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Knowledge of the ultimate strength of ships is
important, particularly in determining the appropriate
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done on determining hull girder ultimate strength under
vertical bending moments, additional work was necessary to
determine the strength under a combination of vertical,
lateral and torsional loads.
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a prediction procedure.
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NOMENCLATURE

A = cross-sectional area of the plating and stiffeners for the
hull girder section, and equal to AD +AB + 2 As

‘B = cross-sectional area of the bottom including stiffeners

‘D =
cross-sectional area of the deck including stiffeners

Ae = effective area of cross section of the hull girder accounting
for buckling of plates under compression

‘f
= area of the flange for the symmetric section where AD = AB = Af

As = cross-sectional area of one side including stiffeners

%
= enclosed area of a hull girder midship section

B = beam at the midship section

be,b = effective width and actual width of plating, respectively

c = a spring constant

As
c = side to flange area ratio ~ for the symmetric hull

girder where AD = AB = As

D = depth of the midship section

IIw = effective torsional rigidity for an orthotropic plate

Dx,Dy = flexural rigidity of an orthotropic plate in the x and y
directions, respectively

E,Et = elastic and tangent modulii of the material, respectively

G = shear modulus of elasticity
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NOMENCLATURE (CONT’D)

9

hi

Ii

1
pc

k

L

‘bp

Mi

Mmax

Mmin

M
Xe

MX ,My

Mxo y!yo

mx Ymy

the distance from the center of the deck area to the
plastic neutral axis

equivalent thickness of an orthotropic plate (with stiffeners
diffused) in the i direction

moment of inertia of the cross section of a structural
member in the i direction

polar moment of inertia of a cross section with respect
to an enforced axis of rotation

St. Venant torsion constant for a section

length,e.g. , span of a stiffener

hull ultimate moment due to plate buckling failure

initial yield moment defined by (SM)e x ay

maximum hogging (or sagging) wave bending moment

minimum sagging (or hogging) wave bending moment

effective plastic moment in the vertical direction, including
the effect of buckling of plating between stiffeners on the
fully plastic collapse moment

bending moments in the vertical and lateral directions,
respectively

fully plastic collapse moments in the vertical and lateral
directions, respectively

non dimensional bending moments in the vertical and lateral
directions defined as Mx and My , respectively

m--Xo r
Yo



N,NO

n

rc

re

s

SMP ,SMe

so

s

T ,To

NOMENCLATURE (CONT’D)

= axial force and the fully plastic axial load for a
section, respectively

= squash load ratio N/N.

= radius of gyration of stiffener, includina an effective
area of plating

= effective radius of gyration for a stiffener

= vertical shear force

= the plastic section modulus and the elastic section
modulus, respectively

= fully plastic yield shear force for the section

= non-dimensional shear force in the vertical direction

defined as >
0

= torsional moment and the fully plastic torque for a
section, respectively

t = non-dimensional torque given by T/T.

tD,t@5 = equivalent deck, bottom and side thicknesses for an idealized
hull girder; these include areas of stiffeners

tf = flange thickness including stiffener areas for the
symmetric hull girder where tf = tD = tB

w= a curve parameter

. . .
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NOMENCLATURE (CONT’D)

a = aspect ratio of a plate

+ = failure stress ratio defined as the ratio of the
average failure stress to the yield stress in compression

Q = a stress function

r
‘t

n = a plasticity factor = r

nl S7-12 = distances of the points that separate the tensile and
compressive plastic zones from an edge

lJ = Poisson’s ratio of the material

r = warping constant

‘c ‘Tee = critical shear stress, e denotes the elastic range

‘r.
=

J
a shear stress

a = a direct stress

=
‘c ‘“ce critical buckling stress where e denotes the elastic case

‘i = an equivalent stress intensity based on the Huber, Mises, and
Henkey plasticity hypothesis

‘P
= the porportional limit of the material

‘Y
= the material yield stress

--ix-





I. INTRODUCTION

The determination of the collapse load, which defines the true ultimate
strength of a ship’s girder~has become a topic of increased interest to the
ship research and design communities. One of the reasons behind this interest
is that knowledge of the limiting conditions beyond which a hull girder will
fail to perform its function will, undoubtedly, help in assessing more
accurately the true margin of safety between the ultimate capacity of the hull
and the maximum combined moment acting on the ship. Assessing the margins of
safety more accurately will lead to a consistent measure of safety which can
form a fair and a good basis for comparisons of ships of different sizes and
types. It may also lead to changes in regulations and design requirements
with the objective of achieving uniform safety standards among different ships.

Unfortunately, the state-of-the-art in determining the true ultimate
strength of a ship girder is not at the point where drastic changes in design
standards can be made, although some modifications and improvements are
possible at the present time. The definition and evaluation of the different
modes of failure, though they have been investigated in recent years, are not
complete. Various definitions of the ultimate strength of a hull have been
proposed, but the most acceptable one is the recommendation reported by
Committee 10 in the proceedings of the Third International Ship Structures
Congress, Vol. 2, 1967 [1]*, quoted as:

“This occurs when a structure is damaged so badly that it can no
longer fulfill its function. The loss of function may be gradual
as in the case of lengthening fatigue crack or spreading plasticity,
or sudden, when failure occurs through plastic instability or
through a propagation of a brittle crack. In all cases, the collapse
load may be defined as the minimum load which will cause this loss
of function.”

Thus, besides instability (buckling), yielding, and spreading of
plasticity, fracture may also be a significant mechanism of a hull girder
failure under certain circumstances of repeated cyclic loads. Fracture
includes brittle and fatigue failures which demand careful attention to
material quality and the design of details (brackets, stiffener’s connections,
welding, etc.) both of which are outside the scope of this report. This
study is concerned with the overall ductile failure of the hull as a girder
in which yielding, spread of plasticity, buckling, and post-buckling strength
are limiting factors. The hull is considered to be subjected to various
combinations of extreme seaway loads including vertical, lateral, and
torsional momnts.

In this report, a literature survey was conducted at the beginning of
the project on the methods recently developed to analyze the ultimate strength
of hull girders along with general structural analyses wthods suitable for
prediction of ship’s ultimate strength. One of the pioneering work in this
area is due to Caldwell [2] in which a simplified analysis procedure was

*Numbers in brackets indicate references at end of report.



presented for calculating the ultimate load for a single-deck ship. His
solution makes it necessary to define a structural instability factor to
enable predicting the maximum strength of the box girder. Although this
factor was not developed in that paper, it is the key requirement.
Faulkner [3] suggested a design method for taking this buckling effect
into consideration, basically through a reduction factor. Betts and
Atwell [4] provided numerical solutions of several limiting bending moments
of two Naval ships. In the report [5] of the ISSC meeting in Tokyo, the
ultimate longitudinal strength of ships was thoroughly discussed. Attention
was focused on available analytical techniques for predicting the load
carrying capacity of a ship which was considered to act structurally as a
stiffened box girder. Reference [6] provides several chapters concerning
hull girder failure modes, margins of safety, and hull girder reliability.
A ship structure committee report [7] presents a study of ship gross panels
behavior and ultimate strength under combined loadings. Such gross panels
constitute the basic structural elements in ships, and knowledge of their
behavior and ultimate strengths is essential in determining the total hull
girder ultimate strength. References [8] to [44] present some of the work
which has been done in the ultimate strength of ships and provided some
important information which will be refered to later in this report.
Unfortunately, most of the work conducted in the past relates to the ultimate
strength under vertical bending moment only (or the vertical collapse moment)
with very little attention given to the fact that lateral and torsional
moments are also present and may have an effect on the ultimate strength.
Also, existing literature on model experiments and testing of box girders up
to their ultimate strength is very limited [8,9,10,11,12].

From the literature survey, it was apparent that a clear distinction
should be made between two types of failure (excluding fracture) of the hull
girder under extreme loads:

a. Failure due to spread of plastic deformation as can be predicted
by the plastic limit analysis and the fully plastic moment.

b. Failure due to instability and buckling of the gross panels
making up the hull girder.

These two types of failure require separate methods of analyses as is
the case in the usual elastic analysis where the possibility of buckling
must be considered separately.
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II. ULTIMATE STRENGTH UNDER VERTICAL MOMENT

One of the objectives of this section is to identify the possible modes
of failure of the hull girder of a ship subjected to vertical bending moment
only. The effects of the lateral and torsional moments will be discussed
in the next sections. Another objective of this section is to evaluate,
select, and modify existing methods for the determination of the hull ultimate
strength and to critically examine their basic underlying assumptions in
order to establish their validity range.

A. Identification of Possible Modes of Failure

As mentioned in the introduction, hull failure may assume one of several
modes. Generally, it will not be known prior to conducting the failure
analysis which mode of failure will be the governing one, i.e., which will give
the smallest collapse vertical moment. A general procedure which provides
a check of several modes of failure as parts of its components is,therefore,
essential.

Under extreme vertical moment, it is expected that the hull girder
strains will increase to a point where either the yield strength of the
“column” or “grillage” is reached, or the “column” or “grillage” is buckled.
In the former case, several methods may be used for predicting the ultimate
strength. These include the initial yield moment, the fully plastic collapse
moment, and the shakedown moment. On the other hand, if the “column” or
“grillage” has a low critical buckling stress, other modes of failure will be
governing and include flexural buckling or tripping of stiffeners and overall
grillage failure.

Thus, excluding fatigue and brittle fracture, we may classify the
possible modes of failure under:

1. Failure due to yielding and plastic flow.

- The Plastic Collapse Moment
- The Shakedown Moment
- The Initial Yield Moment

2. Failure due to instability and buckling.

- Failure of plating between stiffeners.
Panel failure mode (flexural buckling or tripping
of longitudinal).

- Overall grillage failure mode.

Each one of the above modes will be discussed separately in the following
subsections.

B. Evaluation of Failure Due to Yielding and Plastic Flow

Several methods can be used in the evaluation of this failure mode. Each
method is based on some assumptions and approximations which will be discussed
and analyzed in the following para raphs.

!
Additional discussion of these

methods can be found in reference 13].
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1. The Plastic Collapse Moment

In this approach, it is postulated that the ultimate collapse
condition is reached when the entire cross section of the hull including
sides has reached the yield state. It is assumed that the material is
elastic-perfectly-plastic and the loads do not change direction and increase
proportionally up to the collapse loads. This means that the change in
the bending moment direction (hogging/sagging) is not accounted for. It is
further assumed that the compressed parts of the hull will remain effective,
i.e., no buckling, and that the effects of axial forces and shear forces can
be neglected.

hiith these simplifications, Caldwell [2] obtained an expression for
the full plastic collapse moment “M “ in the form,

‘o

I’4x= (WP o-y
o

where

Mxo = fully-plastic moment

‘Y
= yield strength of the material

(SM)P = plastic section modulus given by

(SM)P = ADg+2A~(~- g+-$+AB (D-9)

where

‘D

‘B

As

D

9

(1)

(2)

= cross section area of the deck including stiffeners

= area of the bottom including stiffeners

= area of one hull side including stiffeners

= depth of the midship section

= distance from the center of the deck area to the plastic
neutral axis given by

+=
AB + 2A~ - AD

4As
(3)

In this report, Caldwell ’s concept is extended to include some of the factors
neglected in deriving equations (l), (2), and (3). Attention is focused here
on the effects of shear forces, axial forces, and buckling of plates between
stiffeners which are subjected to compressive forces.
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a. The Effect of Shear on the Fully Plastic Collapse Moment

Here, consideration is given to the fact that shear will be
present and, depending on its magnitude, may have some effect on the fully
plastic collapse load. In plating,where only direct and shear stresses “o”
and “T” exist, the condition that the material does not violate the yield
condition can be written as (see Appendix I):

2 222
D ‘fiT Lo

Y

where

B = fi for Von Mises condition

= 2 for Tresca condition

and the resulting bending moment (Mx) and shear
are given by:

(4)

force “S” in a box girder

FIX =
J

~zdA

A

(5)

where A is the cross-sectional area of plating and stiffeners and z the
distance to the neutral axis.

For any cross section,the yield curve for M and S are given
by [14]:

.

(6)

Equations (6) can be evaluated for a given cross section to
furnish an interaction curve in the M, S plane in terms of the parameter U.
For a symmetric box girder (AD = AB = Af), an approximate interaction relation
results:



ss.—.
sect-”w+ c w csch w

so l+C

(7)

M =,2 tanh w + c(coth w -w csch2 w)m=—
M 2+C
Xo

where

w= curve parameter

‘f = AD = AB = flange area

Limiting cases:

i. As c~o, i.e., for a very wide-flange box girder, the
interaction curve reduces to:

s
1=

cosh W

m= tanh w

or,
S2+M2 .

1 (circle) (8)

ii. As c*, i.e., for a solid rectangular section or a narrow-
flange box girder, the interaction relations are:

s = W csch W

(9)
m= coth W - W csch2 W

Figure 1 shows the interaction curves for c = o and c = m which
are fairly close to each other. The intermediate case of c = 1 is also plotted.
In all cases,the fully plastic collapse moment (longitudinal) “M “ and the
fully plastic shear force SO for symmetric sections is given by:xo

M =~Af(2+C)
‘o

(lo)

so .>A
s (11)
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Any point on the interaction curve corresponds to a fully
plastic section of the hull girder. Points inside the curve represent
stress distributions which are less than fully plastic. Points outside
the curve correspond to moment and shear force magnitudes for which no
stress distribution can be found that will not exceed the yield.

By entering the appropriate “c” curve in Figure 1 with the
value of,

s
s=—
so

the reduction in the fully plastic
be estimated. This effect will be
of this report.

moment due to the presence of shear can
examined for actual ships in Section V

b. The Effect of the Axial Force on the Fully Plastic
Collapse Moment

Although the axial forces in a typical ship hull are very small,
their effects on the fully plastic moment will be examined briefly here. As
the axial load increases, the neutral axis of the hull may shift depending
on the geometry of the section and the manner in which the load is increased.
However, attention is focused here at the fully plastic stress distribution
and the variation in the neutral axis position prior to the fully plastic
state is not important.

The stress resultants in the fully plastic state are:

(12)

and, for a symmtric hull girder, the interaction relation was derived as:*

m= 1-
(C+1)2

‘2 m (13)

where
M N As

m=
r; n ‘~; c ‘ ~Xo

No = 2 ay Af (l+c) = fully plastic axial load

N is the acting axial load and Mxo is defined by equation (10).

when c = o
The spread
curves. A
additional

Figure 2 shows the interaction relations for the21imiting cases
and c = .=,which correspond to m = l-n and m = l-n , respectively.
between the curves here is larger than in the shear interaction
more accurate estimate of “c” was therefore necessary for an
curve to be plotted. For a 200,000 ton displacement tanker (see

application in Section V) the value of “c” was calculated to be 0.58 and the
corresponding interaction curve is plotted in Figure 2.

*Equation (13) assumes that the final neutral axis lies in the webs.
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c. The Effect of Buckling of Plates Between Stiffeners on the
Fully Plastic Collapw Moment

Plates between stiffeners in the compressed parts of the hull may
buckle before the stress reaches the yield stress. In this case,only the
effective area of the compressed parts of the hull must be used in calculating
the plastic collapse moment. The term “effective” plastic collapse moment
will be used here to indicate that if buckling occurs of plates between
stiffeners, the “effective” plastic section modulus is less than the “fully”
plastic section modulus given by Equation (2). Neglecting the effect ofthe
axial force, the location of the neutral axis can be determined from the
static equilibrium requirement:

~
uydAe=o

Ae

where Ae and d A@ represent the “effective” area and an element of the

effective area, respectively.

The effective plastic moment “M “ is then calculated from:
Xe

M= J zdAeorM = Uy ~ (A ‘~)i ‘i
‘e Ae ‘Y ‘e

i

where (LAe)i = small element of the effective area on the cross section

di = distance from the final neutral axis to the centroid of (A

(14)

(15)

Ae)i .

References such as [15,16,17,18] may be used to determine the
effective area for plating after buckling. Use of a digital computer is
recommended for the determination of the neutral axis location from Equation
(14) and the effective plastic moment “Mxe” from (15).

2. The Shakedown Moment

Consideration is given in this method to the fact that the bending
moment acting on the hull alternates between hogging and sagging. Because
of the moment direction change, collapse may occur due to incremental plastic
displacement or alternating plasticity [44]. Under the former type, a net plastic
displacement takes place until an ultimate state (unserviceable hull) is
reached where displacement increases without limit. Under the latter type
of collapse, plastic displacement takes place and alternates between certain
values. Such alternating plastic flow is damaging to the hull and has an
effect similar to the elastic concept of fatigue, but the number of cycles
involved is of a much lower order of magnitude (tens of cycles instead of
millions of cycles). Since the hull can absorb only a finite amount of
plastic energy, a safe hull shakes down to purely elastic behavior after a
limited amount of plastic flow.
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To prevent alternating plasticitylthe following condition must
be satisfied:

MX

M -Mmin52Mi =24
max a

To prevent incremental collapse,the requirement is represented by the
inequalities:

‘s + %ax ~“xo

(16)

where Ms is the stillwater bending moment, Mmax is the maximum hogging

(or sagging) wave bending moment, Mmin is the minimum sagging (or hogging)

wave bending moment, Mxo is the fully plastic collapse moment defined by
Equation (1), Mi is the initial yield moment defined b.yEquation (19) and

(17)

u is

equa-
less
some
part-

.,
a shape factor defined as:

Mx~
a’—

Mi (18)

It is evident from Equation (16) that if the moments vary between
positive and negative values then maximum bending moment must be

than or equal to the initial yield moment “Mi”. This, in essence, places
importance on “Mi” as a lower bound estimate of hull strength for this
cular mode of failure (yielding and plastic flow).

It should be noted that in shakedown analysis, the probability of
occurrence of several bending moments which cause plastic flow in the hull
over its lifetime is important. If such probability is high,then shakedown
estimates of the hull strength can be important. Under these circumstances,
however, if the moments vary between approximately equal positive and
negative values, then the simple initial yield moment “Mi” is recommended
for obtaining a low-bound estimate of the hull strength for this mode of
failure, i.e., assuming premature buckling will not occur. If these
conditions are not satisfied then the applicability of each formulation
described above should be examined by evaluating the relevance of its under-
lying assumptions for the particular hull under consideration.

3. The Initial Yield Moment

In this simple method,it is assumed that the ultimate strength of the
hull is reached when the deck (only) has yielded. The neutral axis position
is assumed to be unchanged and the elastic section modulus to be governing.
Premature buckling is assumed not to occur or to be dealt with separately as
will be discussed in subsection “C” of this section. Using these simplifi-
cations, the initial yield moment is written as:

Mi = (SM)e ~y

10
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where [SM)e is the elastic

strength of the material.

The simplicity of
section modulus is usually
strenuth calculations make

section modulus and Oy is the tensile yield

this formulation and the fact that the elastic
calculated in the standard routine longitudinal
it eas.vfor use in desicm. Also, under certain

circu~stances (see subsection 2 ahove),the initial-yield moment represents
the maximum allowable moment as determined from shakedown analyses. It
should be noted, however, that after evaluating the buckling modes of failure,
the initial yield moment may turn out to be optimistic for some hull designs.

c. Evaluation of Failure Due to Instability and Buckling

Several buckling modes of failure may take place within hull grillages
[7,13] and the adequacy of existing methods of predicting the ultimate
collapse load of the hull depends on the particular mode of grillage failure.
Some experience has been gained in certain modes of grillage failure and
correspondingly some expressions have evolved. In some other modes of
failure, however, the progress has been slow and either no well-established
reliable design procedure is available, or in some cases, no clear measure
of the relative reliability between the available procedures can be
affirmed [7].

Some individual failure modes are discussed below. The two major
modes of grillage failure which are likely to lead to hull ultimate collapse
condition are the panel buckling mode (which includes column flexural
buckling and column tripping) and the overall grillage failure mode. Failure
of plates between stiffeners can be considered as local failure, particularly
for longitudinally stiffened ships, but some considerations are given to it
because once buckling of the plates occurs, a reduction in the strength of
the column (plate-stiffener combination) takes place due to the reduction
in plate effectiveness.

1. Failure of Plating Between Stiffeners [13]

This mode of failure can be important in transversely framed ships,
especially in deck plating near hatch openings. Unlike columns, it is well
known that plates can carry loads beyond their critical buckling loads
provided that the slenderness ratio of the plate is large. The ultimate
compressive load can be determined in this case using von K~rmAn’s concept
which states that the load-carrying capacity of the plate is exhausted
when the edge stress approaches the yield ’point. Under these conditions,
the hull ultimate moment due to plate buckling failure “M “ can be written as:bp

‘bp
= (SM)e X $ Xoyc

where

(SM)e = elastic section modulus

‘.YC
= compressive yield strength of the material

(20)

4 = failure stress ratio =
average failure stress
yield stress Uyc
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4 depends on the effectiveness of the plating after buckling and
can be written also as:

be
$b =_ (21)

where be is effective width and b is the actual width.

According to von Ktirmim,the effectiveness of the plate at failure
(when edge stress is equal to yield stress) is given by:

= 1.9
B

for steel (22)

r‘Yc‘here~=h-
E = modulus of elasticity

u’ Poisson’s ratio

Abetter agreement with experiments can be obtained by using in (22)
instead of the constant factor,

T/m =,.9

a factor “k” varying with the non-dimensional ’parameter l/~. Timoshenko, in
Reference [16], gives the experimental value< of the factor k which decreases
slightly with increasing values of l/~.

For wide ship plating subject to uniaxial compression only,analytical
values of the effective width be can be obtained from curves present in [19].
Under biaxial as well as uniaxial loading conditions, the effective width
“be” at failure can be determined from design curves presented in [14] using
an iterative procedure.

In Reference [17],Faulkner proposed a semi-emperical formula for
the effective width to be used instead of Equation (22). Based on
investigating several effective width formulas, he suggested Tor ship use
an effective width at failure given by:

12
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Figure 3 shows a comparison of the effective width according to
von ~rman, Timoshenko and Faulkner suggested formulations.

A modification of the effective width is suggested in Reference [20]
for the inclusion of residual stresses using a reduction factor. The effect
of initial deflection on the effective width can be approximately
incorporated using References [18,19].

2. Panel Buckling Mode of Failure

In this failure mode, collapse occurs by column-like buckling of the
longitudinal stiffeners with their effective platings between the transverse
frames. In most cases, because of the directtin of the usual lateral loads
on bottom and deck gross panels, buckling occurs such that stiffeners flanges
are under tension. But buckling may also occur in the opposite direction
and in this case, because most of the stiffener is under compression,
lateral torsional bucklin (tripping) of the.stiffeners may take

7place (see Reference [21] . For this reason,two separate analyses are
necessary as follows:

a. Flexural Buckling of Stiffeners

Here,the hull ultimate strength is considered to be governed by
the ultimate load-carrying capacity of the longitudinal stiffeners (together
with the effective plating) between the transverse frames; and buckling is
assumed to be purely flexural. Elasto-plastic finite-element programs
[21,22] can be useful in the prediction of the stiffeners ultimate loads.
Grillage representation and beam-column elasto-plastic behavior such as
adopted by Kondo [23] can be also used. Development of parametric studies,
design charts, and simplified design formulas based on these approaches is
very desirable for the usual routine design work.

The hull ultimate moment due
may be written in the form:

‘bn = (SM)e X ($ X Oyc

where $ is the averaqe failure stress rat”
effectiveness). -

For the
stress.is considered
the elastic range.

to panel buckling failure “Mbn”

(24)

o (taken into consideration plate

simply supported case of straiqht columns, Euler critical
to be close to the failure str;ss if buckling occurs in

(25)

The radius of gyration rc in (25) depends on the effective width
of plating working with the stiffener. The effective width in turn depends
on the magnitude of the stress and should be taken at stress equal to the
failure stress Uc; and therefore an iterative procedure is necessary.
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Equation (25) cannot be used when the resulting ac is greater
than the proportional limit stress of#e nw@ri’al. Between the proportional
limit and the yield point, the tangent modulus Et instead of E maY be used
in [25). The tangent modulus ,,Et,,is to be determined from a compression
test diagram with an iterative procedure necessary to obtain Et at Uc. In
the absence of a compression test diagram, Bleich [24] formulation using a
quadratic parabola may be used:

‘t = +&+p (26)

where ap is the proportional limit of the material.

A limiting case is when the compressive stresses reach the yield
point of the material “U “,in which caseJthe buckling strength can be taken
as the yield strength ofyc the material.

In Reference [20], a suggestion is made for the inclusion of the
effect of residual stress by subtracting it from the proportional limit on
the basis of experiments conducted at Lehigh University.

b. Lateral-Torsional Buckling of Stiffeners (Tripping)

This mode of failure is a result of coupled flexural and
torsional modes of buckling. Some elastic buckling expressions were obtained
by Bleich [24], but no satisfactory general method exists for the inelastic
tripping of stiffeners welded to plates and for the prediction of the
inelastic collapse strength. Bleich’s approximate formulation results [24]:

IT2E (2+)
‘c =

(~/re)2

where L is the stiffeners length and re is the effective radius of gyration.
The effective radius of gyration for a variety of stiffener shapes and for
stiffeners which can rotate with or without restraint around the enforced
axis of rotation (intersection line with the plate) can be obtained from curves
and expressions given in Reference [24]. Other formulations such as discussed
in [21,25] using folded-plate analysis can be used to @stimat@ the triPPin9-
critical load.

For the case of a symmetrical stiffener with an enforced axis
of rotation taken as the intersection line with the plate, Bleich [24]
obtained the following expression for “re” to be used in

r2e’ /;l [GK+2-]

Pc

(27):

(28)
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where E is the length, 1
Pc

is the polar moment of inertia of the cross

section will reference to the enforced center of rotation, G is the shear
modulus of elasticity, r is the warping constant, Iy is the moment of inertia
about the axis of symmetry, C is the rotational spring constant at the
intersection line of the stiffener with the plate, and K is the St. Venant
torsion constant of the section.

It should be noted that, in some cases, local web buckling of
stiffener before torsional failure is possible. For these cases, Bleich [24]
gives a solution for a T stiffener with the web regarded as a plate hinged
on one edge and elastically restrained by the flange on the other.

The hull ultimate bending moment due to stiffeners tripping
mode of failure can be determined from Equation (24) provided that the
appropriate value of the tripping collapse stress and, therefore, the value
of $ can be accurately determined. It may be noted, however, that if
tripping brackets are present and are properly design and spaced, this failure
mode will not be a governing factor in the overall ultimate strength of the
hul1.

3. Overall Grillage Failure Mode

This collapse mode involves the overall buckling of the entire
grillage including the longitudinal as well as the transverse stiffeners. The
hull ultimate moment due to overall grillage failure can be estimated from:

‘bg = (SM)e X I+ X Uyc

where $ is the ratio of the average failure stress

For uniform grillages, the buckling loads
from orthotropicc plate formulas [26,27,28]. Under
action relations were developed in [7] showing the

(29)

to the yield strength “o “.
Yc

and modes can be estimated
biaxial load, some inter-
combination of critical

loads for various aspect ratios and rigidities of both plates and stiffeners.

For grillages under uniaxial compression, the elastic buckling stress
can be written in the form [26]:

.k~m
a. n (30)

L
hx B’

where D and D are the grillage flexural rigidities in the x- and y-directions;
1B is th~ lengt of the loaded edge; h is the equivalent thickness of the plate;

iand stiffeners “k” is a constant whit depends on the boundary conditions as
can be determined from [7].

In slender qrillaqes, for which the elastic bucklinq stress is well
below the yield poin~,
The U1timate strength -
presented in [15] from
in an iterative manner

a significant post buckling reserve m~y exist [19].
n this case may be estimated from design charts
which the effective width at failure can be determined

The effective widths are given in these charts for a
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variety of biaxial loading conditions together with lateral pressure.
The charts indicate, however, that the ultimate strength is little
affected by the magnitude of the lateral load, particularly if the edge loads
are larger than the critical buckling loads. This observation is in
agreement with experimental results gi-venin [21]. Also, according to
these charts, an inplane load in the transverse direction has a small
effect on the effective width if the inplane load in the longitudinal
direction is much larger than the critical load. No experimental confir-
mation, however, exists for this latter observation.

The ultimate strength of the grillage and, therefore, the value $
can be predicted also us”ingexpressions given in [20]. In this case,

(31)

where “uc” for wide and long grillages with sides elastically constrained are
given in Reference [20], be/b is the plate effectiveness as given in subsection 1
above and Y is the area ratio of stiffener to plate. In this method [20],no
allowance was made, however, to the non-linear large deformations which make
the method suitable only for applications to grillages with heavy stiffeners.

The effect of the initial deflection on the ultimate collapse load
for this mode of-failure can be estimated from Reference [15] which presents
designcurves showing the effect of initial deflection on the effective width
for a variety of inplane loads, lateral loads, stiffeners characteristics,
and aspect ratios. The effect of the residual stresses can be approximately
included using the formulation given in [20].
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III. ULTIMATE STRENGTH UNDER LATERAL MOMENT

Lateral bending moments acting in a ship hull girder, unlike the vertical
bending moment,are purely a wave-generated phenomenon. Model tests [29]
indicate that,in magnitude, these loads may approach or exceed the vertical
component, depending on wave obliqueness and the effective wave length. Sea
trials on the Ocean Vulcan [30] show evidence that the maximum moment occurs
at a wave to course angle of about 110° to 140° and that this component was
frequently in phase with the vertical bending moment. This chapter is
divided into two parts. First, the modes of failure under a pure lateral
bending moment are considered. Following this, we investigate the interaction of
bending moments acting in the vertical and horizontal planes simultaneously. By
itself, the lateral bending moment would not be a governing factor in failure
since the elastic and plastic section modulii associated with it are much
greater than those associated with the vertical momenl
itself is about the same order of magnitude and possi~
vessels. The critical stresses associated with buckla
likely to be larger because the sides’ scantlings are
to allow for the hydrostatic pressure. Therefore, in
chapter we will consider the more important aspect wh-
with the vertical moment.

A. Evaluation of the Probable Modes of Failure

The first mode of failure considered here is the

; whereas the load
ly less in smaller
ng instability are also
usually heavier in order
the “B” section of this
ch is the interaction

fullv ~lastic vield of
the hull considered as a box-beam. Then failure by the in~tability~f the
structural components is dealt with.

1. The Fully Plastic Collapse Moment

The evaluation of strength under a lateral bending moment may be done
in a manner analogous to the estimation of the fully plastic collapse strength
under a vertical bending moment dealt with in the last section. The plastic
neutral axis, assuming that all the structural components remain stable through
the entire range of load application, is located on the center line. It may
then be shown that the fully plastic yield moment is given by:

M= ~y [As B ‘! (AD ‘AB)]Yo
(32)

where As, AD, and AB are the areas at the side, deck, and bottom, respectively;

a is the material yield stress; and B, the beam of the vessel.
x

If the section
i symmetric with respect to both the vertical and horizontal planes, Equation (32)
reduces, with AD = AB = Af to:

(33)

where c is the ratio A /Af. As noted before, failure under the lateral bending
moment alone is unlik~ly to be a governing mode in the failure of the hull.
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2. Failure by Structural Instability

We may again consider instability in the usual hierarchical sequence:
that of plating between stiffeners, of the column formed by the stiffener and
an effective breadth of plating; and of the stiffened plate panel. The
investigation may pertain either to the side or to the deck. The methods of
analysis have already been outlined in Section 11 dealing with ultimate strength
under a vertical bending momnt and only a brief discussion is given here. Once
the compressive mode of failure is identified, the ultimate strength is given
by:

Mn = (SM)e X r) X Uyp

where $ is the average failure stress/material yield stress ratio.

(34)

J

FIGURE 4. Stress Distribution - Lateral Bending Moment

Me
and the deck
The critical
longitudinal

‘c

E

may note here
are subjected
stress in the

that under the lateral bending moment the bottom
to bending in their own plane (see Figure 4 above).
case of unstiffened plates under a non-uniform

compression may be given as:

=k r2 E
(;)2 (35)

12(1-U2)

where T is the ratio Et/E, taken as unity in the elastic range. In the

inelastic range, one may obtain ~/Fand then c using the Ostenfeld-Bleich
parabola for Et/E. Plate factors k for various possible stress distributions
may be found in Reference [24, pp. 401 and 410], for the simply supported case.
Plate factors for the case of the deck under inplane bending are,in general,
higher than the case where the deck is under uniform compression. For instance,
under the stress distribution shown in Figure 5, with 02/01 = -1 and a = a/b,
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(I,

FIGURE 5. Inplane Bending Stress

we have,

= 24 + 73(2/3 - !3)2 ; a < 2/3 (36)

compared to k = 4.0 in the uniform compression case for a simply supported
plate. For the case where the plate is stiffened by a longitudinal
stiffener, and is subjected to pure bending in its plane, Bleich [24, p. 422]
presents results for the plate factor as a function of the aspect ratio and the
factor:

Y= E
i.e., the stiffener/plate rigidity ratio. The plate factors, in general, are
seen to be much higher than those for the uniform compression case.

B. Development of Interaction Relations for Bendinq in Two Planes

Based on the last section analysis,it is concluded that the lateral
bending alone is not a governing factor in failure. We now consider the
interaction of the vertical bending moment with the lateral moment. Again,
the cases considered are that of the fully plastic yield moment and failure
under compressive instability.

1. Hull Box Girder Under Bending in Two Planes - Plastic Moments Interaction

Consider the hull girder subjected to a vertical bending moment
Mx acting simultaneously with the lateral bending moment My. The non-dimen-
sional bending moment ratios in this case are:

Mx

‘x = ~ and,
Xo

(37)
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where Mxo and Myo are the fully plastic yield moments of the

girder in the two planes, as given by Equations (1) and (32), respectively.
For this load case, assuming that the section remains stable throughout the
entire load range, two types of yield geometry are possible as shown in
Figure 6.
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6. Full Yield Geometry Under Vertical and Lateral Moments

two cases differ in the position of the neutral axis that
separates the section into tensile and compressive zones. ~1 and n2 are the
distances of the points that separate these zones from an edge (side or deck,
as the case may be) as shown. In a given girder, either stress distribution
may occur depending on the relative magnitudes of mx and my. For the shiP
hull considered as a box-beam, we limit our analysis to Case II where {m 1~1mxl.

fIt is possible to derive the interaction relationship in either case; bu the
case where lmyl>l~xl is thought not to be a typical situation for a ship. For
the yield geometry shown in Case II, the following equations were derived:

Mx = ay [AD g + AB(D-g) + As \ (2g-nl) + 2As(: - g) + As ~ (2g-@] (38)

Note that (38) reduces to Equations (1,2) for the case where Mx acts alone. In
general:

The lateral moment is derived as:

(39)

‘Y =
A 1 (T-12-n,)‘ys D

(40)
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If Mx acts alone, ~ = n = g and My =
i “Gaxial force on the ectl n is zero, we

o* From the requirement that the net
have:

o

This reduces to Equation (3) for the case
nl and n2 from Equations (38) to (41),one
for mx and my, This is given by:

mx+km$=l , lmyl~lmxl

k=
(A + 2 A~)2

16 A~(A-As) - 4(AD-AB)2

A= AD+AB+2AS

(41)

where Mx acts alone. On eliminating
obtains the interaction relationship

(42)

where,

(43)

In Equations (42) and (43), mx and my are the non-dimensional bending mOnWntS
defined by Equation (37). The fully plastic bending moments Mxfiand M,,-are

given by
is given

simplify

Equations (1) and (32), respectively. The value of g ~or eva~~ating
by Equation (3).

For the case of a symmetric girder where AD = AB = Af, we may
Equation (43) with c = As/Af to:

M
Xo

“w (44)

The fully plastic yield moments in this case are given by:

M=
X(I Uy Af D (1 + ;)

“

(45)

‘Yo = ‘Y
As B(l+~)

and the interaction relation is given by Equation (42). For the particular case
of the uniform box beam, i.e., As = AD = AB, we have

k = 3/4

The interaction relations for some representative values of k are shown in
Figure 7.
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FIGURE 7. I.nteyacti.onCuryea Under Yerti,cal and Lateral J%unent~

2. Instability and Buckling Under Non-Uniform Edge Compression

Consider compression failure of the girder under the simultaneous
action of the bending moment in the vertical and horizontal planes. The
effect of this loading is to introduce, as a general case, non-uniform
urtiaxial edge compression in the sides and the flanges. Methods of analysis
have already been indicated for this loading condition in subsection A-2 of
this chapter.
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Iv. ULTIMATE STRENGTH UNDER TORSIONAL MOMENT

A combination of factors,such as oblique seas, unsymmetrical structural
and cargo weights or motion induced angular accelerations, may cause the ship
structure to be subjected to torsion. The response of the hull girder to this
torque is characterized primarily by twisting of the structure about some
longitudinal axis. This produces shear stresses in the plane of the torque.
This also gives rise to diagonal tensile and compressive stresses that may
induce plate buckling or give rise to stress concentrations at structural
discontinuities. The primary shear stresses are usually negligible in
tankers and similar closed-deck type ships. However, both the shear and the
consequent direct stresses may be significant in the case of ships with large
deck openings, containerships being an obvious example. Special consideration
to torsional loading would also be necessary in the case of other hull forms
such as catamarans. Heavy-lift ships are another case in question where
torsional effects may have to be investigated. In general, any service
condition that may increase torsional loads or any structural configuration
that reduces torsional rigidity is obviously suspect. In this connection,
one may note that transverse bulkheads do not contribute to torsional strength
as they do to racking.

It may be appropriate here to mention briefly how one may estimate the
torsion loads and the response of a ship hull girder to those loads. The
wave torque applied to the ship by an oblique sea is computed by a quasi-
static procedure similar to the usual longitudinal strength calculations. The
resulting load is combined with any stillwater torque arising from a non-
symmetrical weight distribution or any dynamic effects arising from angular
accelerations. For a discussion of the procedure,one may refer to [31] and
[32]. Usually one neglects the torque arising from horizontal pressure
components; but as pointed out in [32], this would grossly underestimate the
torque in the case of open-deck ships where the shear center is nearer to the
bottom. Empirical formulae for estimating the vertical torsional moment may
also be found in [31] and [32].

The response of a closed-deck hull girder to the applied torsional moment
is usually computed assuming that the resulting shear stresses are uniform
across the.thickness of the plating and that the product of shear stress and
thickness (the shear flow) is constant around the closed cell. Shear stresses
are determined for this case using the well-known Bredt expression. An
extension of this method is applied to the case of the statically indeterminate
closed multi-cell structure [31].

This section is divided into two parts, the first of which evaluates the
probable modes of failure under pure torsional moments. The determination of
strength under those modes is also indicated. The second part is concerned
primarily with the interaction between the torsional moment and a vertical
bending moment acting simultaneously.

A. Evaluation of the Probable Modes of Failure

We now consider the failure of a hull girder subjected to a pure torsional
moment. The girder may fail either by a fully plastic yielding of the entire
cross section or by compressive failure of the components of the beam cross
section. In the former case, the entire cross section is assumed stable. The
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postulated failure mechanisms are of course simplified in that these two
modes are considered separately. The possibility of interaction is readily
conceded, but not explicitly accounted for in the analysis.

1. Pure Plastic Torsion of Hull Girders

Consider first the case of a beam loaded in one plane, zbeing the
beam axis. The beam will yield only when it is plastic across the entire
cross section. With the notation thatrij is the shear stress Parallel to
the i and perpendicular to the j direction, yield occurs when:

TX2
2 + TYZ2 = (%)2 (46)

The equilibrium condition to be satisfied by the stress components is given by:

a~xz aT

ax
++=0

Y

Ifwe introduce a stress function @ such that,

a~
‘X2 = ~

and ‘yz = -

we see that the equilibrium equation is
condition requires that the gradient of

a~
~

identically satisfied. The yield
o is a constant of macmitude a,,/$. Generally

speaking, @ must be a constant on each boundary of a multiply connecte~ region, -
e.g., a tube. In the case of a simply connected cross section, the boundary
conditions may be satisfied by taking @ = o on the boundary.

The maximum plastic torque the solid cross section can sustain is
then given by [14]:

To =
I

(x ~yz -y~xz)dA=2
J

+DdA

A A

For an annular cross section, the limits of integration may be altered
appropriately. For example, the stress function for the first octant of a
solid square of side 2D is:

and the total maximum plastic torque for that square is:

(47)
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For a hollow square with outer dimension 2D. and inner dimension
2Di, the maximum plastic torque is:

.

(49)

Hence, for a uniformly thin-walled square box girder, and consider’
the first-order terms-in

For the general
minimum thickness of the

the thickness “t”, we have:

t

ng on”y

(50)

case of a thin-walled box girder, if t is the
section, then the fully plastic torque is given by:

To = 2t ~ AT (51)

where ATis the enclosed area of the cross section. Note that the case of the
uniform box beam is a special case of Equation (51). To,as given by Equation
(47),assumes that shear buckling does not occur and,to account for such
instability,some modifications of (51) are necessary as is discussed in the
following subsection.

2. Failure Due to Shear Instability and Buckling

It is postulated here that, as in the case of the bending moment, the
ultimate strength of a closed-deck hull under torsion, taking into consideration
the effect of shear buckling, can be written in the form:

Tbo= “2t ~ @AT (52)

where $ is shear instability reduction factor defined as:

4
T=

+‘Y B
Tc is the shear failure stress which wil
(b) below.

a. Plating Between Stiffeners

(53)

be examined in subsections (a) and

Consider the platinq of a hull girder between stiffeners and loaded
in shear at the four edges: Tim&henko [16]-presents an approximate solution
to the elastic buckling problem for this plate based on stationary potential
energy considerations and using the Ritz method. The critical value of the
shear stress is given by the usual formula:

~2 E
‘ce = (:)2 k

12(1-U2)
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where k is the pl ate factor. This factor is dependent on the boundary
conditions and the aspect ratio a. Bleich [24] gives simplified design
formulae for k for various boundary conditions. For the simply supported
case, k is given by:

k= 5.34+3 (foru>l)
~2

where a = a/b

The occurence of plate instability is independent on the sense of the shear
stress. Hence, for a to be larger than unity, one may select “a” as the
larger dimension.

In the inelastic range, the principal stresses corresponding to.a
state of pure shear are all equal in magnitude to the shear stress. Bleich
[24] points out that,as a consequence, it would be reasonable to assume
isotropic plate behaviour in the inelastic range. The implication then is
that a plasticity reduction factor approach may be used as in the axial
compression case to compute the critical shear stresses in the inelastic
range. Hence, we may write:

(55)

where n is the lasticity factor <1 when Tc is above the proportional limit.
In Equation [55Y, if one substitutes ,

whose use is justified by Bleich on the basis of Stowell ’s experimental data,
interpreted using the von Mises’ yield criterion, we have:

(56)

This expression implicitly uses ~i = ~ ~c where oi is the intensity of
stress according to the Huber, Mises, and llenkey plasticity hypothesis.
[See Appendix I.]

To find the critical shear stress, one then computes ~i/~
from the above equation and obtains ~i and hence Tc from a tabulated relation-
ship [e.g., Ref. 24, p. 343] between a and u/~. Such tables can be prepared
for a given material defined by its yield point and proportional limit. The
Ostinfeld-Bleich parabola maybe used for the ratio Et/E.

A large deflection nonlinear solution for the case ofa simply
supported plate with boundary stiffeners and edge loaded in shear has been
analyzed by Payer [33]. That solution is based on Marguerre ’s differential
equations and includes the effect of initial imperfections. Design charts
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for the two aspect ratios of 1.0 and 2.5 are presented. These charts cover
a load range of up to 1.5 times the elastic critical shear stress. The
extreme values of an equivalent surface stress, (including the effects of both
bending and membrane stresses and based on the Huber-Mises-Henkey plasticity
hypothesis concept of an equivalent uniaxial stress) the principal membrane
stresses, and the plate bending stresses that come into play in the post-
buckling range are given therein [33].

The results indicate that [33] surface stresses due to a
combination of membrane and bending stresses may cause yielding in areas of
the plate where the membrane stresses alone are still within the elastic
range. If a certain amount of surface yielding is acceptable, then a
consideration of the diagonal tension field due to membrane stresses alone
may suffice. This conclusion was drawn for deep-web-frame plate panels, of
low slenderness ratio, simple supported and edges kept straight. It should
be noted, however, that the range of aspect ratios for shear-loaded panels
at the deck or bottom in a typical longitudinally framed vessel is probably
greater, and the plate slenderness higher than those given in Reference [33].

b. Stiffened Plates with One or More Longitudinal Stiffeners

7-

T=TT
—

–--+.-~+.

c

I {...— _–L__.Y_.
r

FIGURE 8. Stiffened Panel Under Shear

Timoshenko [34] solved the problem of the shear-loaded panel
with either one or two stiffeners (see Figure 8) by means of an energy method
and assuming that the stiffeners have no torsional stiffness. For the simply
supported plate panel in pure shear, with

a= :<’
the plate factor to be used in Equation (54) is given by:
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Using the non-dimensional parameter:

Y=
= 12(1-u2) I

%
t3 d

where I is the moment of inertia of the stiffener alone, Timoshenko determined
the values y. of the parametery which are required to ensure the critical
stress given by the single panel Equation (54) with plate factor given above.
Wang [35] extended Timoshenko’s analysis to plates reinforced by any number
of stiffeners. The value of Y. depends on d/b and may be found in Bleich
[24, p. 415].

The solutions of both Timoshenko and Wang were based on a double
sine series displacement function which Stern and Fralich [36] indicate as
not suitable to express the deformation of a stiffened plate with a limited
number of terms. Their own solution for simply supported infinitely long
plates reinforced by equally spaced stiffeners was based on the Lagrargian
multiplier method and the stationarity of the potential energy formulation.
From their results, a design equation for the plate factor k, showing it as
a function of the stiffener ratio y and of the aspect ratio a = b/d, is
given by Bleich [24, p. 416]. It is:

vk = 5.34+ (5.5 U2 -0.6) 3 Y

4(7 U2 - 5)

valid for,

1<U:5 and o<y/(7a2- 5):4— —

Ify>4(7a2- 5), the plate factor is practically independent of y and may
be computed from,

k = 4.74 + 5.5 a2

These plate factors are to be used in conjunction with Equation (54).

Extension of the above results into the inelastic range may be
accomplished by the plasticity reduction-factor approach suggested by Bleich
[24].

It should be noted,however,that the torsional moment alone would
probably not constitute a governing failure mode for closed-deck vessels where
the ultimate torsional moment is about an order of magnitude greater than the
expected service torsional load. For this reason, we will investigate next
the effect of the torsional moment interacting with the vertical moment.
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B. Development of Interaction Relations for Torsional and Vertical
Moments

1. Fully Plastic Collapse--Yield Curve for Combined Bending
and Torsion

Unlike the case of pure torsion,there exists no exact solution to
this problem, although it has been shown [37] that-the problem reduces to
the solution of a certain nonlinear differential equation. In Ref. [14],
Hedge uses the Theorems of Limit Analysis (see Appendix II) to obtain upper
and lower bounds to the yield curve for a general beam case.

a.

torsion, but

Lower Bound

Considering the shear
of reduced magnitude;

stress distribution as in the case of pure
one may write:

‘r
2 = (T: -1-t;) < (+2

and the corresponding non-dimensional torque is given by:

Acting together with this, is the normal stress u similar to that in pure
plastic bending, but of reduced magnitude (a < Uy). The non-dimensional
bending moment is given by:

(57)

(58)

(59)

The best lower bound is obtained when,

2
0 + ~2T2 = 2

‘Y
(60)

Combining Equations (58), (59), and (60) yields the approximate interaction
relation.

m2 + tz = 1 (61)

A statically admissible stress distribution that is in equilibrium and does
not violate the yield condition may be associated with any stress resultants
m and twhich lie in or on the circle defined by the interaction relation (61)
given above. Therefore,this relation provides a lower bound for the yield
curve.

b. An Upper Bound

Hill and Seibel [38] have constructed an upper bound for the
yield curve. Considering symmetric sections and based on the rate of energy
dissipation,one may obtain the following stress resultants for any cross
section:
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1 J > 1 y2d A
m=

~
ayd A’

A
o A [Y2 + W2(X2 + y2)~ti

(62)

1

-f
L!_!_I (X2 + Y2) d A

t= (Xry - YTX)d A=BTo~
A A [y2 + W2(X2 + y2)j+

where w is a parameter. These stress resultants may be evaluated for any
given section as functions of the parameter w. As an example, these
Equations [62) were evaluated for a circular bar and for a square bar in
Reference [14]. The maximum difference between the upper and lower bounds
is less than 14% for the square section and 4% for the circular. Hence, the
simple computation using the lower bound is suggested as sufficient for
practical purposes. The upper bound can be only numerically evaluated for
a hull girder using Equations (62). Figure 9 shows the interaction relation
between the moment and the torque based on the lower bound which is
conservative by about 10%.

2. Instability Collayse--The Shear Loaded Plate Subject to
Uniform Edge Compression

a. Plating Between Stiffeners

Under the combined action of vertical and torsional moments,
one typically has the deck or bottom plate panel loaded in both shear and
compression as shown in Figure 10.

7- c-

FIGURE 10. Plate Under Compression and Shear

Here we consider the effect of such a load combination on the stability of
the plate panel. This problem lends itself to a stationary potential energy
solution by the Ritz method. Results presented by Bleich [24, p. 404] are
shown in Figure 11 in the form of interaction relationships. Note that~o
is the elastic critical stress in pure shear and uo~ the elastic critical
stress in pure compression. These results may also be given in terms of
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design formulae. Reference [24] gives the following equations for long
plates, u > 1 in the elastic range:

With 6 = uc/ -cc

(63)

where,

For extension into the inelastic range, one assumes the plasticity factor n =fi is
dependent on von Mises’ equivalent uniaxial stress intensity given in this
case by:

Introducing 6 = Uc/Tc and replacing E by E F ~@ obtain:

One computes u./fi
stresses are tflen,

-rC =

and obtains ~i depending on T as is usual- The critical

(65)

V&’ + 3 V6L+3

Similar design formulae for the case of the wide plate, both for the elastic
and the small-deflection plastic case, may be obtained from Bleich [24, p. 406].
For the post-buckling solution and including material non-linearities, one
should refer to the method suggested in Reference [33] using Marguerre’s
equations.

b. Stiffened Plates Under Uniform Edge Compression and Edge Shear

For the case of the stiffened plate with one or two longitudinal
stiffeners, there seems to be no practical solution available at the present
time. For the case of three or more stiffeners in the pre-buckling and post-
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buckling ranges,one may use the results given in [15]. The numerical
solutions given therein to’the orthotropic plate theory equations developed
in [39] are limited to cases where the edge shear is less than the
critical value of the edge shear when the shear load is applied alone on
the same panel.
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v. ULTI.MATE STRENGTK UNDER CCNBINED YERTLCAL,LATERAL AND TORSIONAL
MOMENTS

The effects of the presence of lateral and torsional moments on the
vertical collapse bending moment are discussed in this section. In part “A”
of the section~a suitable analysis procedure. is proposed and in part “B”, the
procedure is applied to a large tanker in order to illustrate its details.

A. A Suitable Evaluation Procedure and Inter~ction Relations

As in the previous sections, two separate major modes of failure are
considered here: (1) failure to yielding and plastic flow; and (2) failure
resulting from major instability and buckling of grillages making up the hull
sections.

1. Failure Due to Yielding and Plastic Flow

An interaction relation is developed here for a hull girder
subjected to vertical, lateral, and torsional moments. Since the exact
solution to this problem is difficult, only bounds on the yield surface from
below and above will be constructed using theorems of limit analysis (see
Appendix II).

a. Lower Bound

It is assumed here that the distribution of the normal stress u
is similar to that encountered in pure bending [14]. Thus, tensile and
compressive stresses of magnitude”u” are distributed as in the absence of
twist (see Equation (42))but the magnitude is such that:

(66)

where k for the general unsymmetrical girder is given by (see Equation (43)):

k=
(A + 2 As)2

16 As(A-As) - 4 (AD-AB)2

The shear-stress distribution is similar to that in pure torsion but of
magnitude Ts. The dimensionless torque is given by:

i3T5
t=+-’—

0 ‘Y

Ts and o are related such that the yield condition is satisfied.

(67)

2 ~B2T2= 2
0 s ‘Y
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Eliminating TS and ~ from Equations (66), (67), and (68),one obtains the
following interaction relation between m~, my and t:

k m; +mxiW+t2=l Imyl+xl (69)

In Equation. the following terms are defined:

Mx
mx=~; .& ; t .+

Xo ‘Y
Yo o

k=
(A + 2 As)2

16 AS (A-AS) - 4 (AD-AB)2

A= AD+AB+2AS ; ; . A-2AD

4As
(70)

&
M= O’y[AD g + AB (D-g) + 2& (;- 9 + D)]X.

M= Oy [AsB + } (AD + AB)I
Yo

‘T
= B X D = enclosed area of section of breadth B and depth D

t’ min. (tD,ts,tB) = minimum thickness of deck, side or bottom,
respectively.

6 = 2 Tresca

= @ von Mises

As a special case, for a symmetric section, i.e., AD = A6 = Af, Equation (69)
remains to have the same form but with variables defined as follows:

k _ C?+2)2 As

(1+:) ; C=z

Mxo = ayAf D(l+~)

‘Yo = cryAsB (l+ +)

(71)
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The other variables~not appearing in Equation (71),are defined by Equation (70).
Notice that Equations (69) and (70) reduce to Equations (42) and (43) when
substituting t=o for the special case of interaction between two bending
moments only.

For a given ship particulars, i.e., AD, As, AB, B, D, Oy, and
a given value of the maximum lateral moment MY, one may determine k~ MXOSMYOY
To, my, and t using Equation (70). Then from the interaction relation
Equation (69),one may determine mx and Mx, i.e., the fully plastic yield
moment when the vessel is subject to combined vertical, lateral, and torsional
moments. Figure 12 shows the interaction relations (69) for different values
of t.

An interaction
for the case when Imy l~lmyI
ships.

b. Upper Bound

An uDPer bound

relation (lower bound) can be also determined
; however, such a case is not realistic in actual

.Yieldsurface can be determined from energy
considerations [14]. For an; cross section, the upper bound yield surface
is given by:

&
1

X(wlx+wzy)
mx = dA

o A [X2 + yz + (Wl x + W2 Y)2]%

L J
Y(W1X+W2Y)

‘Y = Myo A dA
[X* + yz + (WI x + w* y)z]+

(72)

!l-f (X2 + yq
t= dA

A
[X2 + yz + (w, x + W2 y)q~

The yield surface is defined in terms of two parameters W1 and W2.
Unfortunately, the integrals in Equation (72) cannot be conveniently
evaluated even for the simpler cross sections. For all practical purposes
however, it is sufficient to use the conservative lower-bound relation
given by Equation (69).

If shakedown analysis is performed (see Section 11-B-2 )~it is
recommended that Mxlas determined from Equation (69),be used to replace Mx
in the right hand side of inequalities (16) and (17) in order to include t~e
effects of the lateral and torsional moments.

2. Failure Resulting from Major Instability and Buckling

This important mode of failure was analyzed in detail in Section II-C
of this report. In the present section, only the effects of the lateral and
torsional moments on the failure stress ratio ~ as used in Equations (2o) and
(21) will be investigated. These Equations (20) and (21), may still be used
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under the present load combination in order to determine the load-carrying
capacity of the hull. However, the values assumed by the non-dimensional
failure stress ~ In the different buckling modes of failure should be
calculated to reflect the edge loading condition of the plating (stiffened
and unstiffened] under such load combination.

a. Unstiffened Plates

In general, when the hull girder is subjected to vertical,
lateral, and torsional moments, unstiffened as well as stiffened plates in
deck, bottom, and side grillages will be subjected to non-uniform axial
compression together with edge shear as shown in Figure 13.

6,

FIGURE 13. Plate Under Non-Uniform Compression and Edge Shear

For the case of unstiffened plates, the following equation for
the elastic and inelastic buckling may be used:

‘i = 26750 (~)2 k for steel
E

and

= critical shear buckling stress =
i

‘c
+ 62+3

where

al c = critical compressive buckling stress at
one edge of the plate (see Figure 13) =

i

F &3

(73)

@
‘1 ;=— Txy = edge shear (Fig. 13)
=Xy
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T
‘t= plasticity factor = ~

Et = tangent modulus of the material

t,b = plate thickness and breadth, respectively

k = factor which depends on the ratio of G to 02
i(see Fig. 13) and the boundary conditi ns.

Bleich [24] in Table 36, p. 412 gives the necessary equations for determining
the factor k for the cases when U2 = o and al = -02 of a simply supported
plate. Figure 14 shows the interaction relation as developed by Timoshenko
for simply supported plates under pure inplane bending and boundary shear
(see Reference [24], p. 407).

b. Stiffened Plates

A gross panel in the deck,bottom will be subject to an edge loading
condition as shown in Figure 13 when the hull girder is under combined vertical,
lateral, and torsional moments. For the case of a plate stiffened by one
or two stiffeners, Bleich [24.,p. 424] discusses the buckling strength when
U1 = -q. Unfortunately, for the more general case,where UI # -a2,no
solution is given. It is suggested, however, that such non-uniform compressive
loads shown in Figure 13 can be replaced by a statically equivalent uniform
edge compressive load. Using such simplification, the formulations and
references given in Section IV-B-2 may be used to determine the buckling
strength.

In the case of a uniform grillage with several stiffeners,
References [7,15] may be used for determining the ultimate strength under a
statically equivalent uniform edge compression and edge shear. The charts
given in these references account also for the effects of lateral loads on
the grillage and a biaxial edge compression.

It should be noted that the panel buckling modes (flexural
and tripping buckling of stiffener) will not be strongly affected by the
presence of lateral and torsional moments acting on the hull girder. Therefore,
the analysis and formulations

!
iven in Section I-C-2 may be considered adequate

for evaluating panel buckling ailure under combined moments.

B. Application to a Tanker

The following example serves,to illustrate the calculation of the
ultimate longitudinal bending moment for a ship hull girder and are
developed in three parts:

1. The Computation of the Fully Plastic Bending Moment
With Buckling Effects Excluded.

2. Investigation of Buckling Instability and the Determination of
Strength Reduction Factors Due to Compressive Buckling.

3. Evaluation of the Governing Mode of Failure and the Estimation
“ of the Ultimate Strength of the Hull.
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1. Computation of the Fully Plastic Bending Moment for a Tanker,
With Buckling Effects Excluded

The analysis developed in this paper is now applied to a 200,000 ton
displacement tanker illustration. The principal particulars of the tanker are:

Lpp = 1000 ft.

B = 155 ft.

D = 78ft.

CB = 0.821 at 55.5 ft. draft

The following geometric properties were computed from the tanker’s midship
section:

‘D = 31.78 ft.2 tD = 2.46 in.

‘B = 29.71 ft.z ‘B = 2.30 in.

As = 17.75 ft.z ts = 2.73 in.

A .AD+AB+2AS

= 97.00 ft.z

In idealizing the cross section, the longitudinal bulkheads present were
diffused with the sides. All longitudinal stiffening was appropriately
diffused.. Assuming that the cross section is stable, we now proceed to
calculate the fully plastic bending moment for the above hull girder.

a. The Vertical Bending Moment

For this loading, the distance !’g”of the plastic neutral axis
below the deck,as the horizontal line that divides the cross section into
two equal areas,is given by:

[

2AS+AB -AD
9 =

4 As 1D = 36.73 ft.

Assuming a material yield stress of 34 ksi (15.17 t/in) in both tension and
compression, one may then obtain the fully plastic yield moment Mxo if the
vertical bending moment were to act alone:

Mxo =
[

‘y AD g+ AB(D-g) +2As(;-9+}2)1

= 6.751 x 106 ft.-tons
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The design hull girder bending moment Mx for Purposes of our illustration was
obtained from Section 6 of the ABS Steel Vessel Rules, 1978, by adding a still-
water bending moment of 1.486 x 106 ft.-tons to a wave bending moment of
2.459 x 106 ft.-tons. This yields:

Mx = 3.945 x 106 ft.-tons

ThusJwe have the non-dimensional vertical bending moment ratio:

Mx
MX.T = 0.5844

Xo

b. The Lateral Bending Moment

If the lateral bending moment
plastic yield moment is:

were to act alone, the fully

Myo = Oy [As B + }(AD + AB)I

= 11.962 x 106 ft.-tons

If one assumes conservatively a service lateral bending moment My of the same
magnitude as the design vertical bending moment, one obtains the horizontal
bending moment ratio:

M
my . ~ = 0.3298

‘Yo

It should be

c.

‘oted‘hat ‘Yo
is much larger than Mxo (Myo = 1.77 Mxo).

The Torsional Loadina

The torque “To” that causes fully plastic yielding for the cross
section is given by:

To=20y tA
B T

where

B = a shear yield criterion = 2 (Tresca)

t= min (ts, tB, tD) = 2.30 in.

AT = enclosed area = B X D

To = 5.066 x 106 ft.-tons

Thus ,
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The torque encountered during service may be estimated by an expression
due to Vedeler [31i p. 196]:

c LB3T=m, C=O.35

= 3.724 x 105 ft.-tons

Hence,

II II
t

neg-

we have the non-dimensional torque ratio:

t’:= 0.0735
0

is thus very small and its effect, in this case, is expected to be
ig.ble.

d. Effect of the Vertical Shear Force

The shear force So causing fully plastic yield is given for the
case of a symmetrical cross section (AD = AB = Af) by

= 38,802 tons

A design shear force of 12,110 tons obtained from the ABS Steel rules may
then be used to obtain the shear force ratio:

s=
~

= 0.312

e. Effect of the Axial Force

The maximum service axial force for the tanker was estimated
to cause an axial stress of 60 lb/in2 which is negligible compared to the
bending and shear stresses and to the fully plastic axial stress, i.e., the
yield stress.

Using the above dimensionless loads, one may now assess the
effect of their interactions on the vertical bending strength.

i. For the case of the vertical bending moment interacting
with the lateral moment, we have the yield relation:

k my2 +mx = 1 ; lmxl~lmyl

where

k=
(A + 2 A~)2

= 0.781
16 As(A-As) - 4 (AD-AB)2

With my = 0.3298, we obtain mx = 0.915.
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ii. If torque acts together with bending in two orthogonal
planes, we have the relation:

k my2 + mx w + t’ = 1 ; IW121WI

With my= 0.3298 and t =0.0735, we havemx =0.912.

. . .
111. If the hypothetical case where vertical bending moment and

shear force act concurrently, using the wide-flange interaction curve as a
conservative approximation, we have:

s2+mx’=1

This gives mx = 0.902 for s = 0.312.

From the above calculations, we may conclude that while torque
and axial force effects a~e negligible, the presence of the lateral bending
moment or shear forces could reduce the vertical bending moment capacity of
the hull girderby about 9 to 10 percent. It may,however,be noted that the
maxima of the vertical bending moment and shear forces do not occur at the
same location along the hull length. The maximum permissible vertical bending
moment mxp may then be taken as:

mx = 0.912 ;Mx= 6.157 x 106 ft.-tons

A design value of mx = 0.584 then implies a factor of safety of 1,56 based
on the fully plastic ultimate strength. This may reduce further when the
possibility of buckling is accounted for.

2. Investigation of The Buckling Instability of the Hull Cross Section

The determination of the true collapse moment must account for the
possibility of buckling instability of the structural elements that constitute
the hull girder. Here we consider the compressive strength of the weaker deck
gross panel in order to assess this detrimental effect. A typical deck panel
under investigation is shown in Figure 15.

The instability and buckling strength of (a) plate elements between
stiffeners, (b) panel instability including flexural and tripping modes of
failure, and (c) grillage instability leading to failure will be considered
separately as follows.

a. Local Buckling of Plate Elements

The deck panel under investigation consists of plate elements
that may buckle locally even before the inception of a primary instability.
That would in turn affect the load-carrying capacity in the primary modes
of failure. Related to this question of interaction, there exists the
possibility that this load shirking by the plate may mean that the ultimate
load for the gross panel may be reached before the stiffeners fail. We are
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thus faced with the necessity of having to consider the instability and
strength of plating both in the deck and in the web of deck girders in some
detai1.

i. A typical unstiffened plate panel in the deck is considered
simply supported all around, under combined shear and uniformly distributed
longitudinal stress (Figure 16):

FIGURE 16. Plate Subjected to Uniform Compression and Edge Shear

The elastic critical stress in pure compression (oco) is given by [24, p. 320]:

o=k ~2 E
aC (;)2

12 (1-02)

For an aspect ratio of 5, the critical stress is a minimum for the plate
buckling in 5 half waves, with a plate factor of k = 4.0. Using an elastic
modulus E of 30,000 ksi, a poisson ratio of 0.3 and the yield stress Oyp of
34,000 ksi, we obtain:

Gc0 = 169 ksi = 75 t/in2

The elastic critical stress in pure shear (-rco)is considered next.

o
‘c

5.34 ++ (fora>l)

5.5

= 232 ksi = 104 t/in2

.-

The occurrence of the plate instability under pure shear
does not depend on the direction of the shear stress -tC. The value of the
critical stress may be determined from the usual formula, with a plate factor
k given approximately by [24, p. 395]:

k=

=
Hence,



For the case of combined shear and longitudinal compression, we have an
approximate parabolic interaction [24, p. 405]:

(-)‘c
2

+ ‘c_l—.
Tco 0

‘c

For the given hull, we previously obtained a maximum design shear force of
12110 tons. A calculation of shear flow in the deck assuming the centerline as a
point of zero shear, gives a flow linearly increasing to 21.87 t/ft. at the
longitudinal bulkhead,which is 40.7 ft. off centerline. Tc calculated as an
average over 38” on the maximum side is:

-cc = 2.62 ksi = 1.17 t/in2

o 2 = 0.00013 and.ucWe thus have (Tc/Tc ) = 0.9999 Oco. This reduction is
negligible. One may also bear in mind that the maxima of the bending moment
and shear force occur at different locations along the length.

From the load-shortening curves for near perfect plates with
small residual stresses and initial deformations [21, p. 15], one may see
that plating of the given slenderness b/t = 25 is not likely to fail until
the average strain is well past the yield strain. The plating would thus
remain a fully effective flange for the case of column behav”

The critical longitudinal stress in the ine”
neglecting the effect of shear, is given from [24, p. 343]:

.
0: / G = Uco

or.

astic range (o~)l

‘c= E /E is a reduction factor related to plasticity. On using the Ostenfeld-
kBleic Parabola for”~ toqether with an assumed ~ro~ortional limit of 25 ksi

and a yield strength of ~4 ksi, we have:
,.

~i = 33.74 ksi = 0.99 ay
c

ii
considered simp
we have an elas

Stability of the longitudinal deck girder web plate (Figure 17),
y supported, under longitudinal compression [24 p. 4“0]: Here
ic critical stress Uco = 57.02 ksi = 25.45 t/in~ based on a

plate factor k = 7.7.

I&v

FIGURE 17. Web Plating
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Neglecting the effect of shear
reduction factor approach, the critical stress ‘
found to be:

0; = 31.8 ksi = 0.94 uy

and using the plasticity
n the inelastic range is then

This value is probably on the conservative side because of the assu~d simPIY
supported boundary conditions.

iii. For the smaller 24.4” x 1.5” flat-bar stiffener, the
possibility of local web buckling is thought not to be critical. For that
case, assuming one end fixed and the other free, (plate factor k = 1.277)3 we
obtain:

DCo = 131 ksi = 58.4 t/in2

and,
.

a;= 33.6 ksi = 0.99 ffy

b. Panel Failure Mode Including Flexurel and Tripping

i. Flexural Buckling of Longitudinal Stiffening

The mode of failure considered is that of a purely flexural
column collapse, with the stiffener and.an effective width of plating
comprising the cross section. Pinned ends are assumed. No account is
taken of the presence of any lateral pressure. As an approximation, column
formulas are used, with the column mode considered separately from any
possible tripping.

The flat-bar stiffener. From the analysis of local buckling
of plating, it is seen that,because of its stockiness, very little load
reduction,if any,is likely to occur in the flange. The plating comprising the
flange is then fully effective throughout the range of column behaviour.
The web has also been found stable.

Properties of the section shown in Figure 18 are:

Neutral axis 4.78” below flange.

I = moment of inertia = 5129 in4

A = area of the section = 93.6 in2.

The Euler elastic buckling stress for the section is:

T2 EI
acE = — = 440 ksi = 196 t/in2

A fi2
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FIGURE 18. Flat Bar Deck Stiffener

For the inelastic case, if one uses a plasticity reduction-factor approach
with Et/E given by the Bleich parabola, together with a structural proportional
limit of 0.5 Oy, one obtains [41, p. 54]:

where

A -2 = ,0
‘cE Y = 12.74CE

Hence we have the critical stress:

Uc = 33.3 ksi = 14.88 t/in2 = 0.98uy

The longitudinal deck girder. In the section shown in
Figure 19,the top flange accounts for both the plating and diffused areas
of the 24” x 1.5” FB stiffeners.

/
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FIGURE 19. Deep Deck
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For the simply supported case of multiple webs, one may
obtain an effective breadth of 0.645 times a spacing of 114”. This accounts
for shear-lag effects [42,43]. Other relevant section properties are:

I = moment of inertia = 18838 in4

A = area of cross section = 46.65 in2

On applying the formulae given before, one then obtains the following results
for the elastic and small-deflection inelastic cases, respectively:

~cE =
3235 ksi = 1444 t/in2

Uc = 33.91 ksi = 15.14 t/in2 =0.997uY

The possibility of local buckling may exist for the web, ,as is evident from
previous analysis. This is not accounted for in this calculation.

ii. Lateral Torsional Buckling of Longitudinal Stiffening
(Tripping)

The elastic critical stress causing tripping of the web of
the columns being considered may be obtained from [24, p. 138]:

~2 E

‘TE =
(@re)2

where L is the length of the column between supports, and re an effective
radius of gyration. We consider here the case of the section web and lower
flange turning about an enforced axis of rotation, namely the intersection
line with the plate. The plating which forms the upper flange is assumed to
provide a restraint against this rotation. The plating is not expected to
locally buckle according to the previous calculations and hence the rotational
stiffeners supplied by it is constant through the range of loading. The
sections are assumed symmetrical. The possibility of web deformation is not
accounted for. A small-deflection plastic extension to the inelastic range
may be done in the same manner as for the case of the flexural buckling
[41, p. 64] resulting in:

This again assumes the Bleich parabola for Et/E, together with a structural
proportional limit up of half the yield stress. Application of this procedure
to the longitudinal stiffeners is shown below.

The flat-bar stiffener whose pinned ends are prevented from
twisting; elastic critical stress. The minimum radius of gyration for this
case is given from L24J by:
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One may note that,as in the case of isotropic plate buckling, the critical
stress obtained by using the above expression is independent of both the
span and the number of half waves.

Assume that the shear center S for the stiffener is located
at its centroid, O (see Fig. 18). The following stiffener properties may then
be calculated. Note that d, t, and b are the pertinent depth, thickness, and
spacing, respectively.

Iy = moment of inertia about the y axis = 6.8 in4

k = torsion constant =~dt3

= 27.46 in4

r
ts bs

= warping constant = ----

= 1364 in4

c = spring stiffeners supplied by the plating [41, p.109]

.Et3
3-li-

= 8.88 x 105 lb-in/in

I
pc = polar moment of inertia about the enforced center of rotation CE

= 7275 in4

and hence,

re2 = 14.04 in2 giving aTE = 113 ksi = 50.35 t/in2

For the inelastic range, using the expression given before, one obtains:

‘T = 31.44 ksi = 14.04 t/in2 = 0.93 a
Y

as given below

a=

=

The longitudinal deck girder. The section properties are
(see Fig. 19):

distance from CE to shear center

31.45” assuming that the shear center S coincides with
the centroid O.
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r = ~~ t3 b3 =- 820.34 in6

@=

c=3b
2.96 x 105 lb-in/in

Iy = 47.18 in4

Ipc = 39.38 in4

Hence,

min re2 = 4.24 in2 and

‘TE = 34 ksi = 15.2 t/in2

For the inelastic case we thus have ~T = 25.5 ksi = 0.75 ay, using the
plasticity reduction-factor approach.

Unfortunately, the details and locations of the tripping brackets
along the deep girder are not available. However, in a girder such as this,
the possibility of tripping collapse can be avoided to a considerable extent
by the proper placement of such lateral support brackets which will be the
case assumed in this analysis.

c. Grillage Failure Mode

i. Buckling of a Sub-Panel of the Grillage with Two Equidistant
Flat-Bar Stiffeners

Following the analysis given in [24, p. 371],we obtain,
for the case of simply supported boundary conditions (Figure 15):

6 = ratio of the cross section area of one stiffener to the
area bt of the plate = 0.21.

Y = the ratio of flexural rigidity of one stiffener to that
of the plate of width b

‘~= 51.60 where,
bD

D = the flexural rigidity per unit width of the plate given
by E t3

12(1-U2)
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The buckling form is determined by a parameter:

Yo = 14.5 ~~ + 36 U* a

= 32.3 in this case.

Since.y > y
?

here, the panel buckles inan antisymmetrical mode with the
stiffeners orming rigid nodal lines. The elastic critical stress is
the same as the isotropic plate buckling stress in this case.

‘c = 169 ksi = 75 t/in2

In the inelastic range, failure occurs by the elastoplastic yield of the
flat-bar stiffeners. Both the flexural and tripping failure stresses for
this mode have been previously obtained.

ii. Overall Grillage Instability

In this mode of failure,the entire grillage together with
all crmstituent stiffening, buckles over its length into one or more half
waves. Column failure would usually precede this mode of failure except in
very slender grillages. Grillage failure would presumably be affected by
the tripping of girders. The following analysis does not account for that
interaction. The effect due to edge shear is also neglected.

The elastic buckling stress (oGE). Under uniaxial
compression in the z direction, the
plate theory [7, p. 32]:

tz bz

where
k=

P=

a,b =

m=

DZ,DX =

DZx =

t~ =

critical stress is given by orthotropic

for the simply supported case

the virtual aspect ratio s ~
T
~ Dx

~

the gross panel length (z direction) and the breadth
(x direction) respectively

the number of half waves in which the gross panel
buckles along the z direction

the flexural rigidities per unit width of the material
along the z and x directions, respectively

the twisting rigidity per

an average cross-sections’
plating and stiffeners in
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The properties relevant to the application of orthotropic
plate theory are now given for the m=l case:

where i is the moment of inertia per unit width of the
orthotropic plate, and

E Iz
=

S(l-U2)

where S is the stiffener spacing and Iz is the moment of
inertia of the stiffener and an effective width of plating
in the z direction.

With Iz = 18838 in4, u =0;3, andS = 114 in.,we have:

Dz = 5.45 x 109 lb-in/in

Dx =
E h3

9.27 x 106 lb-in/in
12(1- 2) =

D
= torsion coefficient n =

&
J%% = 0-602

1P
= the moment of inertia of the plate alone about the neutral

axis of the plate stiffener combination.

Hence,

DZx = 1.353 x 108 lb-in/in

P = 0.085

k = 138.6

t~ = 1.584”

From these parameters the elastic critical stress was found to be very high and
thus, this mode is not a governing mode of failure in this case.

3. Evaluation of the Governing Mode of Failure and Estimation of the
Ultimate Strength of the Hull
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a. The Moment Initiating Yield

The moment initiating yield in the deck grosspanel is given by:

Mi = SMe x UY

where,

SMe = the conventional elastic section modulus

= 4.043 x 105 in2-ft.

and

Oy = the yield stress of the material

= 34 ksi = 15.18t/in2

We thus have:

Mi = 6.14 x 106 ft-tons (74)

Note that this computation assumes that the structural elements constituting
the section remain stable throughout the entire range of load application.

b. The Ultimate Strength Including Instability Modes of Failure

We may now calculate the ultimate load carrying capacity of the
hull girder in longitudinal bending. Ifwe assume that failure in the deck
occurs at a stress equal in magnitude to $ oy,where $ is a structural
instability factor introduced in order to account for the buckling failure of
the structure at deck, we then have the ultimate moment given by:

Mu = ~XSMex Uy

Ifwe assume that the deeper deck longitudinal have been sufficiently
strengthened against tripping, the structural instability factor for our case
is then determined by the tripping of the flat-bar stiffeners. With $=0.93,
we may then obtain the ultimate vertical bending moment as:

Mu = 5,71 x 106 ft-tons

c. The Ultimate Strength Due to Yielding and Plastic Flow

The vertical fully plastic yield moment was calculated in
subsection 1 of this section,including the combined effects of the lateral
and torsional moments,to be:

(75)

Mx = 6.157 x 106 ft-ton (76)
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Comparing Equations (74), (75), and (76),it is clear that the
governing failure mode is that due to instability of d ck longitudinal and

%the estimated ultimate moment in this case is 5.7 x 10 ft-ton.

It should be noted that Caldw.ell’s [2] approach for including buckling
modes of failure in the fully plastic moment analysis (i.e., using the
plastic collapse moment formulation) gives a more optimistic value of the
ultimate strength. In separate calculations conducted under this study,
his approach yielded an ultima}e strength value of 6.46 x 106 ft-ton
including buckling effects, but excluding lateral and torsional moment effects.
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VI. CONCLUSIONS AND rECOMMENDATIONS

Although some of the ultimate modes of failure of a hull girder can be
analyzed with some degree of confidence, others are far from being well
established or completely reliable. Those failure modes which need particular
attention are usually the ones which involve coupling between several
mechanisms of failure. Therefore, additional analytical work as well as
experimental verification programs are necessary. These two aspects of our
recommendations are discussed in the following paragraphs.

A. Analytical and Semi-Emperical Work

1. The torsion mode of hull failure in association with open-deck
vessels such as containerships needs further investigation. Although this
mode of failure was not found to be important and has little or no effect
on the fully plastic moment and other collapse modes of full-deck vessels,
the situation can be different in open-deck vessels and should be thoroughly
examined.

2. The hull modes of failure should be further investigated when
coupling occurs between two or more mechanisms of failure, e.g., plate
buckling occurring simultaneously with instability of stiffeners and plastic
yielding.

3. Further attention should be given to hull failure resulting from
stiffeners tripping, i.e., lateral-torsional buckling. The inelastic tripping
of stiffeners welded to continuous plating and the appropriate location of
tripping brackets require further examination.

4. In the shakedown analysis, the probability of occurrence of several
loads which cause plastic flow in the hull girder over its lifetime is very
important. If these loads do not occur more than once or twice in the lifetime,
then shakedown analysis is not necessary and can be ignored as one of the
hull egirder modes of failure. On the other hand, if these loads are expected
to occur several times during the hull life, shakedown analysis can be important
and should be examined as a possible failure mode. Thereforetan investigation
of the expected probability of occurrence of such loads which lead to plastic
flow in the hull is needed.

5. An investigation,similar in scope to this study but with attention
focussed on the fracture modes of failure,is recommended. At present, a
separate analysis must be carried out for cumulative damage by fatigue when
conditions are conducive to this type of failure. Both fatigue and fracture
modes o.fhull failure should be further developed and incorporated in a general
analysis procedure together with the other modes of failure discussed in this
report. This is important because the final failure of the hull may occur
prematurely under the single application of an “ultimate” bending moment if the
momentarily existing carrying capacity of the hull is somewhat reduced by
fatigue to the extent that it cannot sustain this moment. Local weakness,
particularly at the joints and structural connections, should be included in
such a study.

58



B. Experimental Program for Verification

As has been pointed out earlier, some of the expressions and formulations
for estimating the collapse load of a hull girder are not well established
and a need for further verification exists. An experimental program may,not
provide all answers to the questions raised, but,without doubt,it will provide
insight into some of the difficult problems and possibly a measure for
determining the relative reliability of the diffewnt analytical formulations.
It is envisioned that two groups of experimental programs fulfilling two
complementary objectives will provide the maximum benefits. The two groups
are:

Objective:

To verify and calibrate the recommended methods and procedures
for predicting the ultimate strength and collapse moments of a hull girder
under vertical and combined moments through correlations and comparisons
with experimental results.

P1an:

Relatively small-scale models (6 to 8 ft. in length) should be
sufficient in this regard. The breadth-to-depth ratio of the models should
be within the same range of values as those of actual ships. The end sections
of the model (about 2 ft. in length) should be sufficiently strong to avoid
premature failure in those regions. The middle section of the model which
is the “test specimen” (about 2 to 4 ft. in length) should be designed to be
interchangeable. In this manner, the test facilities and end sections can be
suitable for accommodating several middle sections designed to fail in
different modes of failure. For example, some of the middle sections may be
designed to fail by instability of longitudinal stiffeners or overall grillage
instability, while others may be designed to accommodate a moment equal to the
fully plastic moment prior to any grillage instability.

The support system and external loads should be applied only at the
end sections of the model. The external loads can be designed such as to
produce vertical moment only or vertical moment and torque or, by applying
the loads diagonally on the end sections combined vertical, lateral, and
torsional moments can be induced.

Properties of the materials used in the construction of the models
should be tested in tension and compression. Initial deformation due to
welding distortions and plate unfairness-should be measured and recorder prior
to testing. Deflection and strain measurements should be taken through the
elastic and plastic ranges up to the collapse loads. Stages of development of
each failure mode should be observed and recorded together with the corresponding
collapse load.

The previous experimental work sponsored by the Ship Structure
Committee [9,10,11] fits and contributes to this group.
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Objective:

To examine the likelihood of different modes of failure in models larae
enough to allow for re”

P1an:

This is envis
1arge models (about 40

.
iable extrapolation of the results to actual ship sizes.

oned as a long-term phase which involves relatively
ft. in lenqth). The models should be scaled accurately

to fipresent actual ships. Two s~rong end sections with an interchangeable “
middle section as in Group A can be used also here. Since the middle section
is a large-scale model of an actual ship, the likely modes of failure can be
examined and the corresponding collapse loads can be extrapolated to the full
size. The effects of residual stresses and welding distortions on the collapse
moment can be realistically examined. In addition, the tests should provide
results which can be used for further verification or modification of the
recommended analytical formulations and the development of new emperical
expressions. Testing facilities such as existing at David Taylor Naval Ship
Research and Development Center and at the University of California, Berkeley,
are suitable for such large-size experiments.
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APPENDIX I

CRITERIA FOR YIELD UNDER COMBINED STRESSES

The response of structural elements to uniaxial stress or pure shear
can be represented by stress-strain diagrams that may be used to predict the
onset of yield directly using material properties derived from analogous
laboratory tests. Practical structures, however, are subjected to loads
that give rise to combined multiaxial stress distributions. In order to
apply plastic theory, one now is faced with the necessity of having to
define yield point under a multiaxial state of stress. The two most common
theories for accomplishing this quantitatively are the Maximum Shear Stress
Theory and the Maximum Distortion Energy Theory. Both are discussed here
for the case of the biaxial stress.

1. The Maximum Shear Stress Theory

This theory usually bears the name of H.Tresca (1868). In 1aboratory
specimen under a uniaxial loading, it may be observed that slippage occurs
along planes of maximum shear stress during yield. This theory uses the
same criterion under combined stress; the onset of yield is then taken to
depend on the maximum shear stress attained. The critical value of stress is
normally taken as the shear stress at yield in simple compression or tension.
This may be obtained from the Mohr’s circle of stress as:

=
‘max - ‘CR ‘GYP

/2

For the biaxial,stress state with principal stresses al and 02, we then have
yield governed by the criterion:

=* II‘1 - ‘2 %
‘max 2 52

This yield criterion is often represented by the hexagonin Figure 20. Each point on
the boundary represents a limiting state of biaxial stress. Points inside the
hexagon indicate elastic behaviour. The concept of a yield stress is then
replaced by the concept of a yield curve or surface.
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FIGURE 20. Tresca Yield Surface
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2. The Maximum Distortion Energy Theory

This is the other widely used yield criterion for ductile isotropic
materials In its present form, the theory was proposed and explained by
M.T. Huber (1904), R. von Mises (1913), andH. Hencky (1925). This approach
visualizes the total elastic energy as consisting of a part associated with
volumetric changes in the material, and the other causing shear distortions.
The shear-distortion energy under the combined stresses is equated to that
under simple tension at yield point in order to establish the yield criterion.
The interested reader may refer to cl] for details. The basic law for the
ideally plastic material under a plane stress is given for this case in terms
of the principal stresses al and 02 as:

This criterion may be represented by the ellipse shown
within the ellipse indicate elastic behaviour. The el
yield surface as shown in Figure 21:

i
Points contained

ipse represents the

FIGURE 21. Von Mises Yield Surface

The von Mises criterion is also sometimes referred to as the octahedral
shear stress criterion. It closely approximates the Tresca hexagon for the
biaxial stress state, but has the additional advantage of being a continuous
function. Note that both the theories presented apply to ductile materials
exhibiting isotropic behaviour. Additionally, they assume properties
identical in tension and compression.

3. An Example: Combined Shear and Bending of Beams

Consider the beam with its axis oriented along the z direction, as
shown in Figure 22:

/\!/
x

+2

FIGURE 22. Box Beam Coordinates
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The beam may
components specifying

az=o

and

be considered symmetrical about the y-z plane. The
the stress state here are:

‘yz ‘= T

Txz may be neglected because of the symmetry assumed.

The Tresca yield condition states that the maximum shear stress
should equal half the yield stress in simple tension for an element to
be plastic. Here the principal stresses are given by:

Hence the Tresca condition for this case is:

This simplifies to:

U2+4T2 .
‘YP2

The von Mises yield condition for the same case is obtained from:

2 + ~22 - 2
al al 02 =

‘YP

On substituting for al and 02, one may obtain for the yield curve:

02 +3.2 =.Y;

Note that in this case, we may recast the results into one convenient form:

where
$ = 2 (Tresca)

=~ (von Mises)

This expression is readily reduced to the case of pure tension or pure shear
by setting the appropriate terms to zero.
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APPENDIX II

THEOREMS OF LIMIT ANALYSIS

Consider the behaviour of a general structure under the action of an
arbitrary set of loads that are in equilibrium. For the present, assume
that the structure is made up of a rigid perfectly plastic material. The
load for which the structure remains in equilibrium, but does not remain
rigid; with the displacements increasing indefinitely, is variously called
the limit load, the fully plastic yield load, or the collapse load. The
theorems of limit analysis aim at determining that load. The extent of
generality of these theorems is discussed later.

1. The Static or the Lower Bound Theorem

If it is possible to find a stress distribution over the entire
structure that is in equilibrium with the external applied loads and is
everywhere below or at yield, the structure will not collapse or will just
be at the verge of collapse. This theorem yields a load from static
considerations which is less than or equal to the failure load, and thus
gives a lower bound on the collapse load.

2. The Kinematic or the Upper Bound Theorem

If there exists any compatible pattern of plastic mechanism
deformations for which the rate at which the external forces do work
exceeds the rate of internal dissipation, the structure will collapse.
The associated load given from kinematic considerations will be greater
than or equal to the load at failure. We thus have an upper bound on the
collapse load.

This theorem states that if a path to failure exists, the structure
will not stand up. For practical purposes, these two theorems would enable
bracketing the collapse load. A unique collapse load does exist. It may be
defined as one where the resulting stress distribution is in equilibrium
with the external loads, nowhereexceeds the yield stress, and simultaneously
transforms the structure ititoa mechanism with yield hinges at a sufficient
number of locations.

In the context of the above state theorems, the collapse load is the
one that is the highest obtained from statics and the lowest obtained from
kinematics. For a proof of the above theorems, one may refer to [14; pp. 201-205].

The theorems are valid for any combination of external loads, e.g.,
combined bending, axial, and torsional loads. Even though proportional loading
is usually assumed in describing these theorems in terms of load factor, any
set of proportional or non-proportional loading may occur. The structure
will collapse at the first combination of loads whose stress distribution
satisfies the conditions of equilibrium, mechanism and yield [40]. Thus the
stress distribution over the structure at collapse is not unique. The collaps@
load, however, is unique.

67



The general validity of this approach to a structure of a given
material depends on the material ‘s behaviour when loaded. The stress-strain
curves for mild steel make it a good candidate for the application of plastic
theory. One may also note here that the assumption of rigid plasticity,
with an infinite elastic modulus, though conceptually simpler, may be
replaced by that of elastic-perfect plasticity with a finite elastic modulus.
The collapse load is independent of the Young’s modulus. A restriction in
doing so is that the changes in geometry due to the resulting elastic
deflections should be small enough to be neglected.
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