,285 5,587
36 {AR3A) 10,566 10,505 7.537
39 (AR4A) 9,813 10,499 4,333
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2, Method 2 - Stress Spectrum Approach

A. Description of Method

The procedures used to calculate wave-induced dynamic
loads and to perform the structural analysis are the same as
those described in the previous sections. - For the external
pressures, Method 1B was used in conjunction with wave spectra
from Reference [8] for the selected wave conditions. Since the
selected three basic intervals have three different ship speeds,
ranging from 10.9 to 28.1 knots, a stress RAO curve has to be
generated for each ship speed. 1In order to have sufficient
points for each selected wave spectrum a total of 23 wave
lengths, as shown in Table 12, was used. The wave lengths
were determined in such a way that these three basic wave
spectra could be closely represented.

For each wave length the relative wave-crest position
was selected to maximize the vertical bending moment at the
ship station under consideration. This information was readily
available from the ship motion calculations. Assuming that the
longitudinal stresses in the deck plating are in phase with
the vertical bending moment, the stress amplitude could be
directly calculated for each wave frequency.

In an attempt to minimize the possible stress deviations
due to the non-linear relation between stresses and wave heights,
an average wave height of 19.68 ft was used for all the differ-
ent waves. The computed stresses were then divided by the wave
amplitudes to generate the stress RAO. Once the RAO curve in
terms of a unit wave amplitude for the selected stress sensor
is constructed, a stress spectrum can be obtained by multiply-
ing the ordinate of the wave spectrum by (RA0)2. The measured
wave spectrum has a low-frequency cut-off value, as illustrated
in Figures 28 through 41, below which the data are unreliable.

B. Calculated Results

The calculated stress spectra for the three selected basic
wave conditions are shown in Figures 28, 29 and 30 for sensor
LVB and Figures 31, 32 and 33 for sensors LSBS and LSBP. The
measured stress spectra reproduced from Reference [8] are also
shown for comparison. The calculated RMS stresses, expressed
in terms of 2/2A (where A is the area under the stress spectrum
‘curve) are listed in Table 14.

In order to make a further comparison for sensor LVB, eight
additional recorded intervals with nearly head sea conditions
and comparable ship speeds were selected from Reference [8].

The particulars for these intervals are listed in Table 13.
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TABLE 12 - WAVE CHARACTERISTICS AND SHIF MOTION DATA - METHOD 2 - TASK II
WAVE HEIGHT (PEAK-TO-TROUGH)= 19.68 FT. (6M)

(a) Wave Location of
‘Load-| Ship Encounter (b) (€} |wave Crest
ave | ing Speed Frequency Wave Length |Heave | Pitch |Forward From A.P.
ond. | Cond.) (knots) |(rad./sec.)}  (£t.) [(£t.) [(deg.) (ft.)
20 10.9 279 3366.9 9.32| 0.19 71,7
2 10.9 451 1460.5 7.26 ( 0.81 448.8
22 10.9 +560 1015.85 - 5.21| 1.42 439.0
Y 23 10,9 .643 808.5 3.69| 1.85 433.8
24 10.9 .729 682.96 2.76 | 1.95 432.0
25 10.9 816 550. 4 1.75| 0.96 436.8
2 | 10.9 1.088 350.8  |-0.39| 0.31 564.3
27 18.7 .430 1901.8 8.31| 0.87 | 496.8
28 18.7 548 1295.4 7.38] 1.55 L4eh.3
29 ‘18.7 611 1093.14 6.97|] 2.00 452.0
5 | 30 | 18.7 L TH5 821.5 6.58| 2.89 436.7
31 | 18.7 .866 Ghb.46 | 2.14| 1.97 431.4
32 18.7 1.019 509.33 1.75| 0.02 431.8
33 18.7" 1.138 434,5 1.36] -0.05 426.8
34 28.1 305 3887.9 7.57 0.65 820.3
35 {- 28.1 .508 1758.7 8.23] 1.51 541.2
36 28.1 LA79 1322.0 8.72] 2.25 4g2. 4
6 37 28.1 712 1088.0 9.63f 3.00 465.6
38 28.1 .817 880.9 8.27] 3.81 438.9
39 28.1 .967 695.7 -1.52] 1.30 433.4
40 28.1 1.130 561.5 1.00l 0.05 427.6
b1 28.1 1.273 478.4 1.03] -0.01 420.7
42 28.1 1.579 359.3 -.14] 0.0 578.2
Notes:
a, b, and ¢ see sign convention under Table 7
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TABLE 13 PARTICULARS OF WAVES SELECTED FROM REFERENCE [8] FOR
COMPARISON OF RMS STRESSES USING THE STRESS SPECTRUM APPROACH

Wave Ship Speed
Condition (knots) Tape | Index | Intervall Run No.
7 32.6 143 9 36 337
8 32.5 145 27 41 441
b 32.3 153 b 15 815
10 32.4 153 8 29 829
11 ~ 31.8 i53 12 45 845
1? 31.2 155 17 1 901
13 32.6 157 12 45 1045
14 31.3 163 14 5 1305

TABLE 14 COMPARISON OF CALCULATED AND MEASURED RMS VERTICAL BENDING '
STRESSES (PEAK-TO-TROUGH, PSI) FOR SENSOR$ AT MIDSHIP

Wave Calculated
Condition Sensor (g;;:oggﬁ0trun9 Measured
y 8343 6743
5 7295 6344
6 7183 : 5368
7 3547 2990
8 h192 3300
9 LVB 454y 4730
10 2542 2000
11 4252 3410
12 4766 4310
13 3188 3530
14 4595 5800
L] 3605 ’ K101
5 L3B3 2926 —
6 1954 3161
4 3605 3261
5 LSBS 2926 2729
6 1954 2732
Notes:

1. BRMS values of stresses are defined as 2v2&
where A 15 the area under the stress
spectirum curve (Figures 28 through 41)

2. Stress RAO curve used for above Runs

(except for Runs U405 and 429) is the
same as that for Run 450 (Figure 30b)
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Since these intervals have ship speeds comparable with
wave condition 6, it is reasonable to use the stress RAO curve
for wave condition 6, (Figure 30b) to calculate the stress
spectra for the additional intervals. The calculated stress
spectra together with the measured stress and wave spectra
are shown in Figures 34 through 41. The calculated RMS stresses
for these additional intervals, together with the measured values,
are also listed in Table 14. '

As shown in Figures 28 through 41, the calculated stress
spectra generally exhibit shapes similar to those obtained
from the measured data. Some of the calculated peak frequen-
cies and peak amplitudes deviate significantly from the
measured curves. However, the calculated RMS stresses as
shown in Table 14 generally agree well with the measured values.

For a further comparison of the three different methods to
calculate external pressures, some calculated and measured RMS
longitudinal stresses in the main deck at midship (Sensor LVB)
are shown in Table 15.

TABLE 15 COMPARISON ON CALCULATED AND MEASURED RMS VERTICAL BENDING
STRESSES (PEAK~-TO-TROUGH, PSI) FOR SENSOR LVB AT MIDSHIP

Calculated
Method Equivalent Wave Approach Stress Spectrum
Wave Approach
Condition Method 1A Method 1B (Method 2) Measured
4 9243 9673 8343 6743
5 7810 8469 7295 6344
6 7800 6887 7183 5368

3. Conclusions

Based on the results and comparison discussed above,
the following conclusions can be drawn:

A. In general, both Method 1 and Method 2 give a reasonably

good agreement between the calculated RMS stresses and the
measured data in head seas.
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B. 2As shown in Tables 14 and 15, the RMS stresses calculated
by the spectrum analysis (Method 2) agree very well with those
obtained from the measured data. On the other hand, at some
strain-gage locations (Table 10) the RMS stresses computed by
Method 1 are significantly greater than the measured values.
This may be attributed to the fact that the equivalent regu-
lar wave approach ignores the possible variations in structural
responses to different wave frequencies. The spectrum analysis,
which accounts for all the significant wave frequencies, gives
a better average value. It should be noted that the spectrum
analysis is valid only where the relation between the stresses
and wave lengths can be approximated as linear.

C. The calculated stress spectra, as shown in Figures 28
through 41, assume similar shapes as those obtained from the
measured data. However, the calculated peak frequency and peak
amplitude may deviate from the measured ones in some comparisons.

D. The stresses calculated by Method 1A are, as expected,

comparable with those obtained by Method 1B for head sea
conditions.

Text continued on Page 53
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TASK III - INSTANTANEOUS STRESS COMPARISON IN HEAD SEAS

l. BSelection of Record Intervals

Two record intervals were selected for this phase of the
study. The detailed environmental information on these two
selected intervals is shown in Figures 42 and 43, as obtained
from Reference [8]. The selected time span for stress correl-
ation covers two complete encounter cycles, shown shaded within
a circle on the time history of the radar wave elevation,
Figures 42 and 43.

2. ©Ship Motion Calculation

To facilitate the wave-load calculations, the recorded
wave elevation within the time period of two complete cycles
was approximated by a regular wave with a mean encounter
frequency, an average height and an equivalent wave length
(See the enlarged scale in Figures 42 and 43).

The wave particulars for the two selected conditions
are shown in Table 16. Once the wave particulars were esta-
blished, a ship motion calculation was performed using the
ABS/SHIPMOTION program to compute motions, accelerations,
shearing forces and bending moments for three positions of the
wave crest along the length of the vessel, namely, at the mid-
ship and two quarter-length stations.

TABLE 16 WAVE CHARACTERISTICS AND SHIP MOTION DATA - TASK ITX

Location of
-1 Shi . . Vave Crest
Wave iﬁzd nggd Wave Length Wave Height H?ﬂm Pitch FGH%H?EE?MIA.P.
~-to- t. . .
Cond.| Cond. (knots) (ft.) (Peak-to-Trough) | (ft.) |(deg.) (
43 10.9 1551.0 5l.2 -15.9 2.8 220.0
15 Ly 10,9 1651.0 hl.2 20.4 1.48 40,0
45, 10.9 i65l.0 51.2 11.4 _ k.79 660.0
T 28.1 808.5 30.6 14.35 0.48 220.0
16 y7 | 281 | 8085 30.6 .64 | 5.40 140.0
43 28.1 808.5 30.6 -15.64 | -1.99 660.0

53




LOG BOQK DATA
DATE AND TIME | ©81-1@-74 2400
POSITION | 43-29 N 24-61 Y
COURSE AND SPEE 250 10.9 KNOTS
SEA STATE 7

i
Measured Wave !

WAVE HEIGHT | 25 FEET !
" REL DIR| 2 PORT 7 - Regular Wave
SWELL HEIGHT | 2@ FEET 8 L | -
" REL DIR| 2 FORT 5 - ‘
---- VISUAL WEATHER , COMMENTS ---- ? —Z |
OCAST o< A\
WAVE WEIGHT STATISTICS (FEET) o L8]
TUCKER/DYN. HEAD/RADAR s | : :
B-T SAMPLE S1ZE| 992 70 121 1 -5 f |
MAXIMUM REIGHT | 15.9  43.4  57.2 ||, L& |
19TH HIGHEST HTS| 15.0 39.% 39.7 = o : ;
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3. Input to DAISY Model

A modification of hydrodynamic pressure coefficients,
described as Method 1B in Task II, was carried out to make
the wave-induced vertical shearing forces and bending moments
acting on the DAISY model generally identical to those calcu-

lated directly by the SHIPMOTION program.
is shown in Figure 44.
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4.

For each wave condition, three values
calculated,
described above.

Comparison of Calculated Stresses and Measured Data

of stress were

corresponding to the three wave-crest positions
In order to construct a diagram of stress-

time history based on the three calculated values, it was
assumed that the computed stress follows a sinusoidal curve
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with a frequency equal to the wave-encounter frequency.

It was further assumed that the stress variation is directly
proportional to the dominant wave-load component, the phase
angle of which can be obtained from the ship motion calcula-
tions. For longitudinal stresses in the deck or bottom
regions, the dominant wave-load component was assumed to be
the vertical bending moment. A mean stress amplitude obtained
from these three calculated stress values, with proper phase
angles, was then utilized to plot an idealized stress curve
(See Figures 45 and 46).

A. Mean Midship Vertical Bending Stress - Sensor LVB

The calculated and measured mean midship vertical bending
stresses (Sensor LVB) are shown in Figures 45 and 46 for Wave
Conditions 15 and 16 respectively. The measured stress-time
history was selected within the same time period used for the
selection of wave data. Recognizing the difference between
the recorded wave elevation and the idealized wave profile,
it can be seen that the comparison of the calculated stresses
and the measured data is very good.

B. Other Stress Gages at Midship for Wave Condition 15

In addition to the mean midship vertical bending stress
(Sensor LVB), the following stresses at the midship were also
recorded at the same instant as the selected wave data:

LSTP - Longitudinal Stress Top Port
LSBP - Longitudinal Stress Bottom Port
LSBS - Longitudinal Stress Bottom Starboard

The measured and calculated longitudinal stresses at the
locations of Sensors LSTP and LSBP, as shown in Figures 47 and
48, exhibit a good agreement. However, the comparison of
measured. and calculated stresses at the location of Sensor LSBS,
Figure 49, is relatively poor. The measured stresses of LSBP
and LSBS should be generally comparable in head seas. The
difference between the measured stresses of LSBP and LSBS
may be attributed to irregularity of the encounter wave and
possibly irregularity of gage signals.

It should be noted that all the stress data other than
the mean midship vertical bending stress (LVB) was generally
recorded on Recorder No. 2, whereas the wave data and LVB
were recorded on Recorder No. 1. In addition, all the stress
data other than LVB was reduced separately from that of the
wave data.
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C. Three-arm Rosette Gages at Frame 143-144 for
Wave Condition 16

Other sensors recording simultaneously with the selected
wave data for Wave Condition 16 are rosette gages on the deck
at Frame 143-144, The longitudinal elements of these rozettes
are designated by AR1A, AR2A, AR3A and AR4A.

Since an element of the rosette measures strain in one
direction only, the measured stress reflects a straight product
of the strain component and Young's modulus (E), but not the
true stress. For purposes of comparison, it is essential to
calculate stresses on a consistent basis. Therefore, the
computed stresses shown in Figures 50-53 are the product of
the longitudinal strain component and Young's modulus.

The comparison of the measured and calculated stresses
at locations of Sensors ARlA, AR2A, AR3A and AR4A as shown
in Figures 50 through 53 are generally good.

5. Conclusions

Based on the results discussed above, the following
conclusions can be established for Task III:

A, The comparison of the measured and calculated longitudinal
stresses for a selected period of time in head seas is gener-
ally good. The calculated stress amplitudes agree well with
the mean values of the selected two stress cycles, with the
exception of two gage locations.

B. For the selected cases, the wave data are generally
consistent with the stress data.

C. To calculate structural responses in head seas, irregular

waves can be approximated by regular waves with equivalent
amplitude and frequency.
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TASK IV - INSTANTANEOUS STRESS COMPARISON IN OBLIQUE SEAS

1. Method of Approach

Due to the complexity of the wave load pattern in oblique
seas, difficulties were experienced in dealing with the hydro-
dynamic pressures and balancing of the structural model. To
improve the consistency between the external pressures and
the ship motion calculation, hydrodynamic pressure coefficients
were modified for lateral moments in addition to the modifi-
cations for vertical moments described in Task II.

To investigate the feasibility of performing an instan-
taneous stress comparison in oblique seas, two record intervals
were selected for test runs. The detailed information for
the selected intervals and the radar wave data as obtained
from Reference [8] are shown in Table 17.

TABLE 17 WAVE CONDITION SELECTED FROM REFERENCE [8] FOR THE
COMPARISON OF INSTANTANEOUS STRESSES IN OBLIQUE SEAS

wWave
Relative
Wave Ship Speed Dir. Heading Angle
Condition| Taps | Index; Interval | Run No. (knots) *
I (deg.) (deg.)
17 143 11 iy 345 32.3 64 Port 116
18 143 12 48 349 31.8 41 Port 139

For instantaneous stress comparison, two complete cycles
of the recorded wave elevation were selected and approximated
by a regular wave with a mean encounter frequency, an average
height and an equivalent wave length, (see the enlarged scale
in Figures 54 and 55).

For each wave, three wave-~crest positions, at midship and
the two quarter-length points, were utilized to calculate
wave loads. Each wave-crest position was treated as a separ~
ate loading condition. The particulars of these loading
conditions are shown in Table 18.
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TAELE 18 WAVE CHARACTERISTICS AND SHIP MOTION DATA - TASK IV

(a) . ' (b) ( Location of
Load- | Ship Wave Height |Heading ©) (@ | (= Wave Crest
Wave |ing Speed Wave Length | (Peak-to-Trough) | Angle |Roll |Heave |Pitch |Forward From
Cond. jCond. [(knots) (ft.) (ft.) (deg.)|(deg.) (ft.)(deg-)A'P'(Ft')
49 32.3 540.15 3Q.;8 116 -—0.27. 21.45 | 3.15 220.0
17 50 32.3 540.15 30.18 116 1.40 | 3.97 | 5.76 440.0
51 32.3 540,15 30.18 116 1.495(-18.0 | 1.85 | 660.0
52 31.8 888.29 33.46 139 ~0.4571 17.5 [-0.95 220.0
18 | 53 | 31.8 888.29 33.146 139 | 1.252| 20.4 | 5.317] 440.0
54 31.8 888.29 33.46 139 1.40 | -1.8 | 5.05 660.0
Notes:

a, b, and c see sign convention under Table 7

a Heading angle is measured counterclockwise from ship
centerline to wave direction

€ Roll is positive starboard deck edge down

2. Calculation of Wave=-induced Loads

To determine the wave-induced loads for input to DAISY, the
SHIPMOTION and DYNPRE programs were used. In obligque seas, the
wave-induced moments consist generally of three components, namely
vertical, lateral and torsional moments. Since the wave-induced
loads obtained by integration of a set of hydrodynamic pressures
and the corresponding inertia forces would generally not agree
with those obtained from the ship motion calculation, a correction
coefficient for the hydrodynamic pressure was introduced to modify
the vertical and lateral moments for the external pressures. After
this modification, the torsional moments may not be in agreement
with those obtained from tHe ship motion calculation.

Because of the complexity of the wave-load pattern in oblique
seas and the difficulty in balancing the DAISY model in the later-
al direction, the external pressures were not extended up or
deleted down to the wave surface for this task.
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3. Structural Analysis

The procedures utilized for calculating structural responses
for this task are generally the same as those in Tasks II and III,
except that the asymmetric wave load was divided into symmetric
and anti-symmetric components which were then treated as separate
loading conditions in DAISY. The combination of the symmetric
and anti-symmetric cases gives the total response for both the
port and starboard sides. (See Figure 5).

For each wave, in addition to the three dynamic loading
conditions corresponding to three wave-crest positions, a static
case reflecting the still-water condition was also included in
the analysis. The wave-~induced stresses were then obtained by
subtracting the still-water stresses from the total responses
for each dynamic loading condition.

4, Calculated Results

In order to generate a stress-time history curve based on
the calculated stresses at three different wave-crest positions,
the following two assumptions were made:

a. The curve was assumed to be sinusoidal.

b. The calculated longitudinal wave-induced stress was
assumed to be in phase with the effective moment (M_) combining
the wave~induced vertical and lateral bending momen%s, expressed
in terms of

M

= L
M, M, + (5)
(SML/SMV)
where M _, M = wave-induced vertical and lateral bending
' v L moments respectively, at the location under
consideration.

hull-girder section modulus with respect to
vertical and lateral bending moments respec-
tively, at the location under consideration.

SMV, SML

The phase angles of and M. were obtained directly from the
ship motion calculatidn, and the effective moment, M_, was then
determined graphically. A sample plot is shown in Figure 56.
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5. Comparison of Calculated Stresses and Measured Data

For each wave condition, three values of stress were calcu-
lated, corresponding to the three wave-crest positions described
above. 1In order to construct a diagram of stress-time history
based on the three calculated values, it was assumed that the
computed stress follows a sinusoidal curve with a frequency
equal to the wave-encounter frequency. It was further assumed
that the stress variation is in direct proportion with the
dominant wave-load component, and that the phase angle for
combined wave-induced vertical and lateral bending moments can
be obtained using the method described in the previous section.
A mean stress amplitude obtained from these three calculated
stress values with proper phase angles was then utilized to
plot idealized stress curves as shown in Figures 57 through 67.

Based on the results shown in Figures 57 through 67, it
can be seen that the calculated stress-time histories generally

agree with the measured data, except for Sensor AR4A in Figure 67.
Text contained on page 74.

[ Text continued on Page 74]
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CALCULATED TOTAL STRESSES

In the structural analysis, a total of 46 wave-loading
conditions, with wave heights up to 51.2 feet, were taken
into consideration. The detailed characteristics of these
wave conditions are shown in Tables 7, 9, 12, 16 and 18.

To examine the overall structural responses to the various
wave conditions, the fine-mesh results were scanned for
stresses greater than 11,360 psi (800 kg/cm2). Some sample
selective stress outputs which exhibit the maximum values
for all the wave-loading conditions are shown in Tables Cl
through C5 in Appendix C. In those tables all the direct,
shear, principal and Hencky-von Mises stresses are given.
The printed values represent the total stresses (still-
water plus wave) in kg/cmz.

The maximum total stresses in the selected fine-mesh
models which repres-»nt the most critical regions of the hull
girder are generally less than 20,000 psi- (1408 kg/cm2).

The only exceptions are the plate element Nos. 329, 333 and
347 of fine-mesh model 5 (Table C-4 and Figure 12), where
the highest stress reaches 21,513 psi (1515 kg/cm?¢). Most
of the high stresses occur at the hatch corner region where
the structural discontinuity causes significant stress con-
centration.

The strength deck of the SL-7 class containership was
constructed of ABS H33 higher-strength steel., In accordance
with the current ABS Rules, the permissible hull-~girder
bending stress for this vessel is 30,100 psi. Therefore,
the highest calculated total stress, which includes stress
concentration, is approximately 71% of the permissible
hull-girder bending stress.

Based on these calculated stresses and the full-scale

stress data measured to date, no stresses greater than the
permissible limit have been found.
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CONCLUSIONS

1. ~The overall comparison between calculated and measured
stresses for the dockside calibration is generally inconclusive
because of significant temperature differentials during the

test and the low magnitudes of the applied loads. However,

good agreement between the calculated and measured stresses

was obtained when thermal effects were small. For future cali-
bration tests, it is recommended that complete temperature data
be recorded and that appreciable mechanical strains be generated
in the structure.

2. The comparison of calculated and measured RMS stresses in
head seas is generally satisfactory, using both the spectrum
analysis approach and the equivalent regular wave approach. The
correlation using the former approach which takes into account
the variation in response to different wave frequencies, shows
better agreement than that obtained from the latter approach.
However, it should be noted that the spectrum analysis approach
is valid only near the midship section where the wave-induced
stresses are generally in direct proportion to wave heights.

3. The agreement of calculated and measured instantaneous
stresses in head seas is generally good; the calculated stress
amplitudes agree well with the mean values of the measured
stresses over a time-span of two complete encounter cycles.

4. The agreement of calculated and measured instantaneous
stresses in oblique seas is also generally good for the wave
conditions considered.

5. Based on the results obtained from this project, it can be
concluded that the existing analytical tools for predicting wave
loads and structural responses are suitable to assess the overall
strength of the hull girder. All the measured stress data reduced
to date from the SL-7 instrumentation program and all the calcula-
ted hull-girder stresses from the present study were found to be
of low magnitude. Consequently, no modifications to the present
hull girder strength standard are deemed necessary.

6. Regarding the structural responses, the ABS/DAISY system in
its present form is considered satisfactory for performing static
analyses for either quasi-static or dynamic loads.

7. In order to assess the strength of local structures and also
to improve the current methodology, further research is deemed
necessary to improve the calculation method for external pressures
(possibly verified by model experiments) and to improve the ship
motion program (SCORES) to account for three-dimensional effects
and possibly for non-linear effects with respect to wave heights.
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APPENDIX A - ABS/DAISY COMPUTER PROGRAM SYSTEM

The primary components of the DAISY computer program
system are the preprocessor programs, the DAISY finite element
program itself and the postprocessor programs. The flow chart
of the system is shown in Figure A-1.

Preprocessor System

Seven principal computer programs form the nucleus of
the three-dimensional ship structure preprocessing system.
Each program performs a specific function and is used in a
particular sequence so that the output of one program can be
used as input to another. The seven programs are listed below
in the order of their use:

1. SHIPMOM (SHIP MOMENT) calculates hull-girder shear
forces, bending moments and vertical deflections
for a vessel in still water or statically poised on
a wave.

With the vessel's hull geometry and a description

of lightship weight and cargo weights as inputs, the
equilibrium draft and trim are calculated for a ship
in a still-water condition or in any sinusoidal or
trochoidal wave. The sinusoidal waves are directly
applicable to ship dynamics and their effect on the
static response of the vessel differs very little
from that of the trochoidal waves traditionally used.
The program calculates quasi-static lateral bending
moments and torsional moments if the vessel is poised
in an oblique wave. Computer line plots of the shear
force diagrams, bending moment diagrams and deflec-
tions are automatically generated.

2. SHIPMOTION (ABS version of SCORES program) based upon
the two-dimensional ship theory for six degrees of
freedom predicts a vessel's motions (velocity and
acceleration) in a seaway, longitudinal and lateral
wave-induced bending moments and shear forces, as
well as torsional moments due to waves. The seaway
can be regular sinusoidal waves, irregular long-crested
waves, or regular and irregqular short-crested seas.
The sea condition can also be represented by measured
wave data. The program computes the ship motions and
the dynamic components of bending moment and shear
force resulting from the sea state chosen, as well as
long-term values, using probability theory based on
the intended service of the vessel. A sample compari-
son of the RAO for the vertical and lateral bending
moments with model experimental data are shown in
Figures A-2 and A-3.

A-1



DYNPRE (DYNAMIC PRESSURE) converts the data gener-
ated by SHIPMOTION into dynamic load inputs to the
DAISY finite element program. DYNPRE converts the
hydrodynamic pressure distribution generated by
SHIPMOTION into a pressure distribution at the

nodal points of the finite element structural model
and modifies the pressures to compensate for certain
discrepancies in the SHIPMOTION hydrodynamic pres-
sure calculation.

EXAM generates the ship structural finite element
model for either a portion of or for the entire hull
structure. Basic data generated by the program
consists of nodal points and loadings applied to the
elements and nodes. The program can generate a finite
element model of any type of vessel.

With the vessel's hull geometry finite element nodal
point locations are generated with a minimum of user
input. Structural properties of bending or membrane
plates, beams and/or rod members are input in a
convenient tabular form from which the program auto-
matically generates appropriate elements to represent
the ship structure. The elements are generated and
connected in a way that minimizes the bandwidth of
the structural stiffness matrix.

EXAM automatically calculates the symmetric and anti-
symmetrlc components of a general seaway loading.
Loads in the form of pressure heads are automatically
calculated anmdapplied to the elements according to
the vessel's hydrostatic cargo and sea loadings
described in SHIPMOM. The user also has the capa-
bility to input additional loads on elements and
nodes.

EXPLOT (EXAM PLOT) provides plots of the finite ele-
ment structural model generated by EXAM. The plots
are isometric or two-dimensional projections. They
can indicate nodal points, elements and freedom
patterns. Plots of any or all of the structural
portions of the vessel can be made.

LOADER calculates the statically consistent nodal
point loads from the element pressures provided by
EXAM and from the structure's own weight. Addition-
al dynamic forces due to ship motion are calculated
within the program.. LOADER also calculates the out-
of-balance forces for all loading conditions, and



DAISY

the coefficients necessary to compute a set of
pseudo-inertia forces necessary to balance the
structural model. The out-of-balance forces are
small in magnitude, since the vessel has been balan-
ced in SHIPMOM, but some small re-balancing is needea
to avoid artificial reaction forces from developing
at the points of rigid body support.

LOADER also takes the EXAM output and rearranges it
in a manner suitable for input to the DAISY program.

CATCH edits the data, allowing the user to make modi-
fications to the LOADER output before input into the
DAISY program. The user is able to make changes to
any previously defined input data by means of addi-
tional deletions or modifications.

DAISY (Displacement Automated Integrated SYstem) is a
general purpose program which performs linear elastic structural
analyses of two- or three-dimensional structures of almost any
degree of complexity under statically applied generalized
forces and thermal loads.

The DAISY program has a library of fourteen elements
which can be divided into six categories: bars, beams, membrane
plates, bending plates, solids and substructures.

Some special features of DAISY are:

l.

Inputs to DAISY can be in standard fixed formats or
in any format desired by the user. The user may also
interface his own preprocessor and postprocessor
programs with DAISY,

Intermediate results such as element stiffnesses,
assembled stiffness matrices and loads, can be output
on magnetic tape or disk file. Similarly, computed
results such as displacements and stresses can be
output on magnetic tape or disk file for further
processing.

DAISY automatically generates the total number of
degrees of freedom at each nodal point, exclusive of

rigid body supports, based on the elements connected
at each node.

DAISY is capable of generating planes of symmetry
and/or antisymmetry.



5. DAISY has a RESTART capability designed to break
down long computations into a series of shorter
runs.

POSTPROCESSOR SYSTEM

The standard postprocessor system consists of DAISYOUT,
a general purpose output program which prints the results
calculated by DAISY with the selective output of element
stresses and strains, and DAISYPLOT, which produces plots
of nodal displacements and stress contours. The output data
file produced by DAISY may print all or part of the results.
Selective output may be printed listing all elements which
are stressed above certain user-prescribed limits. Normal
stresses, shear stresses and stress concentrations (Hencky-
von Mises stresses) are calculated and printed.
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APPENDIX B - STRAIN GAGE SENSORS INSTALLED ON THE SL-7
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TABLE B-1

72/73 Senson scd Celibratien

(FROM REFERENCE {6])

TANLE

SENSON LIST

Spnzor Sensor Location () Sensitive rull Cireuiz
s Kem. Frame Posltion Config. Orient to Recorder Chrnnel Yode Cal Units W
1y boLva 186k | Tunne) Tops Dyadic Lorg. V. Dend. 1 1 - 8214 rst 1
1 T8 186-‘-'- Slide WA Shear Yert, it.T. Shear 1 1 - 4991 PSi ]
1 Kave Mt 390 Fwd Deckhouse {Sthd) Radar Anglud Range (1) 1 k] - 1.6 Yelt -
L Poll 178 26" Ped 117 ATT Pend, Trans. Rolt 1 A - 21 Deg. -
3 Pitch 178 26" Ped 31° ATT Tend, Lang. Fitch 1 5 - 29 Deg. -
[ Ay 178 23" Pad 1T ATT Mass Vert, V. Aecel, 1 [ - 1 e -
? Mt 138 ] 23" mad L' ATT Hass Trans, T. Accel, 1 7 - 1 & -
B FAV 90 14" Fud 59 ATT Hoss vert. V. Accel. L 8 - 1 n -
2 FAT 250 | 14" Fwd 59 ATT Hanx Traus, T. Accel, 1 g 1 K -

n 02 Pars, - RP¥, Rud, Hind S&D Hultiplex - Transnmittary 1 10 - 2.6 Volt -

11 LHE 135}. Side MA Dyadic Long M. Bend 1 11 - 8214 PSL 2

12 SFP 255 P 5ide 31" ATT Shear Yort, Shear 1 12 - 5000 T51 4

13 L33 265 § Side 32' ATT Shear Vert, Shaar 3 13 - 5200 Ps1 4

14 {1) LV3 2 1 A ,

15 1375 186 | S Tunnel Top Prradis Leng. H. Strese 2 2 A 8240 BS1 5

1% LS¥s 106 5 side H.A. Dyaldic Loug. H. Stress 2 3 A 8240 st 5

17 LSBS 186 |-§ Side Bottam - Pyndie Long. H. Szress 2 & A 8240 FS? b |

13 L5777 186 P Tunrel Top Dyadin Long, H. Streas 2 5 A 8240 PS1 5

13 LEY® 106 T Side A Dyadic Long. N, Strere 2 6 A 8240 PRI 3

N R 138 P Side Zeutom ppadie long. K. Stress 1 7 A 8243 rst 5

il sA2 87 | © Side 28" ATT Slyear Vert. shaar 2 4 A s00¢ P51 4

2 SAS B7 | S Side 26" ATT " Shear Vert. Shoar 2 9 A 5000 Ps1 ]
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TABLE
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(CONT'D)

BEMSOR L15T
72713 Senven and Calibrdtiom

Sensor Sensor cation Sensltive Full Circuit
HER Yom. EELF{'}H.TE:T Canfig. Orient to Racarder Chunnel Hoda Cal Units Ho.
3 Foty 3071 Level 04 CL Mass Vert, V. Accel. 2 10 A +1 (4) 3 -
4% FONT 07 Level 04 CL Masg Trana, T. Accel, 2 it A +1 [3 -
25 IHL 130 Level 05 1" P Hass Long. L. Accel, 2 10 {a) A +1 t -
% AT 13 Lewel 05 1M § Hass Trans T. Accel, 2 11 (a} A +1 B -
27 ikl g 1{36l 5 Tunnel Top, - Shear Long. Shear 2 12 A Q00 PSI &
28 BosA 135-_,: S Tunnel Bot Shear Long. Shear 2 13 A 5000 PSSt &
2% (1) L3 F 1 B
0 AR-14 143 Port Side Girder Single Long. W, Strain 2 2 3 334.6 1 ot 6
k) AR-18 143 gz:cat Deck Cutout Single " Disg. ¥. Strain 2 3 B 34,6 un &
n AR-1C 143 Under Deck Sinple Trans. H. Strain 2 3 B 334.6 p £
33 AT-2A 141 Stbd Slda Gixd, Single: Leng. H. Serain 2 5 B . 336 [TRF AL L]
4 AR<ID 143 - ({r'ear Deck Cutout Single Dleg. H. Strain 2 ] B 1346 e ]
35 AR-2T 143 Urder Dack Siﬁgle Trang. K, Strein 2 7 § 3.8 T b
3 An-34 143 Stbd Tunnel Single Long. H. Strain 2 8 ] 334.6 e &
37 AR-33 143- { 1a Board Single Diag. H. Strain z 9 1 3.6 w e ]
18 AR-3C 143 Cnder Dack Slagle Trane. H. Strain 2 14 B 1346 W &
g FLEL TS 143 Stbd Tunnel Single Long. K. Steain 2 11 ] 334, 6 ut ]
40 A%-LE 143 [Out Board Single Diag. H. Strain 2 12 B 334.6 W b
41 AN-4C L143 Under Deck Single Trans. N. Strain 2 13 3 b LETY S BT 6
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TABLE B-1l

72713 Sedson and Calibration

{CONT'D)

SENSOR LUST

Scasor Senqor Location{2} Sensftive Full Cirrult
Xa. Ko, Frase Position Confip. Oricnt to kecovder Chaonel Hode €al Units Yo
Q2w s 2 1 ¢ 5
%) R Y 91 Port Side CGird Single Tong. H. Stratn 2 2-1) 4 33eh L L L3
44 8} 91 {ﬂear beck Cubout Single Dileg. W, Strain 2 i VIA c 334, 6 LLFR [3
45 384 291 Under Deck Stngle Trens. ¥, Strain 1 [4]] c 3)4.6 yign &
hb RZA 291 Stbd Side Gixd Single Long. ¥, Stratr 2 2-13 4 3.6 pu 6
&7 R28 291 {.‘:enr Deck Cutcut Single Dlag. ¥, Strain 2 ? vIA € 14,6 | wegm 6
49 R3C 291, tnder Deck Single Transe ¥. Straln 2 . RSD 14 134.6 uH g 6

L4 R3A 231 Sthd Tuanel Single Long. N. Strain 2 2-13 c 3.6 ungn 13
59 RIB 181 { In Hoard Single Plag. H. Strain 2 E ViA c M. 6 we g L]
51 13 191 Under Deck Single Trens, | N, Strain F RSB c 234.6 ERF L ]
52 NGA 91 "Stbd Tunnel Single Long. W. Straln 1 1-13 c 334,86 utrgu L]
53 RiB 231 lﬂut Board Single Diag. K. Strain 2 { VIA c 334.6 un g ]
54 REC 91 Under Deck Slnﬁle Trans, H. Strain 2 ns3 c 34,6 y g 6
55 ESA .258 Stbd Side Cird Single Long. ‘M. Strain 2 2-13 c A34.6 g [
h] RSB 53 [In Corn, Hat 2 Single Diag H. Straia 2 { TIA c 34,6 g ]
57 R5¢C 258 Under Deck Single Trans. ¥, Strein 2 RSB c 334.6 RFL L]
58 P5A 53 Stbd Side Gird Single Long. N. Strain 2 I-13 [ 334.6 pm g’ ]
59 15} 259 {(mt Corn. Hat 2 Single Diag. N, Strain 2 {VIA c 34,6 g €
&0 L& 58 Undexr Deck Single Trans. H, Strain ] RSB c 14,6 LA ]
61 RIA 58 Stbd Side CGlrd Single Long. N. Strain 2 2-13 c 0.6 pn g ]
52 L. ] 58 - {Ngnr Deck Cukout Sinple Diag. W, Strain 2 { ViA 4] kRN puge ]
53 R7C 258 Under Deeck Slngle Trans. H. Strain 2 Bl C 3.6 | oumye &
L1 R3A 258 |/Stbd Tumnel ingle Long. ¥, Strain 2 2-13 c 13,6 | uwyn 6
LE) B35 258 In Toard Sihgle Diag. ®, Stralu 2 5 VIA c 334.8 Wn 3
& R3C 258 [ tudor Desk f\'!nrﬂe’ Trann, W, Strain 2 rew ¢ IR I &
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SEHSOR L15T

(CONT'D)

T2/13 Seancn and Calfhration

Lenser Sensor Lloestion (2) Senaitive Full Cire
Xa, Yom. Frama Fosition Config. trient to Recorder Channel Hode Cal Unita Mg
£? RIA 258 i Stbd Tunnel Single Leng. ¥. Strzin 2 2-13 ¢ 334, 6 ' L
63 RIB 258 |{Out Board Single Diag. He Strain 2 { VIA c 334.6 ptin L
69 RSC 258 |LUnder Deck Single Trons. N. Strain 2 RSB c 334.6 p"i £
70 [ALTN 226 |fStbd Side Gird Single Long. H. Strain 2 2-13 c 334.6 pr " £
7l R105 226 gln Corn, Hat & Eingle Diag, H. Strain 2 § VIA ¢ 334.6 ' ¢
72 RlCC 226 |{VUnder Deck Single Trans. N, Strain 2 RSB c A34.6 pt [
73 LUB¥N 226 |{Stbd Side Gird Single Leng. H. Strain 2 2-13 c 334.6 w [
% 5% ) 226 gﬁut Corn Hat & Single Diag. M. Strain 2 z'.’l.\ c 334.6 y"' " £
73 R11C 226 j\Underdeck Single Trans, ¥. Straln H RSB -.C 334.6 T il f
75 R12A 226 (fSchd Side Gird Single Leng. ¥, Strein 2 2-13 c 334,86 ym [
17 RE23 226 [dXear Deck Cutout Single Dlag. K. Strain 2 E\?IA c 34,6 [Tf A [
i3 Al 226 [LUnderdeck Single Trans, ¥, Strain 2 RsH 4 334.6 s :
¢ R1JA 226 I(5thd Tunnel Single Long. H. Strain 2 2-11 c 3346 p' L
& RIj2 226 Eln Boavd Single plag. H. Straia 2 {V[A c 334.6 ' [
8i R13C 226 JlUnder Deck’ Single Trans, N. Strain 2 SO c 3366 | wyr ¢
82 LYY 226 |fSthd Tunnel Single Lv;na. ¥, Stratln 2 2-13 c 334.6 [T .
) R143 226 [Our. Board ingle Disg. W. Strain 2 ?wu < 334.6 " [
54 Rl4C 225 {[ Ynder Deck Single Trans. N, Strain 2 ASB < 334.6 u {
3 (1 |3y} 2 1 ]
11 6751 244 | Ped Top Single Trons. H. Stress 2 2 b 10035 PSY (
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{CONT'D)

SEMSON LIST

12/73 Scason snd cnilbracion

_ fenaor Sensor Leestien (2) Senslrive Full
3. Yen, Frace Posltion Conlip. grient te Trcorder Channel Hode Cal
27 HLSST 89 § Sida i 5T Single Long. Ho Streay 1 2 {a) 0 13038
£3 I6ES 244 Pwd Bot, Single Trong. ¥. Stross H 3 1} 16218
87 HLESE 289 S Side 1' ATT Single Loag. N. Sitess H 3 (a) n 10038
33 TGI8 iﬁZ ift Bok Sinple Trend. M. Steess 2 4§ T 10338
91 HLSET 299 P Side.1' BT Single Lonn. d. Stress 2 s | o 10038
52 TGFSY 241 Aft Tap Stngle Trana. ¥. Scress 2 5 v 10038
23 nLsSey 89 P Slde 1" ATT Slogle Long., H. Stresa 2 3 {a) 7] 10933
23 NSl 196 Fwd Givd. Tep Single Trans, M, Stress 2 ] T ose
25 T3 196 Pwd Gird Bdout. Singln Trang, H. Stress 2 7 v 1C03%
54 T6¥S3 194 Afc Gird Bot, Single Trans. H. Stress 2 3 v 10018
37 Fiovi1d 194 Aft Giyd Top S5ingle Trans, He Stress H g o 19038
23 TCMSLX 194 Twd Clrd pld Single Trans, Y. Stress 2 6 (a) n G038
9 rtrdichy 4 193 Bot Gird Mid Single Trans, M. Stress 2 7 ia) ] o013 1
12 IGM53X 194 ALt Gird Mid Sinzle Trars. N, Stress 4 8 (a) |+ 12016 |
10 TENaX 195 - Top Glrd MId Single Trans, 1. Stress 2 9 {a) D 104410
102 TCY51X 136 Fed Gir Q Top Shear Trans. Shaar 2 6 fa)’ D 5000
103 TESSER 196 Fwd Gir Q Jor Shear Trana, Shear 2 7 (a) D sbog
194 T6553X 194 Aft Gir Q Bot Shear Truns. Shear 2 3 (a) D 5000
w3 TGSS4X 194 _AfE Gir Q Top Shear Traas. Shear 2 9 {a) 1] 5¢00
105 TGAS) 80 “Fwd Top Single Trans, M. Stress H 1o D 10038
137 TGAS2 a0 Frd Bot Single Trans, H. Stress 4 11 D 10038
138 15183 78 Aft Bot Stngle Trans, #. Stress 2 12 D 10038
icg TCASS 18 AlE Top Singln Trans, H. Stresa 2 13 D 10038



-2

ELEM CORNER PDINTS L.C.
HO 15T 2ND 3RD 4TH

APPENNDIX C - SELECTIVE STRESS QUTPUT
TABLE C-~1

TOP  SIGMA X
BOT

SIGMA Y

STRESSES IN QUADRILATERAL BENDING PLATE {QUAB4 ELN}

416 19‘5? ]1‘?98 2096 209% 17
417 2000 1999 2099 2100 17
422 1980 2000 2100 2080 17
423 2086 2095 1996 1985 17

STRESSES IN BENDING TRIANGULAR

9948
53,3
&0.9

0.0
0.9

0.0
0.0

@ D @ @

30.9

071.8
459

1o038.8
106%.4

=31.2
20.6

~140,1
181.48

PLATES {TRID3 ELM}

430 1984 2076 2088 17

431 1996 2096 2081 17

E=- P

0.0
0.0
0.0
0.0

=20.0
=1g8.2

-86.8
=510

STRESSES M QUADRILATERAL BENDING PLATE (QUAB4 ELM)

4232 2026 2035 Z03T 2027 17

43% 205% 2059 2070 2060 17

440 20466 2076 2040 2087 1T

441 2069 20868 2080 2070 17

457 2097 2095 2195 2197 17

458 2098 2097 2197 2198 17

45% 20°% 2098 2178 2199 17
NOTES

22,0
5Teé

254,88
2T5+%

585.3
T1%.%

667 .5
T05.5

102.4
44,1

TT0
b5.F

98.0
48.7

O W @ o+ w4 W W

~213.2
=200.2

=115.3
=11%.4

=75.2
~1247

54a2
10ld

1025645
10073

853.3
929.0

85443
935.1

SIEMA 2

8,0
0,90

0.0
G.0

9404
955.0

997.0
1070.3

958.56

955,68

1087T.3
1071.6

o0 00 00 oo
.. v . .. -
oD OO0 oo OO

oo
.
=X=]

T.0
0.0

0.0
0.0

TaY

=58.T
-58.8

=~65,2
-107.9

=564
=224

le1
=50

=0.8
=S

=5,.8
=32.3

51543
511.3

44545
440.0

=583,9
=58%.1

59346
593.7

=27.2
4847

~31.1
=33.4

=-59.7
~50e%

PINE MESH #1, PORT

SCLECTIVE STRESS QUTPUT FOR LOAD CASE 1%
REXOEAREEB LR A ASd S RRS N bbb bbb oAt At dan

SIGHMA 1

27T.9
#50.2

1043.0
0el.1

#71.8
9.4

997.0
10%0.4

#58.8
@55.6

1007.3
1092.5

433.0
£55.8

545.2
560.3

1001.8
1047.32

1031.7
1070.3

1027.3
1009.5

"B544%
230.T

868,9
93T.9

SIGHMA 2

93.7
4B.0

26.7
49,5

~34,3
§l.2

“140.1
181.6

=200
=~18.2

=-88.9
=51.,%

~624,.2
55847

~415.8
~a04 43

«321.7
~340,1

=300.0
25242

101.6
4l.8

T5a8
5.2

93.4
45.8

392.1
451.1

508,2
515.8

503.0
LELYT

560,32
A58 .5

439,23
465.9

587.1
5722

528.56
52743

400,5
48243

£96.8
&93.7

£85.8
&85,3

4562.8
483,9

289.4
432.48

38T.8
446,11

dy
TAU KAX HEWCKY-VON ANG S
MESSTRESS wseus

ih
834.% LEL X-45
927.1 -85

1029.%7 LCL X-~86
1057.2 -84

98%,2 GLB Y~Bé
956.% -84
icy
1073.9 GLY ¥ B9
ic11.% ~89

9487 GLB Y~%0
Q54,8 -a9

1133,3 GLB Y=-39
11i9.3 -8

920.5 GLB X 3E
916.0 a7

23448 GLB X 34
§29,0 32

1244.8 GLE X=-28
1252.5 ~Z%

120%,9 GLE X 2]
1222.7 3l

$60.5 LCL X~88
969.3 ~57

81%.2 LEL X=~B7
899.9 =07

02642 LEL X~B5
9i5.9 =04

2 pach nedal point is represented by a four-diglt number, the first two digits indicate the station number

of the finite element modsl and the last two digits are the local nodal number.

Where the local coordinate system is used, SIGA X Is the direct stress in the direction from first to
second nodul polnt., SIGHMA ¥ is the direct stress orthogonal with SIGMA X.
Where the global coordinate system is used, SIGMA X, SIGMA Y and SIGMA 2 are stress in the directions as

shown in Figure 3,

1f the global angle is printed, the coordinate stresses are in global system.

line indicates the results at the plate bottem.

2 d if not, they are in element
local coordinate system the first line indicates stresses and angles at the top ¢f the plate, the secoad



A

TABLE [-1 F1ME MESH #1
{Contd)

SELECTIVE STRESS QUTPUT FOR LOAD CASE £3 STRE s KG/C
BERER AR A DGR ER Atk R Aok ok kg 583 KG/CMe o2

ELEM CCANER PBINTS L.C. TOP SIGMA X SIGHMA Y SIGMA 2
NO 15T 2ND 3RD &TH DALSY 50T TR Sxona 1 Sioa 2 TAU hAx :§§c§¥;:gz J

STRESSES IN QUADAILATERAL BENDING PLATE (QUAB4 ELM}

460 2100 2099 2199 2200 1T T 13.2. 1022.0 0.0 ~75.5 1027.6 Teb 51
. . 27. 0.0 1023.9 LLL X
B T6.0 1061.9 0.0 =52.5 10646, 3.2 495:7 1033.90
465 2080 2100 2200 2180 17 T 0.0 ~14.2 74,7 -122.0 90%,5 29.0 50%.3
. o . - . 1004.3 6LB Y
-] 0.0 T5.4 8717.2 ~170.2 1011.1 41:5 #B4.0 991.1
466 2186 2196 2098 2086 17 T G.0 =l41.1 98548 47.1 9877 143,1 565.4 1
. . . - 065,5 GLB Y
o 0.0 17e.2 1077.4 60.% 1601.4 174,1 453:6 1005:7
STRESSES IM BENDING TRIANGULAR PLATES {TRIB3 ELM)
473 2070 2180 2080 17 T 0.0 27.1 T846.5 5.3 798.3 1.5 391.5 799-7 GLB ¥
B 0.0 T2.1 814,90 115.7 831.6 Shety 3BC.6 805.8
476 2076 21886 2084 17 T 0.0 =217 95047 T2e5 95641 =270 491.5 969.9 GLB ¥
23 0:0 =22.2 944el B5.2 951.5 =29.7 490.6 96b.7
47T 2096 2196 2081 17 T 0.0 -21.8 1072.0 Q4.7 1079.7 ~9%.5 58%46 1132,7 GLB Y
8 0.0 -55.2 107441 125.3 10e9.9 ~48.9 579.4 1125.9
455 2196 2281 2081 17 T 0.9 -38.8 1197.2 T4.0 1201.6 =43,.3 52244 1223.8 GLB Y
B 0.0 ~25+6 1139.0 92,1 1146,.2 =32.9 58%9.5 1163.0
STRESSES IN QUADRILATERAL BENDING PLATE (QUAB4 ELM]
489 21397 2196 2296 2297 A7 T 20.2 1014,9 C.0 10,0 1015.0 20,1 4975 1005.1 LCL X
g 28.0 102548 C.0 =-20.2 1026,0 270 499.2 1012,.5
“90 2198 2197 2297 2298 17 T - TT.5 972,9 q.0 ~29,3 ?73.8 Toeb 448,56 937.9 LCL X
B 2544 952.7 0.0 =33.3 G54.3 23.6 45542 4245 :
491 2199 2190 2298 2299 17 T 104.1 993.2 g.0 =470 998.3 89.1 449.5 §52.6 LCL X
’ B =37 G45.1 0.0 =58.9 F48.7 =13.3 401.0Q 955.5
42 2200 21%% 2299 2300 1T T =20.9 1033.5 0.0 ~i13.2 1045.5 ~32.9 53%9.2 1062.4 LCL X
B 6448 1053.3 0.0 =75.8 1059.1 59.1 500.0 1030,.9
497 2180 2200 2300 2280 17 T 0.0 -25,.0 97041 ~102,3 98045 =35.5 508.0 992.7 GLB Y
B 0.0 T5.8 293.8 =150.5 101i7.9 5l.B8 4831 993.0 :
498 2286 2296 2196 2186 1T T 0.0 =14040 9693 450 ?71.2 =141.8 556.5 I049.3 GLB Y
) 0.0 125.6 1036.9 5048 1040.7 i21.8 459 % G854



ELEM
&0

18T

2ND

CCRANER PCINTS
3RD

L.L. TOP
4TH pa|gy 80T

SIGHMA X

TABLE C=1
{Contd)

SELECTIVE STRESS JQUYPUT FOR LOQAD CASE 53
WAL R SR R O PRk R AR S ek

SIGHA Y

STRESSES IN BENDING TRIANGULAR PLATES {TRIB3 ELM}

—

503

505

506

zlep 2270 2280
2186 2276 2286
2156 22%6 2281

i7

17

17

o4 o4 @—

=4g.0
1407

-12.8
2842

=437
~2.0

STRESSES IM QUAURILATERAL BENODING PLATE (QUABSL ELM)

508 2297 22956 23946 2397 17

509

510

511

517

518

525

526

527

529

229E

2299

2200

2280

2386

2250

2240

2270

2246

2297

2298

2299

2300

2296

2350

2340

2370

2397

23%8

2309

2400

2296

2360

2350

2360

2356

2398

2399

2400

2380

2286

2250

2250

2280

2256

17

17

17

17

17

17

17

17

17

L |

W W Ty e Dy w4 @~ O @

=1645
13.5

45,5
=53.3

75.8
=84.2

5247
54 .6

0.0
0‘0

0'0

. a . L) -
oo o

O oaq Q0 oo o

o0 o9 Qo

1010.5
1045.0

1075.1
1023,0

1094,5
1025.9

1035.7
1100,9

=50.6
T2.9

=173,3
176.3

=-0e3
9241

~31.7
130.8

=56.1
121.5

43.1
~53.5

SIGHA 2

FINE MESH #1

TAU

102.0
9345

0.6
51.3

102.4
112.2

SIGHA L

035.0
920.9

F41h
059.0

1063.5
1069.3

1p11.0
1045.0

1075.7
1023.9

1099.4
1030.3

1049,7
1108.3

1001.2
1049, 2

933.2
i080.9

795.3
66,9

T28.2
8l5.8

886.5
995,5

825.1
753.3

SIGMA 2

=61,
129.5

=13.0
25.4

-53,2
=l4.8

=-17.2
13.4

4449
=54,2

T0.8
=88.4

-76.7
4T3

=578
59.7

=178.1
174.1

=147
T5.0

=4T7.1
113.9

-52.9
111.7

37.9
~58.1

STRESS : KG/CMe 2

TAU MAX HENCKY=YCON ANG

440.7
3%95.7

47T.6
466,8

558.3
54240

514.1
515.8

515.4
539,0

514.3
55%9.5

563.2
530.5

52%.5
494.7

555,7
45344

405.0
395.9

387.7
351.0

ATh T
44l.9

393.6
405.7

863.,2 GLB Y 8,

E63.5

948,10
G4b.b

1091.1
10756.7

1019.7
1030.3

1054,0
1052.1

1065.8
10773

10%0.1
1085, 4

1031.3
1020.6

1033.8
1005,2

BC2.8
831.9

752.9
T65.2

9L9.6
44 .0

806.8
7E4.0

MIS.STRESS

8

GLB Y 8¢

81

GLB ¥ &

LCL

LCL

LCL

LoL

GLB

GLB

GLE

GLB

GLe

GLe

B



TABLE 0~ 2 FINE MESH K3, PORT

SELECTIVE STRESS OUTPUT FOR LOAD CASE 53

A Rk K R AR R Rl R R b b R AR Ry - STRESS : KG/ CMea?

ELEM CORNER PCINTS L.C. TOP SIGMA X

NO 1ST  2ND 3RO 4T bAlSy 507 SIGMA Y SIGHA 2 Tay SIGMA ) SIGMA 2 TAU MAX HENCKY=VON ANG

MIS.STRESS LX)

STRESSES IH BENDING TRIANGULAR PLATES [TRIB3 ELM)

N

251 1701 1704 1501 17 T =214.5 -B79.%9 0.0 =3h243 -5%,0 =1024.5 4TT3 $9l.4 LCL X-22
B -123.7 -847 .4 C.0 ~32446 0.5 ~%Ti.8 486.2 272.1 =20

STRESSES 1IN GUADRILATERAL BEMDING PLATE (CUADL ELM)

— —— -—

272 1B01 12086 1706 1701 17 T 0.0 =161l.6 =806,9 9.2 ~161.4 “307.0 322.8 T39.7 GLB ¥ o
B 0.0 ~163.4 =305.2 beld ~163,3 ~805.3 321.0 T3T3 (
STRESSES IN BeNDOING TRIANGULAR PLATES (TRIB3 ELM)
291 1801 1204 1501 17 1 -123.82 ~03%.3 0.0 ~234.3 ~53.% ~909.2 4277 §82.5 LLL X=1¢
8 ~101.5 -853.3 0.0 ~222.9 =-40,.3 AL TS 437.0 594.9 ~1!
-STRESSES IN CUADRILATERAL LENDING PLATE (QUAES ELM)
310 1901 19046 180¢ 1801 17 T 0.0 =155.4 =-802.0 214 -15447 ~602.7 324.0 T37.6 GLB Y
[ 0.0 ~149.3 ~500.9 2&.5 -148.2 ~E0L.9 3269 739.1 J
STRTSSES IN EENDING TRIANGULAR PLATES (TRIB3 ELM}
31% 1901 1%C4% 2001 1 T ~124,8 -855,7 0.0 ~187.9 =793 -501.2 411.0 §64.3 LEL X-1.
B =1ll4.2 ~83%.1 C.0

~192.& Le-1-T34 -B&T.1 410.5 555.9 -1



TABLE £~ 3 FINE MESH #4

SELECTIVE STRESS QUTPUT FUR LOAD CASE 15
Fad AR R RE ECER R LN R ROk e

ELEM CORMER POINTS L., TOP SIGMA X SIGHA Y SIGMA 2 TAY SIGMA 1
KO 1ST 28D 38D &TH pajsy BOT
STRESSES IN QUADRILATERAL BENOING PLATE (GUADS ELM)
320 3197 3196 3296 3297 5 T 10.0 798.8 0,0 ~256.8 799.7
B 13.6 824.5 0.0 “32,0 82548
342 31TH 3196 3206 3278 5 T 2.0 131.1 06,7 4304 epa,
8 0.0 -138.0 849.6 54,6 B52.6
343 3297 3296 3396 2397 5 T 42.7 g4t.7 0.0 -246,1 B4Z,.5
B —46.5 7£5.6 0.0 ~-15.8 785.9
352 3276 3296 3396 3378 5 T 0.0 21.7 T24.0 17447 765.1
8 0.0 -150,5 680.3 13244 700.2
363 2397 3294 3496 3497 5 T 0.4 BT7.1 0.0 -10.3 879,2
B 5,5 B56.3 0.0 12.5 858.5
427 3497 3494 3596 3597 5 T 98.5 862.6 0.0 48.3 865,7
B 99.6 844,3 0.0 66,5 247,2
STRESSES IN BENDING TRIANGULAR PLATES (TRIB3 ELM)
439 3596 3496 3587 5 T 1028.9 230.7 0.0 -471,2 1247.2
B 1024 .6 231.7 0.0 ~474,8 1246.7
461 3596 3496 3484 5 7T 1029.4 125.8 0.0 -20.4 1029,9
B 993 .4 17444 £.0 ~14,8 993,7
STRESSES IN CUADRILATERAL BENDING PLATE (CQUAB4 ELM)
484 35C6 3657 3596 3557 5 T 253.6 973.5 0.0 56247 1306.0
8 380.90 066.8 9.0 56T,7T 1312.4
STRESSES IN BENDING TRIANGULAR PLATES (TRIB3 ELM)
486 3597 3596 3687 5 T 170.1 977.7 .0 ~10.2 977.8
B 110.6 062.89 0.0 ~10.1 962.9

STRESS : KG/CM=#2

SIGHA 2

9'1
12.3

120.7
=141.0

H52.0
~46.8

"19.3
=-200. 4

T0.3
5.3

5.4
F6.7

12,3
2.6

185,23
174.1

zl.1
3heh

TAU MAX

395.3
40648

390.2
497.2

400.2
Albed

39242
45043

4£04.5
426406

385.1
375.2

&17.5
51B.8

422.3
409.8

54244
639.0

403.9
396.2

HENCKY-VON
MIS.STRESS

ANG

LR X

795.2 LCL X-t
819.7 -

852.,1 GLD Y ¢
931.7 {

82243 LCL X~
810.,3 =¢

TT449 GLB Y 7
819.0 £

846.3 LCL X-!
855.9 f
822.1 LCL X ¢
603.2 i

1241.1 LCL X-
1242,0 -

g50.9
21%.1

LCL %

1295, 5
1295.6

LoL X

904.9 LOL X~
890.0 -



TABLE C- 3
{Contd)

SELECTIVE -STRESS CUIPUT FLR LOAD CASE 53
FTARR LR ELA UL LMy h A s kbt kb v ik

ELEM COANER PGINTS L.C. TOP SIGMA X SIGMA Y
ND 1ST 28D 3R0 4TH pp gy BOT

STRESSES IN QUADRILATERAL BENDING PLATE [QUAB4 ELM)

——

427 3497 3496 3596 3597 17 T 127.6 852.1
-] 124.3 234.9

STACSSES IN BENDING TRIANGULAR PLATES {TRIB3 ELK}

£39 35956 34946 3587 17 T 1003.0 210.0
B 1001.4 209.0

STRESSES IN QUADRILATERAL BENDING PLATE [(QUAB4 ELM}

440 3420 3410 3510 3620 17 T 480.0 154,1
' - B ~46% .1 9&.1

441 3420 34620 3640 3440 17 T 110.0 =184 8
B 258.3 T5.2

STRESSES IN BENDING TRIANGULAR PLATES (TRIB3 ELM)

461 35986 3496 3486 17 T 1017.2 187.4
B 948 .5 170.1

STRESSES IN QUADRILATERAL BENDING PLATE (QUABA ELM)

455 3402 3702 3732 3632 17 T 6.0 ~5Tha2
: 8 0.0 -675.1

484 3586 3687 3596 3587 1T T 34244 935.5
B 355.9 $29,2

SIGMA 2

=124.8
=129.8

0.0
Cel

FINE MESH ¥4,

TAU

41.1
44,8

~455 .4
=457 ¢

523.0
475.9

=520.58
~56649

~49.3
=40,3

=342.6
=342,7

528.0
530.1

STBD

s1i6HA 1

855.2
B37.7

1210.4
1210.2

846843
36T.0

503.8
01,0

1020.1
970.5

38.0
35.5

1245.3
1245,.2

STRESS : KG/CMe a2

SIGMA 2

12446
121.5

22443
=T22.9

~5T8.2
~35T 5

iB4.5
l58.0

-839,0
~040.4

33.7
39.9

TAU MAX

36543
358.1

603.8
60444

546.3
553.5

54140
58443

41T .8
401.3

43845
438,90

605.8
602.6

RENCKY=YON A

MIS.STRESS

800,.,2
T84, 1

1209.0
1209.7

8995
9756

937.8
1035.,0

24145
89844

8538.7
§58.7

1228.8
1225.,7

LCt

LcL

LCL

Lol

LcL

GLe

Lo



L~D

ELEM

R 18T

CORNER POINTS
2ND

330

L.C. TCP
“TH.DAISY 30T

SIGMA X

SELECTIYE STRESS CUTPUT FOR LODAD CASE 5D
ok ok e G bR R R Y oR Y ek kb R ok ok R kg

SIGHA 1

SIGMA Y

STRESSES IN QUACRILATERAL BENDING PLATE {QUAB4 ELM)

307
ags
309
310
320
324
325
326
329
333
334
235
347
348

g

1994 1992 2092 2094 14

1994

1998

2000

i%80

1942

1952

1972

1985

2094

2096

2098

2172

2152

2142

1994

1996

1998

2080

2042

2052

2072

2086

2092

2094

2096

2192

2172

2152

2094

2094

2098

2100

2052

2072

2092

2092

2192

2194

2196

2092

2072

2052

2096

2098

2100

2000

1952

1972

1992

1992

2194

2196

2198

2072

2052

2042

14

14

14

14

14

14

14

14

14

14

14

1%

14

is

T
B
T
B
T
8
T
B
T
B
T
B
T
B
T
B
T
8
T
B
T
B
T
B
T
B
T
B
T
8

230.9
225.1

248.0
19343

1B80.5
146.1

88.0
95.0

1297.4
1255.9

1079,.1
1019.4

4Ll
bd4.l

932.0
588.4

277.9
23245

159.6
111.2

155.¢6
141.5

131.7
143,8

343.3
384,7

1511.8
1503.8

297.9
1005.0

38442
897.8

121.7
125.1

184,8
123.3

143,6
129.5

TABLE C-4 FINE MESH #5, PORT

SIGMA I

. ¥
o O oo Qo oo

- .

- Q9 oo oo oo

B4

TAU

=-1D.1
-Ted

3.1
105.4

12241
12645

135.5
157.1

215.1
209.8

~2.3
-20.2

55,2
S4.7

231.t
231.0

723.7
584 .4

~54.8
—45.4

~7.8
2.1

30.0
36.8

113‘0
117.8

bhek
65.4

39.0
35.9

1297.5
1256,0

1089.4
1032.9

96045
90%5.2

953.2
218.4

719.1
291.8

870.2
827.8

1013.2
967.1

130444
1276.3

1308.1
1278.4%

1515.4
15Q5.7

98,0
1005.0

885.5
§99.7

1493.6
l44g,5

1011.4
959.2

872.8
842.0

SIGHA 2

230.8
225.0

237.6
185.0

161.4
125.0

668
65,1

205.8
165.7

159.5
110.7

152.0
127.9

B6.2
F6T

~-199.5

-139.4

4#12.1
40643

308.8
2B%.56

192.1
18%.4

112.4
124,5

179.8
118.2

141.5
127.6

STRESS z KG/CM« » 2

TAU MAX HERCKY-VON
MIS.STRESS

533.4
515.5

425.9
423.9

399.5
390.1

G643 .2
#246.7

356.7
363.1

355.3
35844

43046
41406

60%.1
589.8

753.8
T08.9

551.6
549.7

344.4
3577

346.7
35542

690.86
66240

415.9
420.5

265.46
357.2

1198.9
1160.0

992,.2
953.9

§50.8
049.6

921.4

887.5

835.5
82l.6

802.4
T73.4

G465
906.1

126345
1230.8

l4ld. 4
1353.5

1257.1
1349,3

884.9
§96.0

806.8
821.5

1440.7
1390.5

934.8
905,9

811.4
186.0

L

L

L

L



TABLE £~ 4 FINE MESH #5y PORT

(Contd) STRESS : KG/CM~ o2
SELECTIVE STRE5SS OUTPUT FOR LOAD CASE 58
etk ok Aok RO R R R R R Y R ol ekl bk ok kR v

ELEN CIRNER POINTS L.C, TOP SIGMA X S1GMA Y  SIGMA 2 TAU  SIGMA 1 SIGMA 2 TAU MAX HENCKY-VON 4ANG §1G3
NQ 15T 2MD 3RD &TH OAlSY BOT ' ' MIS+STRESS ssasehXlS

STRESSES IN BENDING TRIANGULAR PLATES (TRIB3 ELM)

374 2124 2132 2la2 14 T 17.8 =131.4 0.0 hhoed 41543 “528.9 472.1 019.7 GLE X 4Q.5
B 3% ~121.2 0.0 5694 435,3 =517.1 4T6.2 025.9 40,1
378 21956 21lle 2192 14 T Tlh.1 =?219,2 0.0 418.0 §72.5% =377.6 625.0 1110.5 GLB X 20.8
B £0L1.8 =270.1 0.0 Anl.h F59.3 ~435,6 097+ 4 1235.1 19.5
STRESSES IN QUADRILATERAL BENDING PLATE {QUAB4 ELM!

384 2141 2191 2183 2173 14 T 231.9 2.9 0.0 G64,1 62T.3 =341.5 484 4 8511 GLB X 3&.7
] 260.1 =53.6 0.0 46444 5934 ~386.9 490.2 255.2 35.7
385 2173 2183 2186 2174 14 T 327.3 ~151.5 0.0 400.2 554,2 -370.4 466.3 812.5 GLB X 29.5
B 271.7 -237.1 0.0 3874 400.9 ~446.1 46345 803.0 28.3
38E 2194 2192 2292 22%4 14 T 232.1 1384.5 0.0 =140.7 140144 215.2 393.1 1307.2 LCL X-B3.1
B 218.6 1357.6 0.0 ~159.7 1379.5 126.7 591.4 1292.5 ~-82.2
389 2196 2194 2294 22%% 14 T 24446 1049.7 © 0.0 ~111.2 1065.8 229.5 417.7 970.6 LCL %x-82,3
: 8 208.7 1030.1 0.0 -10%9.,1 1044.5 194,5 42540 F62.0 -8248
390 2198 2196 2296 2298 14 T 14245 876.1 0.0 ~48,2 879,3 139.3 '370,0 gl8.6 LLL X-86.3
B 147.3 B78.2 0.0 =41.0 880.5 145.0 367.8 BLT.7 ~86.8
392 2104 2102 2202 2204 14 T leB.4 ¢.0 Téj-S 16%9.1 £13.3 142,71 335,3 T52.2.6L0 Z 15,1
B 175.4 0.0 T57.3 172.9 804,80 127.9 3394 T49,1 5.5
402 2272 2292 2192 2172 14 T 0.0 38.8 1348.8 178.2 1372.6 15.0 678.8 1265.2 GLB Y 8244
B 0.0 Tla3 1323.9 197.9 1354,5 4048 656.0 13345 8l.2
03 2252 2272 2172 2152 14 T 0,0 .139,.5 103T.4 135.6 1057.7 119.5 46941 1003,3 GLB Y El.6
8 0.0 51.5 T4 6 159.6 A1001.4 2447 hEl.4 289.3 80,5
404 2242 2252 2152 2142 14 T C.0 11647 889.5 181.2 929.9 T6.32 426,8 B%94.2 GLB Y T7+4
B 0.C 955 852.7 168.8 BeL.7 59.5 4l4e6 860.4 78.0
405 2232 2242 2142 2132 14 T 0«0 101.0 004,08 12645 826.8 79.0 37349 790.3 GLB Y 80,1

g G.0Q

Gh.l TT13.9 134,27 T9%.1 5E.9 370.1 T71.3 794
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FORCES AND STRESSES IN FLANGES

SIGHA X

SIGMA Y

TABLE C- 5

SELECTIVE STRESS OUTPUT FOR LOAD CASE §1

SL=Ty FIKE MESH #6, STGBOD

(IS XSRS AR M FR AR LA AL XL T IO

OR RCDS (ROD2 ELM}

ELINM CCRNzR POINTS LCAD
O START END LASE
124 4484 4405 15

AXIAL
FORCE

0,91970-01

STRESSES IN QUADRILAVERAL BENDING PLATE (QUAB4 ELM)

408 4484 H52) 4455 4485 15 T
B

433.1
244, 8

STRESSES Ih BENDING TRIANGULAR PLATES {TRIB3 ELH)

409 4521 4486 44565 15 T
g
410 4465 4495 4HKES 15 T
B
42Q 4523 4436 4521 15 T
-}

42087
39.3

137.9
244,2

427.8
§3.1

SIGHA

AXIAL

STRESS

L9.6T
0.0 694.9
0.0 L£4T.5
0.0 57T0.8
0.0 240.3
0.0 67245
0.0 64849
0.0 690.5
0.0 279.5

i

Tal

397.8
297.7T

=304.8
~26248

=314
=-361.9

~235.0
=191.4%

S5IcHA 1

902.7
6605

£83.2
42646

8z2l.7
851,1

820.4
388.7

SIGHA 2

14542
316

22443

=11.3
32.0

209.9
=56a1

STRESS : KG/CM=e2

TAU MAX  HENCKY-VON

418.8
3l4.5

329.5
262.8

41645
41446

269,2
22244

MI1S.STRESS

ANG

918.8 Gl 2 3
3

645.3

T35.2 GLB Z+3

510.4

-3

827.,5 GLB -2

84546

-3

728.1 GLB Z=-3

4195



SHIP RESEARCH COMMITTEE

Maritime Transportation Research Board _
National Academy of Sciences-National Research Council

Fkdkkkk ki

The Ship Research Committee has technical cognizance of the
interagency Ship Structure Committee's research program:

Mr. 0. H. Oakley, Chairman, Consultant, McLean, VA

Mr. M. D. Burkhart, Naval Oceanography Division, Department of the Navy,
Washington, D.C.

Or. J. N. Cordea, Senior Staff Metallurgist, ARMCO INC., Middletown, OH

Mr. D. P, Courtsal, Viece President, DRAVC Corperation, Pittsburgh, PA

Mr. W. J. Lane, Consultant, Baltimore, MD

Me. A, C. McClure, 4lan C. MeClure Associates, Ime., Houston, TX

Dr. W. R. Porter, Vice Pres. for Academic Affuirs, State Univ. of N.X.

Maritime College
Prof. S. T. Rolfe, Civil Engineering Dept., University of Kansas
Mr. R. W. Rumke, Executive Secretary, Ship Research Committee

Fhdkdk ki Awh

The Ship Design, Response, and Load Criteria Advisory Group
prepared the project prospectus, evaluated the proposals for this project,
provided the liaison technical guidance, and reviewed the project reports
with the investigator:

Mr. W. J. Lane, Chairman, Consultant, Baltimore, MD

Prof. A. H.-S. Ang, Dept. of Civil Engineering, University of Illinois

Prof. S. H. Crandall, Dept. of Mech. Engrg., Massachusetts Inst. of Technology
Mr. L. R. Glosten, L. R. Glosten Assoceiates, Inc., Seattle, WA

Mr. P. M. Kimon, EXXON International Company, N.J.

Dr. 0. H. Oakley, Jr., Project Engineer, GULF R&D Company, Houston, TX

Prof. R. H. Scanlan, Dept. of Civil & Geological Engrg., Princeton University
Prof. H. E. Sheets, Chairman, Dept. of Ocean Engrg., Univ. of Rhode Island

Mr. J. E. Steele, Naval Architect, Quakertoum, PA

Khkkhkkk

L [ [ III———



SL-7-1,
St-7-2,
SL-7-3,

SL-7-4,
SL-7-5,
SL-7-6,
st-7-7,
SL-7-8,

SL-7-9,

SL—?-IU,
St-7-11,

SHIP STRUCTURE COMMITTEE PUBLICATIONS

These documents are distributed by the National Teehnical
Information Service, Springfield, Va. 22151,  These doec-
uments have been amnounced in the Clearinghouge — journal
U.5. Govermment Research & Development Reports — (USGRDR)
under the indicated AD wumbers.

S5L-7 PUBLICATIONS TO DATE

(5SC-238) - Design and Tnstallation of a Ship Response Instrumentation System Aboard the
SL~7 Class Containership 5.5. SEA-LAND McLEAY by R. A. Fain. 1974. AD 780090.

(S5C-239) - Wave Loads in a Model of the SL-7 Containership Runming at Oblique Headings
in Regular Waves by J. F. Dalzell and M., J. Chiccco. 1974. AD 780065,

{5SC-243) - Structural Analysis of SL-7 Containership Under Combined Loading of Vertical,
Lateral and Torstonal Moments Using Finite Element Techniques by A. M. Elbatouti,

D. Liu, and H. Y. Jan. 1974, AD-AD02620,

{S5C-246) - Theoretical Estimates of Wave Loads on the SL-7 Containership in Regular

and Irregular Seas by P. Kaplan, T. P. Sargent, and J. Cilmi. 1974. AD-A004554,
(S5C-257) - 3L-7 Imstrumentation Program Background and Research Plan by W. J. Siekierka,
R. A. Johnsen, and COR C. S. Loosmore, USCG. 1976. AD-AQ21337.

(SSC-259) ~ Verification of the Rigid Vinyl Modeling Techniques: The SL-7 Structuve

by J. L. Rodd. 1976. AD-A025717.

(58C-263) - Static Structural Calibration of Ship Response Imgtrumentation System Aboard
the SEA-LAND MoLEAN by R, R. Boentgen and J. W. Wheaton. 1976. AD-AQ31527.

(SSC-264) - First Season Results from Ship Fesponse Instrwnentation Aboard the SL-7

Class Containership 5.5. SEA-LAND MelEAN in North Atlantic Service by R. R. Boentgen,

R. A. Fain, and J. W. Wheaton. 1976. AD-AD39752.

Second Season Results from Ship Response Instrumentation Aboard the SL-7 Clas
ship 8. 5. SEA-LAND McLEAN in North Atlantic Service by J. W. Wheaton and R.
1976. AD-A034162.

Third Season Results from Ship Response Instrumentation dhoard the SL-7 Class Container-
ship £. 8. SEA~LAJD MeLEAN in North Atlgntic Serpice by R. R. Boentgen. 1976. AD-AD4175.

{SSC-269) - Structural Tests of SL-7 Ship Model by W. C. Webster and H. G. Payer. 1977.
AD-AD47117.

SL~7-12,(55C-271) - A Correlation Study of SD-7 Containership Loads and Motions - Model Tests and

Computer Simulation by P. Kapian, T. P. Sargent, and M, Silbert. 1977. AD-AQ49349.

SL-7-13, A Report on Shipboard Waveheight Radar System by 0. Chen and D. Hammond. 1978.

N

71
i

| -
[ Mg

e

SL-7-15,
5L-7-16,
sL-7-17,
SL-7-18,
SL-7-19,
SL-7-20,
SL-7-21,
SL-7-22,
SL-7-23,

SL-7-24,

AD-A053379.
(SSC-277) - Original Radar and Standard Tucker Wavemeter SL-7 Containership Data Reduction

and Correlation Sample by J. F. Dalzell. 1978. AD-A062394.

(SSC-278) - Wavemeter Data Reduction Method and Initial Data for the SL-7 Comtainership
by J. F. Dalzell. 1978. AD-A062391.
Radar and Tucker Favemeter Data from S.
by J. F. Dalzell. 1978. AD-AQS7154,
Radar and Tucker Wavemeter Data from S. S. SEA-LAND MeLEAN - Voyage 33
by J. F. Dalzell. 1978. AD-AD57155.
Radar and Tucker Wavemeter Data from 5.
by J. F. Dalzell. 1978. AD-A05715¢.
Radar and Tucker Wavemetor Datq from 5.
by J. F. Dalzelil. 1978, AD-A057157.
(S5C-279} - Modified Radar and Standard Tucker Wavemeter SL-7 Containership Data
by J. F. Dalzell. . 1978, AD-AD623%3.

Hadar and Tucker Wavemeter Data from S. S. SEA-LAND MzLEAN - Voyage 60

by J. F. Dalzell. 1978. AD-A057004.

Badar and Tucker Wavemeter Data from §. S. SEA-LAND MeLEAN - Voyage 6.

by 4. F. Dalzell. 1978. AD-ADS7005.

(SSC-28Q) - Results and Evaluation of the SL-7 Containership Radar and Pucker
Wavemeter Data by J. F. Dalzell. 1973. AD-AC62392.

(SSC-282) - Comparisch of Stresses Caleulated Using the DAISY System to Those
Measured on the SL-7 Containership Program by H-Y Jan, K-T Chang, and

M. E. Wojnmarowski. 1979.

. SEA-LAND MceLEAN

58

Voyage 32

<

. SEA-LAND McLEAN

[55%

Voyage 34

=

SEA=LAND MeLEAN - Voyagee 36 and 36E



