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NOT ATIO~

The following list defines the main symbols appeming in this report.

L=

x=

Px =
ax =

fx(.) =

Fx(.) =
EX =

A =

l,k =
co =

H(u) =

&(w) =

S@) =

N,n =

Zn =

(pzJ.) =

Pf =
p~n=l =

[A1UA2] =

ii =

IAlnAz] =

Cg =
Ci =

Cf =

M=

s=

z ,=

g(.) =

Xi* =

ship length

random variable
mean of X

standard deviation of X

probability density function of X

distribution function of X
mean square value of X

parameter of exponential distribution

parameters of Weibull distribution
wave frequency

frequency response function

wave spectrum

response spectrum

number of records or encounters

random variable representing extreme amplitude of

total bending moment in n-records
probability density function of ~

probability of failure

probability of failure for n = 1

union of two events Al and Az

complementary event of Ai

intersection of the two events Al and A2

generalized cost

initial cost of construction plus maintenance

cost due to failure

safety margin

random variable representing strength

random variable representing total bending moment

limit state function or performance function

%
coor “ ates of most likely failure point in original space

vi



Yi* =
Vx =

0 =

$( ),@{) =

coordinates of most likely failure point in reduced space

coefficient of variation of a random variable X

central safety factor
standard normal probability density and distribution
fuctions

correlation coefficient

direction cosine

safety index
partial safety factors associated with a random variable

Metric Cmwe.mien Table

lft = 0.3048 In

1 in. = 25.4 mm

1 psi = 6.894 kPa

1 ksi = 6.894MPa

1 lb-in. = 0.113 N-m

1ton-ft = 0.309 t-m
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L INTRODUCTION AND SUMMARY

Structural reliability theory is concerned with the rational treatment of

uncertainties associated with design of stmctures and with assessing the safety

and serviceability of these structures. ‘The subject has grown rapidly in the last

decade as can be seen from the many recent books and proceedings published on

the subject [1,2,3,4]. It has evolved from a research topic to procedures and

methodologies of wide range of practical applications and has been used in code

development.

There is a need for naval architects and structural engineers to develop an

understanding of structural reliability theory and its application to marine

structure. The aim of the application is usually to achieve economy together with

an appropriate degree of safety. However, like other tools, stmctural reliability

theory can be misused if not well understood. It cannot be thought of as the

solution to all safety problems and it cannot be applied in a mechanical fashion.

There are also several shortcomings that must be clearly identified and

examined.

The objective of this work is to provide an introduction and summary of the

state-of-the-art in structural reliability theory directed SDecific aily towards the

marine industrv. To this grid, consideration is given to: (a) the kind and nature of

existing data on the design variables of a marine structure, and (b) the numerical

nature of the analvsiq of. complex structures

environment.

1,1 Role of Reliability Analvsis in a General

that typically exist in the marine
.,

Probabilish “cDesiw Procedure

In order to define the role of reliability analysis in a general probabilistic

procedure for the design of marine structures, Figure 1.1 is introduced.

Starting with a configuration of the marine structure and using random

ocean waves as input, the wave loads acting on the structure can be determined

(please refer to Figure 1.1). Generally, for primary design analysis the most

important loads are the large ones. Extrapolation procedures are usually used to

determine the characteristics of these large loads. In the case of ocean-going

1
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vessels, for example, this is done either through the detemnination of a long-term

distribution of the wave loads [5,6,7] or through the evaluation of an extreme load

distribution [8,9,10,11] that may occur in a specific storm condition.

In general, wave loads acting on an ocean-going vessel include low-

frequency loads due to the motion of the vessel in waves as a rigid body. They also

include higher frequency loads (and response) due to slamming and springing

which can be determined by considering the ship as a flexible body. In principle,

these loads should be combined stochastically to determine the total wave load as,

for example, developed in [12,13].

Referring back to Figure 1.1, other loads beside wave loads occur on a

marine structure. These loads may be important in magnitude, though usually

less random in nature (except possibly for wind loads on offshore stmctures). For

example, in the case of ocean-going vessels, these loads consist mainly of

stillwater loads and thermal loads.

Following Figure 1.1, the response of the marine structure to the total

combined loads is determined and compared with the resistance or capability of

the structure. This comparison may be conducted through one of several

relia bilitv methods. Based on these methods, safety indices or probabilities of

failure are estimated and compared with acceptable ones. A new cycle may be

necessary if the estimated indices are below the acceptable ones.

1.2 Bas ic Conce~ tin Reliability

In order to illustrate some aspects of the procedure described in figure 1.1

and to introduce the basic concept in the reliability analysis, the following

example is given. Consider a simple beam subjected to a loading induced by the

environment, e.g. wave load. Traditionally, in the design of such a beam,

practitioners and designers have used fixed deterministic values for the load

acting on the beam and for its strength. In reality these values are not unique

values but rather have probability distributions that reflect many uncertainties in

the load and the strength of the beam. Structural reliability theory deals mainly

with the assessment of these uncertainties and the methods of quantifying and

2
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rationally including them in the design process. The load and the strength are

thus modelled as random variables.

Figure 1.2 shows the probability density functions of the load and the

strength of the beam in terms of applied bending moment and ultimate moment

capacity of the beam, respectively. Both, the load “Z” and the strength “S” are

assumed in this example to follow the normal (Gaussian) probability distribution
with mean values 1.LZ=20,000ft-tin and ps=30,000 ft-ton, respectively, and standard

deviations of 0Z=2,500 ft-ton and a~=3,000 f&tan, respectively.

Figure 1.2. Load and Strength Probability Density Functions

We may now construct a simple function g(s,z), called the limit state

fuction, which desctibes the safety margin “M” between the strength of the beam

and the load acting on it, i.e.,

M

Both S

Therefore, the

beam,

= g(s,z) = s-z

and Z are random variables

following events or conditions

(1.1)

and may assume several values.

describe the possible states of the

4
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(i) M = ~S,Z) <0

(ii) M = g(S,Z) > 0

(iii) M = g(s,z) = O

represents a failure state since this means

that the load Z exceeds the strength S.

represents a safe state

represents the limit state surface (line in

this case) or the border line between the safe

and failure states.

The probability of failure implied in (i) above can be computed from t

pf= Pm=g(s,z)~o] = JJ fs~ (S,2)ds dz (1.2)

g(s,z) s o

where fs,z (s,z) is the joint probability density function of S and Z and the

domain of integration is over all values ofs and z where the margin M is not

positive, i.e., not in the safe state. If the applied load on the beam is statistically

independent from the beam strength the above equation can be simplified and

interpreted easily as:

pf = ;S(d f~(z)dz (1.3)
o

where Fs (.) and fz (.) are the cumulative distribution fhnction of S and the

probability density function of Z, respectively, both in this example, are Gaussian.

Equation (1.3) is the convolution integral with respect to z and can be

interpreted with reference to Figure 1.2. If Z=z, the conditional probability of
failure would be Fs(z). But since z<ZSz+dz is associated with probabili~ fz(z)dz,

integration of all values of z results in equation (1.3).

In our example, S and Z are both statistically independent and normally

distributed. Equation (1.3) can be thus shown to reduce to:

5



Pf = @(-p) (1.4)

where O(O)is the standard normal cumulative distribution function and ~ is

called a safety index defined as:

‘=*
(1.5)

Notice that as the safety index 13increases the probability of failure pf as

given by (1.4) decreases. The safety of the beam as measured by the safety index ~

can be thus increased (see equation 1.5) by increasing the difference between the
means ~s-yz or decreasing the standard deviations as and az.

Substituting in equation (1.5) the numerical values for ys, pz, ~s and Cz

given in our simple beam example results in a safety index ~ = 2.56. Equation

(1.4) can be then used in conjunction with tables of standard normal cumulative

distribution function to yield a probability of failure= 5.23x 10-3.

~formation for1. N Reliability Ana Ivsis of Marine % ucture~r

The preceding example and Figure 1.1 indicate that certain specific load

and strength information are necessary for performing reliability analysis of

marine structures. It is mostly in this area that reliability analysis of marine

structures differs from typical civil engineering structures. In this report

emphasis is placed on developing the required load and strength information for

marine structures.

Prior to estimating the loads acting on ships or

statistical representation of the environment is necessary.

marine structures a

This includes waves,

wind, ice, seismic and current. The last four items are more important for fixed

offshore structures than for floating vessels. The environmental information can

then be used as input to determine the loads acting on the structure. Typically, an

inputioutput spectral analysis procedure is used to determine the “short-term”

loads in a specific sea condition (stationary condition). The required transfer

6



function is determined from strip theory using the equations of motion of the

vessel or from a towing tank experiment. In offshore structures, Monson’s

equation is usually used to determine the wave load trwsfer fiction.

Short term prediction of the loads is not sufficient for the reliability

analysis. Extreme values and long-term prediction of the maximum loads and

their statistics are more valuable. For this purpose order statistics and statistics

of extremes play a very important role. Gumbel’s theory of asymptotic

distributions is often used in this regard. In the long-temn prediction, the fatigue

loads, i.e., the cyclic repetitive loads which cause cumulative damage to the

structure must also be considered.

For complete description of this aspect of reliability analysis, methods of

combining the loads such as static and dynamic, including high and low

frequency loads, must be considered. In nature, many of these loads act

simultaneously, therefore, their combination must be evaluated for a meaningful

reliability analysis. The environment and load aspects are discussed in Chapter 2

of this report.

The second major component in the reliability analysis is the strength (or

resistance) of the marine stmcture and the evaluation of its modes of failure. In

this regard several limit ~tates may be defined such as the ultimate limit state,

fatigue limit state and seficeability limit state. The first is related to the

maximum load carrying capacity of the structure, the second to the damaging

effect of repeated loading and the third to criteria governing normal use and .

durability. Each of these limit states include several modes; for example, the

ultimate limit state includes excessive yielding (plastic mechanisms) and
instability (buckling failure).

Methods of analyzing uncertainties associated with the loads and the
strength of marine structures are impor~nt aspects of reliability analysis [14,15].

Generally, these uncertainties are quantified by coefficients of variation since in

most cases lack of data prevents the estimation of complete probability

distributions. Strength, modes of failure and uncertainty analysis of marine

structures are discussed in Chapter 3 of the report;

7



Chapters 4,5 and 6 present three different levels of reliability analysis based

on the load and strength information discussed in Chapters 2 and 3. Examples of

application to ships are also provided in these chapters. Chapter 7 introduces

simulation and Monte Carlo techniques as a tool for use in the reliability analysis.

System reliability, which deals with redundancy of structures and multiplicity of

failure modes is discussed in Chapter 8. Chapter 9 describes a procedure for

fatigue reliability which requires separate treatment from reliability under

extreme load. Several application examples to ships and offshore structures are

given in Chapter 10. The last chapter of the report discusses some shortcomings

and offers concluding remarks. Appendices are given at the end of the report one

of which includes some helpfd information and another describes a computer

program for performing reliability analysis.

The reader of this report can get full benefit of the material presented if

he/she has a background (one course) in basic probability theory and statistics

including probability distributions, random variables, expectation of a random

variable, sampling theory, and estimation methods.

8
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2. LOAD INFORMATION REQUIRED IN RELIABILrrY ANALYSIS OF

MARINE STRUCTURES

2.1 Probabilistic Representation of Environment

Prior to discussing the loads acting on a ship or a marine structure, a

discussion of a probabilistic representation of the environment is essential.

Information on the environment can be then used as input to determine the

loads acting on the structure. A complete description of the environment
entails description of waves, wind, ice, seismic and current. The last four

items are more important for fixed offshore structures than for floating

vessels. Since the main emphasis in this work is floating vessels, only waves

will be thoroughly investigated in this report.

The sea surface is irregular and never repeats itself. An exact

mathematical representation of it as function of time, wind speed, wind

direction, current, etc. is not possible. A representation, however, using a
probabilistic model is possible and more suitable. By means of the theory of

random processes one may represent the sea surface and determine certain

statistical averages and extreme values suitable for design.

Such a probabilistic representation of a random phenomenon has been

well developed in electrical engineering to analyze random noise (see

reference [2.1] ) and was used successfully in mechanical engineering to

investigate random vibration (e.g. [2.2]). It has been also used in civil

engineering for earthquake analysis. In the next section a few definitions
related to random processes and the associated probability distributions are

discussed.

2.1,1. Definitions:

Deterministic process: If an experiment is performed many times
under identical conditions and the records obtained are always alike,

the process is said to be deterministic. For example, sinusoidal or

11
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predominantly sinusoidal

records of a deterministic

Random process: If the

all conditions under the

time history

process [2.2].

experiment is

of a measured quantity are

performed many times when
control of the experimenter are kept the

same, but the records continually differ from each other, the process

is said to be random [2.2].

The degree of randomness

understanding of effects of

and (2) the ability to control

in a process depends on: (1) the
the factors involved in the experiment,

them.

As an example of a random process, consider a test is being

performed to determine the wave elevation as a function of time at a

given location in the ocean. Figure 2.1 is a record of the wave
elevation as recorded for a period of approximately 18 minutes.

RHVE ELEVRTION RECORDS

0 Icc 260 300 400 500 6M 700 800 500 1Goo

TIIIE[SeC]

Figure 2.1

same test was repeated under identical conditions as far as

that is, under the same wind speed and a record

The

is known,

as shown in Figure 2.2 was obtained. The striking feature is that the
two records are not identical. If the test is repeated several times
under identical conditions as far as is known, records will be

obtained that are not identical. This randomness in the records is

12
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due to factors beyond one’s control and ability to measure. The
elevation of the water surface at any time is due to the entire history

of the meteorological conditions in that area and surrounding areas.

Therefore, under given macroscopic parameters such as wind
direction, speed, duration, etc., one cannot predict exactly the wave
surface at the given point. The wave elevation records can be thus
treated as records of a random process.

.+ 1
[

o 100 2CC 300 400 500 600 700 800 930 1000
TIME[SeC]

Figure 2.2

Another example of a random process is an ensemble of time
history recordi of a - strain gage installed in a ferry boat operating

between, say, San FTancisco and San Rafael. In any given day, a
record during each *trip between these two neighboring cities is

obtained. The resulting ensemble of records can be treated as ~ “
records of a random process.

As discussed above, the most important notion involved in the

concept of a random process X(i)(t) is that not just one time history is

described, but the whole family or ensemble of possible time

histories which might have. been the outcome of the same test are

described. In the example of recording wave elevation at a given
point in the ocean, the end result is an ensemble of records of wave

variation as a function of time (see F&gum a. 3).

13
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Each of the above records is called a “sample.” Some of these

samples are more probable than others, and in order to describe the

random process further it is necessary to give probability

information.

It should be noted that a sinusoid in a deterministic process

can be characterized completely by its amplitude and frequency

(phase is unimportant in many cases). Similarly, the random
samples can be characterized by some average
amplitude (root mean square) and a decomposition in frequency

(spectral density) as will be discussed later.

WRVE ELEVFITIONRECORDS

x(z) (t)

4

2

0

-2

-4
0

0

4’ .

2

x(n) (t) O
-2

-1

TIME[SHC]

o

Figure 2.3.



A designer given the record ensemble shown in Figure 2.3 may:

a. Select the largest value in the ensemble and use it for his

new design with a factor of safety. In this case he will make no use

of all information he is given except for one value, i.e., the maximum

value, Orl

b. Try to obtain statistical information from all the records

and use such information in his new design.

If “b” is selected, a probability description of the random

process is necessary.

First and Second Order Probability Distrib utions:

At a fixed value, t = tl, (see Figure 2.3) the values of X(i)(t 1),.
which represent wave elevation, can be described by a graph such as

in Figure 2.4. This graph shows the probability density functionl
(p.d.f.) f [ x (tl ) ] or simply f(x) which has the following properties:

F(%)

PROBABILITY DENS m FUNCTION

Figure 2.4.

1 First order probability distribution

l-s



1) The fraction of the ensemble members for which the wave

elevation X, treated as a random variable, lies between x and
X + dx is f(x) dx I i-e. ,

P[x<X~x+&]=f(x)dx

2) The probability that a sample of wave elevation lies between a
and b is

3)

4)

f

b

p[a<X~b] = f(x)dx
a

The probability that X lies between - ~~ and + = is one, that is,
rm

p[.co<x~~] =
r f(x) dx = 1

“’m
P[x= a]= O.

*= “a” is a mnstant.

If, at two time instants t 1 and t2, the wave elevations treated
as random variables are denoted X(t 1) and X(t2 ), or simply XI and

X 2, the probability distribution of these (called joint probability
density function) is given by a surface f(xl ,x2) and has the

properties (Figure 2.5):

1)

2)

3)

P[xl < Xl s Xl+ dxl and x2 < X2 <x2 + dx2] = f(xl,x2) dxldx2

P[al <Xl ~ bl and a2 e X2

P~m< xl <++ -<X2< +to]

2 Second order probability

~~

uZ[

s b2] = f(xl ,x2) dxldx2
‘W * az al

= /1f(xl ,x2) dxldx2 = 1

-m -@

distribution.

16



Ensemble Averages:

For a given function g(x), it may be defined:

E[g(x)] =expected value of g(x)=
1

g(x)f(x)dx

.
,.

* .

JOINT PQOOAW--l T’+ OENSl T~ FuNCTION

Figure 2.5.

17
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For a given p.d.f. f(x), the following definitions will be used for

the wave elevation treated as a random variable X. When g(x) is
simply x, then

+m

E[x] = J ()xfxdx = mean or ensemble average (2.1)
-- = expected value of X (analogous to

moment about origin or distance from origin to center of mass of a

rod of unit mass)

When g(x) = x2, then

E[x2] = j- ( )dx2f x x = mean square of the random variable X (2.2)

(analogous to m%ment of inertia or square of radius of gyration about

origin)

Root mean square (r.m.s.) = ,W

Setting g(x) = (x - E[x])2
+-m

~2 = E(x - E[x])2 =
J

(x-E[x])2f(x)dx (2.3)

-e

= E[x2] - (E[x])2 = variance of the random variable X

(analogous to moment of inertia or square of radius of gyration about

center of mass)

r= /
~2 = standard deviation of the random variable X.

At two fixed values tl and t2, let xl and x2 denote x(tl ) and

x(t2) respectively, then the autocorrelation and covariance functions

are defined by:
+= +-

Autocorrelation = E[xl ,x2] =
[[

xlx2f(xl ,x2)dxldx2 (2.4)



(analogous to a product of inertia of a plate of unit mass about origin)

Covariance ~, = E { [xl - EIx1] ] [x2 -E[x211 }
xiX2 += +*

=
H

[xl - EIx1]] [x2 - E[x2]] f(xl ,x2)dxldx2

-w -w

= E[x1x2] - E[x11E[x21 (2.5)

(analogous to the product of inertia of a plate of unit mass about the

center of mass)

It should be noted that the covariance is equal to the

autocorrelation minus the product of the means. Therefore, if one of
the means is zero then the covariance is equal to the autocorrelation.

The correlation coefficient &l ~z can be defined as:

that is, a non-dimensional covariance.

The two random variables Xl
independent if:

f(x,, XL) = f(xi) f(x)

(2.6)

and X2 are said to be

(2.7)

therefore, from the definition of the autocorrelation function, it is

easy to show, in this case, that

E [x,xL]= E [x,] E [X2] (2.8)
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and, thus, both the correlation coefficient A, $~ and the covariance
~i, ~z are zero. This means that independent random variables must

necessarily be also uncorrelated (h mnmrse is no~ necessarily true) .

Note that when t ~= t, the covariance becomes identical with the
variance and the autocorrelation becomes identical with the mean

square.

It is interesting to notice that in rigid body dynamics we need

to know only the gross moments of inertia, but in vibration analysis

more detailed information on the inertia distribution is necessary.

Similarly, the average quantities derived above (mean,
autocorrelation, covariance, etc.) give only gross statistical estimates

of a random process. More refined estimates require more detailed

information about the probability distribution.

2.1.2 Stationary and Er~odic Processes:

A random process is an infinite ensemble of sample functions.

In the foregoing, the properties of the random process representing

the wave generation at fixed instants t ;, ,tz, etc., have been examined.
Next, the variation of these properties when t,, t ~are assumed to vary

is briefly discussed.

A random process is said to be stationary if its distributions are

invariant under a shift of time scale, that is, independent of the

origin.

This implies that the first order p.d.f. f(x) becomes a universal

distribution independent of time and E(x) and r k are also constants

independent of time. .

In addition, the second order p,d.f. is invariant under

translation of time scale; therefore, it must be a function of the lag

between t , and t ~ only, and not t ~ and t ~ individually. This implies

20



that the autocorrelation function is also a function of ~= tz - tl only
(see definition of the autocorrelation function given by equation 2.4).

E[x, x:]= E[x(t)x(t+?)]= R(?) (2.9)

where R( ? ) will be used to denote the autocomelation function of a

stationary random process. Note that R(0) = E[xz(t)] = mean square of ~

the process.

R( ~ ) is an important

process at any instant of time

function because it comelates the random

with its past (or future). R ( & ) has the

following properties (see figure 2.6):

i- R(0) = E[x J ] = mean square of the process

ii - R(+?) = R{- E) ie, an even function of t
.. .
111 - R(0) 2 pw)l T

R(&)

= mean square

z-

\
“4’

Figure 2.6. Autocorrelation function

If changes in the statistical properties of a random process

occur slowly with time then it is possible to subdivide the process

into several processes of shorter duration, each of which may be

considered stationary. It is usual to represent ocean waves as a

stationary random
hours .

process over a period of about 30 minutes to two

The er~odic hypothesis states that a

quite typical of all other sample functions;

single sample function is

therefore, we can estimate

21



various statistics of interest by averaging over time instead of

averaging over the ensemble.

t

f(t)

t

Figure 2.7. A sample function f(t).

If f(t) represents such a sample function (Fig.2.7), then the

following temporal

The temporal

The temporal

mean

averages can be determined.

is,

1 +!c/2 f (t) dt<f> = limit ~ [
T+- -T/2

autocorrelation function @ ( & ) is,

(2.10)

$(~) = limit + /+T/2 f(t)f(t + ~)dt
T+rn -T/2 (2.11)

The temporal mean square is,

<f2> = limit ; /+T’2f2 (t) dtT+= -T/2 (2.12)

=< f>and R(F) =#( &), AnAn ergodic process implies that E[x]

ergodic process is necessarily stationary since < f } is a constant while

E[x] is generally a function of the time t = t ~at which the ensemble

average is performed except in the case of stationary process.
However, a random process can be stationary without being ergodic.
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For ocean waves, it may be necessary to assume the ergodic

hypothesis if there is only one sample function of the process.

2.1.3 Spectral Density of a Stationary Random Process:

In many engineering problems it is customary to conduct a

Fourier analysis of periodic functions. This simplifies the problem,

because linearity permits treating each single frequency Fourier

component separately and finally combining to obtain the total

response.

A frequency

R( T ) of the ocean

decomposition of

waves can be made:

R(T). = ~+m S (u) eiu’du -m
-m

the autocorrelation function

<?<@
(2.13)

where S ( UJ) is essentially the Fourier transform of R{ ? ) (except for

the factor 2 IT ) given by

.

s(u) = *, ‘f+m R(~)e-iwTd~ ‘- ‘ ‘JJ< m
.- (2.14)

* .

Relations (2.13) and (2.14) are known” as Wiener-Khintchine ~

relations. It can be shown that S( L’ ) is a non-negative even function

of w [2.2]. A physical meaning can be given to S( OJ ) by considering

the limiting case when P=(),

krc

R(0) = mean square = [Ex&]=
J

S(ti)d J ,

-m
that is, the mean square of the process = the sum over all frequencies

of S(ti)dti , so that S( *’ ) can be interpreted as a mean square spectral

density.

23
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The mean square (area under the spectral density curve) is the

average of the square of the wave elevation and the root mean

square (rms) is the square root of that value. Physically, the larger

the mean square (or the r.m.s. value), the larger is the wave
elevation and the higher is the sea state.

Since the spectral density is an important function in ocean
waves, the following remarks are made:

1) The units of ocean waves’ spectral density are [ft%-see] since
+=

R (0) = E[x2] = JS(w ) dti; [ftk] ; therefore

,
s(u) = [ft* ]/units of circular frequency = [ft ‘-see]

2) From the properties of a Fourier transform, it can be shown
that S ( u ) is a real and even function ofo. It can be represented by a

curve as shown in Figure 2.8.

“w +(,d

Figure 2.8. Two-sided Spectral Density.

3) In practice, the negative frequency obviously has no
significance. It appeared in the mathematical model only to make
the sums easier. Because of the shape of S( Q ), it is called a two-sided

spectrum.
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4) In practice, a “one-sided spectrum” can be defined by simply
folding the S( @ ) cume about the w = O axis, that is,

m

J S(L )dw = ~2S(~)dU = ~~ti )dti = mean
“a square of the p;ocess, where o

S’(U)

S+(w ) is shown

= one-sided spectrum = 2s(ti) ti~o

= o (d<o

in Figure 2.9.

z, I

Figure 2.9. Energy Spectrum.

5) It can be shown that the area under the ocean waves’ spectral

density, that is, the mean square is proportional to the total energy

per unit area of the waves’ surface which is given by:

Total energy per unit area of the waves’ surface = ‘

For this reason S+( u ) is sometimes called the energy spectrum.

25



The energy in an increment Sw of wave frequencies at a cenbal
frequency u. is

Pg

6) From simple gravity

of half kinetic energy and

(2.15)

waves, the total energy which is composed

half potential energy is,

Energy per unit area = ~~$ $:, where $a= wave amplitude.

It follows that the square of the amplitude of a wave having

the same energy as all the wave components in the band of

frequencies represented by SW is:s

therefore,

~: = 2s’(ti,)$w = double the incremental area under the S+( w )
curve

7) For this reason, oceanographers define a new eal density calkd.

the amplitude ~-~1 asiw obtained by doubling the

The incremental area will then represent
amplitudes as SW+O. The area under the amplitude

m

= 2 j S+(4) dti= 2E[x2]
G

= 2 mean square of the process.

In tiis re~rt the energyrather than the anplitude
k used.

.-

S+ ( u ) ordinates.

component wave
spectrum

(2.16)

spectral density will

3 Valid only for the limiting case when SW + ().

-<
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It should be noted that, both the spectral density and the

autocorrelation function are measurable quantities that can be

indeed determined from time history records of ocean waves.

2.1.4 NarTow and Wide Band Random Processes:

A random process is said to be a narrow-band process if S( u )

has significant values only in a band or range of frequencies whose

width is small compared with the ma nitude of the center frequency
f

of the band UP . Figure 2.10 shows S ( U ) of a narrow band process

and the corresponding time history of a sample function. It should
be noted that a narrow band of frequencies appears in the sample

and it is meaningful to speak of individual cycles.

Qb

Figure 2.10. Spectrum of a

(The sample shows a narrow

A random process is said to be a

w

NarTow Band Process

band of frequencies.)

wide-band process if S( @ ) has

significant values over a band range of frequencies which is roughly

the same order of magnitude as the center frequency LJa. Figure 2.11

shows a typical S+ ( u ) and the corresponding sample function of a

wide-band process. Notice that a wide range of frequencies appears

in the sample function.
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Figure 2.11. Spectrum of a Wide Band Process,

(A broad range of frequencies are shown in the sample.)

2.1.5 Additional Statistics of a Random Process:

The rate of crossing a certain level of wave height or, in

general, a threshold is an important information in design. Similarly,

the probability distribution of the wave peaks can be useful in

estimating probabilities of exceedence of specified wave heights in a

given sea state. Because of their importance the rate of crossing a

threshold and the peak distribution of a random process will be

discussed in the next two sections:

“a. Rate of Crossing a Threshold:

The problem of crossing a threshold was examined extensively

by Rice [2. 1]. Some of the important results of his work will be given

here without proof. Consider a random process #( t ) representing

wave heights and the process has a zero mean, i.e., E [x] = O. The

mean rate of crossing a given level “a” denoted by M; with positive

slope, that is, from below, (see figure 2.12) was derived by Rice [2.1]

as:

(2.17)
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x(t)

Figure 2.12. Crossing a Level “a”.

d%where & = — ~d f%,~(., ., . ) is the j.p.d.f. of z and ~
Jk J

Similarly, the mean rate of crossing, that is, the average
number of crossing per unit time with a negative slope (from above)

is ..
0

v;(t) =
. /11 ~ fX, ~ (a, i,t)di

-m (2.18)
. .

If the threshold level “a” i’s zero, the corresponding mean rate of

crossing (from above and below) is

(2.19)

If the process is stationary- and narrow band, then Y: or Y; is the

apparent (mean) frequency of the process and from the stationarity

property they are constant, i.e., independent of time.
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b. Peak distribution of a stationary narrow band random process:

For a narrow band random process (e.g. ocean waves) every

zero crossing from below is followed by a positive peak (crest), and

every zero crossing from above is followed by a negative peak

(trough). Therefore, the proportion of the positive zero crossings that

also cross the level “a” with a positive slope represents the

probability that the positive peak is larger than “a”, that is,

+
P[p>a] = 1 - p[p~~] = 1 - F (*) = ‘;

D (2.20)
v“o

where F+ (a) is the cumulative probability distribution function of the

peak values. The corresponding pd. f. “~(a)” is obtained as:

dFP(a)
fp(a) = da =

As wilI be discussed later,

stationary narrow band Gaussian

shown that for such a process %a

1 du+
(2.21)

~ d:
‘o

ocean waves can be considered as a

process with zero mean. It can be

and & are statistically independent,

i.e., the slope ~ is independent of the magnitude K . Therefore, the

j.p.d.f. is given by:

where the individual variances J xp L and ~~ are given in terms of theA
wave spectral density4 S( u

and
2

0.
x

)by

w

=
I

S(m) d~ (2.23)
o

m

= “f (J2S ((II) da
o (2.24)

4. S (m) represents the one-sided energy spectral density. The “+”
superscript will be dropped to simplify the notation.
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Thus, from equation (2.17) and (2.22) the mean rate of positive

crossing of an amplitude of level “a” is

1
+ 1

a.
x--r{ +) 2

v =
a 21 —e

‘x

Due to symmetry of the Gaussian process about zero

1 O* a
u x J+ (—) 2=

a
——

r ‘x
‘x

(2.25)

v;= >:, therefore

(2.26)
and

+
Vo= v;= ++--

‘x

Since a wave spectral density is a relatively narrow-banded

spectrum, its apparent (mean) circular frequency “W< is

[!

1
m

/

T

u 2 S(u) d~
u =2N& ‘i o=
e (2.27)

ax
m

1
S(OJ) dm

o

Furthermore, the p.d.f. of the peaks from equations (2.21) and (2.26)

is given by

fp(a) = ~ e -+(~) 2
‘x

‘x

which is the Rayleigh distribution with a parameter

(2.28)

.%

Both equation (2.25) and (2.28) are important results for ocean

waves. Equation (2.25) gives the average number per unit time

(mean rate) of crossing a wave amplitude of level “a” and equation

(2.28) gives the p.d.f. of the peaks. In general, the following
important result was obtained: The peaks of a stationary,
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narrowband Gaussian process (e.g. ocean waves) follow a Rayleigh
distribution with parameter “EX” given by

2
m

‘x = ax
= E [x2] =

I
S(a) do

o
= area under the energy (mean square) spectral density (2.29)

2.1.6 Typical Wave Data

From sea data, oceanographers found that:

1) Over a short period of time (one hour) the wave records can be
assumed to be stationary, relatively narrow-band random process.

2) At any time “t” the elevation of the wave surface from the
mean follows a normal (i.e., Gaussian) distribution given by (see
Figure 2.13).

(2.30)

where rx = standard deviation

2 = /+= X2 f(x)dx = E[x2]
a%

-m

Notice that the variance is equal to the mean square since the mean

of the wave elevation E[x] is taken equal to zero.

3) The peak amplitude is found to follow closely the Rayleigh

distribution given by

2

f~a) = Z . e-~~ a>o (2.31)
E&

where EXis ‘a parameter (see figure 2.14).
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It has been shown in the previous section that for a narrow-band

normal process, with zero mean, the distribution of the peaks follows

a Rayleigh distribution with parameter

Eg = E [xz] = ~k~= mean square of the process

= area under the energy spectrum

I f(x)

Figure

x

2.13. Probability Density Function of Wave Elevation

This shows the importance of these spectra. Several w a v e
statistics regarding wave amplitudes can be derived from the

Rayleigh distribution. For example:

Average wave amplitude = 1.25 ~

Average wave height = 2.5 ~

Average of 1/3 highest waves (significant wave height) = 4.o~

Average of 1/1O highest waves = 5.1 ~X (double amplitude)

Average of 1/1000 highest waves = 7.7 ~ ~X (double amplitude)
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I$(d)

Figure 2.14. Rayleigh Distribution of the Peaks.

2.1.7 Typical Wave Spectra

It is useful for design purposes to obtain many representative
spectra for different wind velocities or significant wave heights. A

number of formulations are presented next.

1. Pierson-Moskowitz (1964)

Moskowitz [2.4] selected spectra from available data in the
North Atlantic and grouped them in a family of five wind speeds

equal to 20, 25, 30, 35, and 40.

Pierson arrived at the following analytical formulation to fit
these spectra (see Figure 2.15).

2
s (w). = +’.

#(g/v@4
w

where:

(2.32)

s (u) = spectral density (energy spectrum)

‘d = frequency, rad/sec .
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-3
oi. 8.1 x 10

!
= 0.74

1 = acceleration of gravity, ft/see?

V = wind speed, ft/sec

Any other consistent units could be used in (2.32)

s (w)
p

i
I

/ ‘\

I

I
●

w
.

Figure 2.15. Pierson-Moskowitz Spectrum.

2. Bretschneider Spectrum

The proposed wave spectrum developed by Bretschneider [2.51
can describe developing and decaying

. .
seas, unlike Pierson-

Moskowitz

Bretschneider
spectrum which describes fully developed seas.
spectrum can be written in the form

s(u) -5
=au

=-AU-4 (2.33)
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where x and
P

are given by

5
a= 16 4 ( iL/3 )2‘P

P-=+”
‘P

It should be noted that Pierson-Moskowitz spectrum is
completely specified by wind velocity (one parameter) while

Bretschneider spectrum is specified by two parameters; the
significant wave height ~,, and the peak frequency tit.

,,n2

3. The International Ship Structure Congress Spectrum (1967)

The ISSC [2.6] adopted a two parameter spectrum given by

where

S(u) = AB u-s e -B*”+ (2.34)

A= 0.25 ( ~,,> )2

B=
in( 0.817 ~ )+

T= mean wave period

H? = significant wave height

This spectrum is intended to be used in conjunction with

observed wave heights and periods.

In general, the shape of the wave spectrum depends on:
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1) Wind speed (most important parameter)

2) Wind duration

3) Fetch (distance over which the wind blows)

4) Location of other storm areas from which swell may travel

It should be noted that waves may attain their fully developed

state for winds up to 32 knots. Beyond that, it is unlikely for waves

to attain their fully developed state. For example, according to

Pierson, a fully developed sea would result if a wind of 52 knots

blew for 80 hours over a fetch of 1800 n. miles. Such conditions are

not common.

2.1.8 Directional Spectra:

So far the so-called point spectrum (1-D) has been discussed.

This is obtained from records taken at a ‘fixed point with no

indication of the direction of wave components, that is, no indication

of how much each of the components of the wave in different

directions contributes to the energy (spectrum). Such a
representation is adequate for long-created seas, but a more
complete representation is given by a 2-D spectrum S (w,p ) where

h= angle between wave components’ direction and prevailing

wind direction (see Figure 2.16).
w

1,

0.

W

0.

1

trum
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The angular integration of this spectrum will yield the same

one-directional spectrum as would be obtained from a record taken

at a fixed point.

The 2-D spectrum is much more difficult to obtain and
sometimes it is assumed that a directional spectrum can be

approximated by two independent functions.

s (Ld,p) = s (h)) “ f(p) (2.35)

where f ( ~ ) is called the “spreading function” and S( u ) is the one

directional spectrum. The spreading function f( ~ ) can be assumed to

be:

f(u) = (2/lr) COS21J (2.36)

Thus,

= ~m S (u)du - /+n\2 (2\m) ~~~2@~ = fm S (u)du
o -Tr/2 o

that is, integration of the directional spectrum with respect to w and

? = integration of point spectrum with respect to u.

2.1.9 pe* DiStributim of a General Stationary Gaussian Random Process:

In a few cases of - wave spectra (and vessel response) the

narrow band assumption may not be adequate. Therefore in this

section the, probability distribution of the peaks of a stationary

Gaussian (normal) random process with zero mean that is not

necessarily narrow-banded is presented. The following results were

38

4P



first obtained by Rice [2.1] and then used by Cartwright and

Longuet-Higgins [2.7] and their proof is given in reference [2.1].

Instead of the Rayleigh distribution obtained earlier (equations

(2.28) or (2.31) ), the p.d.f. for the peaks is given by:
2

a

2camo
.—

fp(a,4) = e4-= + w-+ e ‘: .
0

[

k+ 1 (2.37)
c

- *
and, by integration, the corresponding cumulative distribution
function of the peaks is given by

where
1

2 ml
t = bandwidth parameter = 1 - ~

o m,

I
u

*(U) = —
-+dz

& ●

.0

9

m = 1●n S(w) d- : nth moment of the spectrum n=0,2,4m
o

It should be noted that m. is equal to the mean square or

variance of the process ~k~ .

As & approaches zero the process approaches the ideal narrow

band process and both equations (2.37) and (2.38) reduce to the

p.d.f. and cumulative distribution function (c.d.f.) of the Rayleigh

probability law. On the other hand, as E approaches one the two
equations reduce to the Gaussian (Normal) probability law, that is,

the peak distribution reduces to the distribution of the surface itself.

It should be noted that both positive maxima and negative maxima

are included in equations (2.37) and (2.38) as can be seen from

figure 2.17.
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Figure 2.17. P.D.F. of the Peaks of a General Gaussian Process

2.2 Dvnamic Loads and Response of a Floating Vessel Considered as a
Rigid 130dy:

The objective now is to determine a floating vessel response
(output) for a given state of ocean waves (input) probabilistically
described as discussed in the previous sections. In order to do this,
some preliminary definitions are necessary. .

A fixed parameter or time invariant system means that if a
deterministic input x(t) produces an output y(t) then x(t+ ~ ) produces

y(t+ Y ) where Y is a time shift. A linear system means that if xi(t)
produces yi(t), then x(t) = al xl (t) + alx~(t) produces y(t) = at y, (t) +
az YZ(0 where a I and a.2 are constants. Such a system is governed
by a set of linear differential equations with constant coefficients.

Some of the properties of such a linear system include:

If the input x(t) = ei~t then y(t) = Aei~t

where A does not depend on time t. If the input has an
amplitude X(O) dependent on the frequency o, then the output
amplitude Y(u) will also depend on co, i.e.

If x(t)= X(u) ei~t

then y(t) = Y(u) ei~t
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(2.39)

H( CII) is called the transfer function or frequency response
function or Response Amplitude Operator (RAO). The last
terminology usually refers to the modulus IH(co)1. The transfer
function is thus an output measure of unit input amplitude.

?. z.1 Random Input- Output Relations for Floatin~ Vessels:

x(t)
OCEAN wANES YE5SEL +mrm SHIP RESPONSE

Y(t)
ASSUMED

;~(u) (INPIJT ) LINEAR (ouTPUT ) s;(u)
x

Figure 2.18. Input/output System.

We will proceed now to determine the ship response (output)
for a given state of ocean waves (input). Since the input X(t) is

‘random, we ekpect to. get a random output Y(t) (see Figure 2.18).
Some statistics of the random output may then be useful for design.
A floating vessel , response could be vessel motions such as pitch,
heave, roll, etc., the corresponding velocities and accelerations,
bending moments (vertical and horizontal), torque or shear forces.

.

In order to determine the vessel response, the following
assumption is made (introduced first by St. Dennis and Pierson [2.8]).
The ship is assumed to behave linearly so that the response can be
described by the superposition of the response to all regular wave
components that make up the irregular sea.

It should be noted that in very severe seas certain responses
may not be linear and non-linear analysis must be conducted.

Using the linearity assumption, the following conclusions will
be stated and the proof can be found in [2.2]:
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1. If the excitation (wave input) is a stationary random
process, the response (output) is also a stationary random
process.

2. If the input is a normally distributed random process, the
output is also a normally distributed random process.

3. If the mean of the input process is zero, the mean of the
output process is also zero.

4. If the input is an ergodic process, the output is also an
ergodic process.

process is nmow band, the output is
process. For ocean waves, we have
of time a stationary normal random
The process could be completely
density Sx (co). The area under the

Notice that if the input
not necessarily a narrow band
assumed over a short period
process with zero mean.
characterized by the spectral
spectrum is related to the. mean square of the process, therefore
certain averages such as average wave height, average of 1/3
highest waves, etc., can be determined. (The subscript x in the wave
spectrum Sx (m ) is used in order to distinguish it from the output
(response) spectrum S~(o) ).

Using 1, 2 and 3 above, it can be concluded that a floating
vessel response is a normally distributed, stationary random process
with zero mean over a short period of time. Again, just as in the
input waves, if the spectral density of the vessel response is
obtained, the mean square value, certain averages and other
statistics of the vessel response can be determined.

It is thus important now to find the relationship between the
wave spectrum and the respons~ spectrum. For linear systems, it
can be shown [2.2] that this relation is generally given in the form

Sy (w) = Ill (w) 12SX”(U) (2.40)

where H ( w ) is the “frequency response function” or the “transfer
function” afid its modulus IH ( W )1 is the Response Amplitude Operator
(RAO) - see also equation (2.39).
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Equation (2.40) gives the input-output-relation in a frequency
domain, i.e., between the spectra of the input (waves) and the output
(vessel response). Similar relation can be obtained in the time
domain between the response time history y(t) and the wave time
history x(t). This relation as well as other relations in the time and
frequency domains are developed in [2.2]. The important results are
given here as follows.

The response of a vessel y(t) (time domain) for any arbitrary -
known wave excitation x(t) is

w

y(t) = J x(t - 0) h(9) d9 (2.41)
D

and the mean of the response E[y(t)] in terms of the mean of the
stationary excitation E[x(t)] (if different from zero) is

E[y(t)] = E[x(t)] ] h(6) d9
-o

where h(0) is called the impulse response
response of the vessel due to unit excitation.
actually independent of time since E[x(t)] is
the process is stationary.

(2.42)

function which is the
Notice that E[y(t)] is

independent of time if

The relation (time domain) between the autocorrelation
functions of the response Ry( 2 ) and the wave Rx( ? ) is given W

[2.2]. - +m

Ry(lY)=
1[

Rx (~+0@2)h(el)h(02 )dE)l de2 (2.43)
.@ -m

The impulse response function h(t) and the ~transfer function
H( d ) are not independent. In fact, together they form a Fourier
pair.

1

+*
LA

h(t) = ~ H(ti)e dw (2.44)
and --

J

‘k. b-
H(ti) = %(t) e dt (2.45)

Load and re~~onse determination for floating vessels is usually
done in frequency domain. Therefore emphasis will be given on this
in the following sections.

The frequency response function H( @ ) or the RAO’S are
functions that give the vessel response to a regular wave of unit
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amplitude. For example, if the response under consideration is the
bending moment, then the bending moment can be calculated for the
vessel in regular waves of different frequencies and for different
vessel speeds. The
2.19.

RAO curves would appear as shown in Figure

Af01 FFE12ENT

5H IP sPIEEIZ’:)

Figure 2.19. Response Amplitude Operator

Notice that the ordinate of IH (m)12 is the square of the bending
moment per unit wave amplitude “ “.3 This can be given in the
nondimensional form

where
f= water mass density
g = acceleration of gravity
B= vessel beam
L= vessel length

The RAO of other responses such as shear force could be
obtained in the form lH(m12 = (V/~)2 or the nondimensional form

IH(w)IZ = (~}2
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where V is the shear force.

In general the RAO’S can be obtained either from:

a) Calculations using the equations of motion of the ship
b) Towing tank experiments

Each of these will be discussed briefly in the following.

The general dynamic equations of motion of a vessel in regular
waves can be obtained by applying Newton’s Law of Motion for a
rigid body. If the origin is taken at the center of gravity of the body,
then

and

where
iii

= velocity vector
= force vector

m= mass
n= moment acting on the body
G= angular velocity vector
I = moment of inertia about the coordinates axes

The first of these equations give the three force equations in
the x, y, and z directions (surge, sway, and heave equations). The
second gives the three moment equations about the x, y, and z axes
(roll, pitch and yaw equations).

These general six coupled differential equations for the six
degrees of freedom are highly nonlinear and difficult to solve
exactly. However, approximate solutions after decoupling some of
the motions from each other and going through a linearization
procedure are available, for example, in [2.9] and [2.10]. The
decoupling of the equations is usually done by decoupling the
motions in a vertical plane (surge, heave, and pitch) from the rest
and neglecting the surge degree of freedom. The solution of these
equations permits the calculation of the vessel motions and
accelerations in regular waves of different frequencies. For further
information on “this subject, see references [2.11, 2.12, 2.13, 2.14,
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2.15]. Once the vessel motions and accelerations are determined, the
shear force and bending moment (or any other loads) can be
computed. The values of these responses (including Ioads) due to
waves of unit amplitude and different frequencies give the required
RAO’S. There are several computer programs to perform these rather
lengthy computations, for example, [2.16, 2.17, 2.18, 2.19].

The RAO’S can also be determined by simply running a model
in regular waves at various speeds, headings and wave frequencies.
The model has to be scaled properly to represent the ship mass
distribution and structural geometiy. The model motion, velocities,
accelerations, shear forces, bending moment, etc., are then measured
and plotted versus the wave frequency [2.20]. If the bending
moment needs to be measured at the midship section only, then one
may use a rigid wooden model jointed at the midship section with a
dynamometer calibrated to read the bending moment acting on a bar
connecting the two parts. If the bending moment is desired at more
than one location, then a segmented
equipped with several strain gauges

With the RAO determined,
to determine the energy spectrum
seas. This is usually represented

model is usually used with a bar
[2.21].

equation (2.40) can be applied
of the response in long-crested
graphically, as shown in Figure

2.20, for the bending moment case taken as an example.

sJd

Figure 2.20. Response Spectrum.

Equation (2.40) indicates that ordinates of the bending moment
spectrum are obtained by multiplying the ordinates of the wave
spectrum by the square of the ordinate of the response amplitude
operator. Since over a short period of time the response is a
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stationary normal process, then the response spectrum characterizes
the process completely. If the resulting wave bending moment
spectrum is narrow-band as is the case usually, then the amplitudes
of the wave bending moment follow the Rayleigh distribution
(equation 2.28) with a parameter Ey
bending moment spectrum.

Ey = area under the energy

= J ;:)%,;.
o

related to the area under the

spectrum of the bending

Some statistics of the bending moment can be thus obtained:
average amplitude of bending moment = 1.25 ~y

average of 1/3 highest amplitude of bending moment = 2.0 {Ey

average of 1/1O highest amplitude of bending moment = 2.55 / Ey

In general if the response spectrum is not narrow-band, then
the peaks (including negative maxima) will follow Rice distribution
given by equations (2.37) and (2.38) with the band width parameter

~ determined from the moments of the response spectrum. It
s hou1d he noted that the assumption of a narrow-band spectrum
produces more conservative results and simplifies the analysis
considerably.

.

2.2.2 Frequency Mappin~ .’-

The response’ spectrum discussed, Sy ( u ), is not the spectrum
that would be obtained by records taken of bending moment aboard
a vessel and analyzing them. This is because, when the vessel is
moving, the waves are encountered at different frequencies to their
absolute frequencies. Consider a vessel moving with velocity V and
heading 0 in regular waves of frequency w (see Figure 2.21).
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Figure 2.21. Heading Angle in Regulti Waves.

The wave velocity C in the x-direction = ctI/k, where k = wave
number = 211/ A . The relative velocity between waves and the ship =
C-vcose= encountered wave velocity. Therefore, the encountered
wave frequency Ole= (C- Vcose)k or we= co- kV cos 9. For gravity
waves

where ~ is the wave length

then, me = O-J!L2 Vcose (2.46)
g

Now the wave spectrum can be plotted to a base of the encountered
frequency rather than the wave frequency. However, a change in
the base will necessitate a change in the ordinate of the spectrum
such that [2. 10]:

Sy (d)b= Sy (+) $We (2.47)

Therefore, on integration

co

J J
m

Ey = Sy (UJ)&= Sy (@e)d@e
Q c
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But from equation (2.46) $@e= [1 -@V cos e] $U
substituting in equation (2.47) a

s@) = Sj(ti)
i

‘~ v Lzuej[i. T

Thus, for a given Sy ( @ ) and vessel velocity
obtained from equation (2.48).

(2.48)

V, SY (we) Cm be

The input-output relation in the frequency of encounter
domain becomes:

Sy (WJ = y(u@l& Sx (~

where ~ (me) is the response amplitude operator obtained as a
function of the frequency of encounter, and the response spectrum
Sy ( LJe) relates to records taken on board the vessel.

J
m

I
.m

It should be noticed that Ey = Sy (u) du= Sy (~e) dti~
o 0

2.2.3 ~

In short-crested seas, when two-dimensional wave’ spectrum
S( @ , p ) is used, the input-output relation becomes:

Sy (utp) = Iy(ti, d - ~ )12 Sx (~ ,p ) (2.49)

where p = angle between wave component under
consideration and the prevailing wind
direction.

d-~ = angle between the vessel velocity vector and
wave component (see Figure 2.22).

The response of the vessel for all wave components can be then
obtained by integration over p
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Figure 2.22. Angle Between Wave Component and Prevailing Wind
Direction.

It should be noted that several computer programs are
available to determine the response spectrum of a vessel based on
the above or similar analysis. Such computer programs include
,~ [2.161, SpRmGSEA [2.17], ~~ ~ Sfip W+qm p~ [2.181.

2.3 Long-Term Prediction of Wave Loads:

In the previous discussion, one of the major restrictions has
been the assumption of stationarity which limits the validity of the
analysis to short periods of time. This leads to Rayleigh distribution
of the peaks for narrow band spectra. For design purposes,
however, it may be important to determine the distribution of the
wave load p’eaks over long periods of time (years) in order to
determine design values of the load.

The long term distribution can be determined by adding
statistically several short-term (Rayleigh) distributions, or, by taking
records of wave loads and determining what probability distribution
gives the best fit of the data. Several statistical methods can be used
to estimate the parameters of the candidate distributions and tests
are available to examine the goodness-of-fit and to determine which
distribution fits the data best.

Several investigators, [2.22, 2.23, 2.24, 2.25, 2.26] examined
long-term wave loads data with the aim of determining the long-
term distribution of the peaks. It was found that the Weibull
distribution is general enough and fits well the wave bending
moment data on ships. The p.d.f. and c.d.f. of the Weibull
distribution are given by: #

+,ttf

‘(x)= (++(+f-J e x~o (2.50).
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and
F(x) =l-e

- (%$
X>o (2.51)

where ~ and k are parameters to be determined from the wave load
data (e.g. strain gages installed on deck of a ship).

It should be noted that the Weibull distribution is a generalized
Rayleigh distribution and if one inserts ~ = 2 and k =~ in equations
(2.50) and (2.5 1) one obtains directly the Rayleigh distribution p.d.f.
and c.d.f. (see equation (2.31) ).

It has also been shown that in many cases of long-term wave
load data, the parameter ~ of the Weibull distribution is
approximately equal to one. When ~ = 1, the Weibull distribution
reduces to the Exponential distribution given by:

+,~)
f(x) =*e

F(x)= l-e
- (WA)

where ~ = k = mean or expected value of the wave
Section All of ~ 1 desaibes hcw to detemine
and h ti construck and use a probabili~ ~.

(2.52)

(2.53)

load amplitude.
the ~alEterS k and 1

2.4 Prediction of ~ Wave Loads:

structure can beIf the wave loads acting on a marine

represented as a stationary Gaussian process (short period), then at

least four methods are available to predict the distribution of the “

maximum load. These methods are, developed for application to

marine structures and are given in more detail in [2.27]. In the first

method the peaks are assumed to be statistically independent and

identically distributed, and the extreme value distribution of the

largest in N-peaks is determined using classical order statistics. In

the second, a discrete point process is assumed in order to determine

the asymptotic type-I distribution based on Rice’s [2.1] initial

distribution. Cramer’s procedure [2.28, 2.29] can be used for

determining the resulting aysmptotic distribution. Conventional

uncrossing analysis may be used in the third method for determining

the extreme value distribution. Finally a two-stage description of the
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random process which leads to an extreme distribution derived by

Vanmarcke [2.30] is the basis for the fourth method.

Each one of these methods will be described briefly in the

following sections.

A. Distribution of the largest peak in a sequence of N neaks using

order statistics

The distribution

can be determined
of the largest peak in a sequence of N peaks

using standard order statistics. Consider a
sequence of random variables 21,22, . . . Zn representing the peaks of

a load on a marine structure. Assuming that these peaks are
identically distributed and statistically independent, the cumulative

distribution function (calf) of the largest one using order statistics is

given by [2.31]:

F (Z) =
[

P rnax (z*, Z2, ... .
$

~, s z] = [FZ(%.)]N (2.54,

<,

where FZ (z, G) is the initial cumulative distribution function
load peaks (maxima) and E is the spectral width parameter

as:

E’ 1 m22= -—
‘o ‘4

of the

defined

+W

rnn = J con S(u) do) , n = 0,2,4 (2.55)

The probability density function (pdf) of the largest peak is

determined by differentiating equation (2.54) with respect to z, thus:

‘%(z)= ‘[FZ(Z4N-* ‘z’zE) (2.56)

where fz (z,&) is the initial p.d.f. of the load peaks. For any band-

width load process, Rice’s distribution should be used as the initial
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distribution, thus equations (2.37) and (2.38) hold for fz (z,&) and FZ

(z,E), respectively.

Based on the above analysis, the expected value of the

maximum load peak in a sequence of N-peaks was determined by

Cartwright and Longuet-Higgins and is approximated by:

E[max (zl,z2, ,.. zn)]~

0%
“EC

where C = 0.5772 = Euler’s constant .

The extreme load peak with a probability of exceedence a is given by

[2.32]:

z=
a [(2moln N + h

[
l/ln(~

) 1}1+ (2.58)
which is independent of 5 (for mall a ). .

(B) Asymptotic type I distribution

It is known that as the number

bound a limiting or asymptotic

of peaks N increases without

form of the extreme value

distribution (equations (2.54) and (2.56)) is reached. The asymptotic

form of an extreme value distribution does not depend, in general, on

the exact form of the initial distribution;

behavior of the initial distribution.

asymptotic distribution depend however

initial distribution.

it depends only on the tail

The parameters of the

on the exact form of the

In reference [2.27], Cramer’s method was used to derive the

asymptotic distribution based on Rice’s distribution as an initial

distribution. The derived extreme value c.d.f. is
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F (z, G) = exp
%

that is, the asymptotic form is double exponential and the cumulative

distribution itself depends

if different from zero.

Several years after

on N. ms is the mean value of the load

the appearance of Cramer’s book Gumbel

[2.3 1] classified the asymptotic distribution of extremes in three

types: (type I) a double exponential form, (type II) an exponential

form, and (type III) an exponential form with an upper bound.

Convergence of an initial distribution to one of the three types

depends largely on the tail behavior of the initial distribution. An

initial distribution with an exponentially decaying tail in direction of

the extreme will converge to type I asymptotic distribution, i.e., the

double exponential form.

Gumbel’s analysis and classification provide another method

for deriving the asymptotic distribution and may be in a form easier

to handle than that given by equation (2.59). The cdf of type I

asymptotic form as given by Gumbel is:

[

- aN{z – I.@
F (Z)
%

=exp-e 1 (2.60)

where u ~ is the characteristic largest value of the initial variate Z

and d ~ is an inverse measure of dispersion of Z ~ . These parameters,

UN and d ~ , have to be determined and depend on the form of the

initial distribution.

The corresponding pdf is given by:

- aN (z-UN)

[

-%(2-%)
f (zJ=~Ne
+

.exp -e 1 (2.61)

54



The mean and standard deviation of the extreme value Z ~ are given,

respectively, by:

K
‘Zn = J-

6 aN

(2.62)

(2.63)

The parameters u ~ and d ~ were determined in [2.27] for Rice’s
distribution given by equations (2.37) and (2.38) as an initial

distribution.

The results for u ~ and d ~ are:

‘N
=m+

s

where
‘N - ‘S

a=.

r
Em

o

(2.64)

(2.65)

and

(2.66)
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The plus sign in equation (2.64) should be used if the mean value ~

is positive in order to obtain the larger characteristic value. It

should be noted that both A and ~ contain u ~ as defined in (2.66);

therefore, an iterative procedure must be used for determining u ~ .

To start the iterative procedure an initial value for u ~ is necessary

and may be taken as u ~= rn~t~~. The corresponding values of @ , ~ ,

+(-u) and @ ( ~ ) can then be determined. Equation (2.64) is

then checked to see if the right side is equal to the left side,

otherwise a new value of u ~ equals the right side of equation (2.64)

should be used in the second step of the iterative procedure. Three

or four steps are usually sufficient for convergence.

(C) Extreme value distribution based on uncrossing analysis

The distribution of the largest peak can be determined from

uncrossing analysis of a time history of a stationary random process

instead of the peak analysis presented above. For example, the

number of N peaks can be changed to a time interval T in the

uncrossing analysis and the problem of determining the

characteristics of the largest peak in N peaks becomes that of

evaluating the characteristics of the maximum crest of a stationary

ergodic Gaussian random process X(t) during a period T. The

assumption of the statistical independence of the peaks is usually

replaced by the assumption that uncrossing of a level x by X(t) are

statistically independent. This leads to the Poisson’s uncrossing

process which is true only in the asymptotic sense (as x - e ; T_= ).

[2.1])

level

From uncrossing analysis it can be

that the probability that the largest

x during a period T is given by:

[ 1P max(X(t); OSt S~)sx s

shown (see for example

value is less thar. 5. mrtain

(2.67)

where
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--( )
2

lx - m~

r
2%

<=voe

and

v
J

~~= ltsec
O ~ m.

Therefore the cdf of the largest X is

(2.68)

(2.69)

I ‘\~wlj
FX(X) = exp -vOTe

(2.70)

that is, it has a double exponential

from equation (2.60) with u ~ and ~fi
form although quite different

given by (2.64) and (2.65).

(D) Extreme value distribution based on a two-state description of

a random process
.

.
Vanmarcke [2.30] estimated the probability distribution of the

time to first passage across a specified barrier for a Gaussian

stationary random process. In his analysis he considered a two-state - .

description of the time history X(t) relative to the specified barrier.

Based on his results the distribution of the extreme value may be

determined from:
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Fx (x) = exp

L

-v. T

where q is a band width parameter

Distributions given in (A), (B),

-e

defined as

()~q~l

(2.71)

(2.72)

(C) and (I)) above, are valid for a

load process represented by a stationary Gaussian process of any

band width. Reference [2.33] shows the corresponding equations for

the special cases of a narrow-band process ( E = o or q = o) and a

wide-band process ( & = 1 or q = 1). It should be noted that the

narrow-band case gives a conservative estimate of the extreme wave

load distribution and the resulting equations may be used for values

of ~ Up tO 0.60 shce they are insensitiveto E in the rangeO to 0.60.

Application Example and Comparisons:

The extreme value distributions of the wave loads discussed

above differ from each other in their basic derivation and underlying

assumptions. The forms of their equations are drastically different

as can be seen by comparing equations (2.54), (2.59), (2.60), (2.70)

and (2.71). It would be interesting now to compare some typical

results obtained from the different methods when applied to a

marine structure. For this. purpose a tanker of length = 763 feet,

breadth = 125 feet and depth = 54.5 feet is considered. We will

compare the distribution of the extreme wave bending moment

acting on “the tanker under a storm condition specified by a

significant wave height of ~~.75feet and an average wave period of

11.5 seconds. The storm is assumed to be stationary under these
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conditions for a period of one hour. The following parameters were

computed for an earlier application given in [2.33]:

Still water bending moment (full

ms

RMS of wave bending moment

r m.

Average wave moment period

load)

= 669,037 ft-tons

= 286,300 ft-tons

= 13. o seconds

Band width parameter of wave moment spectral

density ~ = 0.364

Number of wave moment peaks in one hour

60 X 60N=,
13a

= 276.9

The application

assumed to be zero

above, the resulting

moment in N peaks

given in reference [2.33] shows that if & is

(ideal narrow-band) instead of the 0.364 given

error in the expected maximum wave bending

s less than 0.5 percent. This gives an indication

that for E = 0.364, it is sufficiently accurate to use the ideal narrow-

band equations for our comparison.

Using this assumption and the above values Fforms ,mO and N,

a comparison is made of the distribution functions of the four

extreme value distributions as given in the preceding sections (A),

(B), (C) and (D).

The results

standard extremal

figures 2.23, 2.24

of the comparison are shown and plotted on

probability paper and on a regular graph paper

and 2.25.

a

in
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Based on these results, one surprising conclusion can be drawn.

All extreme value distributions of the wave loads considered produce

similar results even though their basic assumptions and derivations

differ drastically. In fact, if one inspects the equations representing

the cumulative distribution functions of these distributions one sees

that these equations are not similar in form and may conclude

erroneously that they would produce very different results.

The extreme distributions based on the largest peak in N peaks

(distribution A), uncrossing analysis (distribution C ) and a two-state

description (distribution D ‘) produce almost identical results as far as

the probability of exceedence is concerned as can be seen by

inspecting figures 2.23 and 2.24. The asymptotic type I distribution

(distribution B) results in slightly higher values of probability of

exceedence. This is to be expected since the asymptotic distribution

is an upper bound extreme distribution and becomes more accurate

as the number of load peaks approaches infinity. In the example

shown for the tanker, the number of wave bending moment peaks N

is approximately 277.

As an example

distribution and the

of the differences between the asymptotic

other distributions, the probability of

exceedence of a total bending moment of 2,069,000 ft-ton (including

still water bending moment of 669,000 ft-ton) is 0.006 according to

the asymptotic distribution (B) and 0.002 according to the other

three distributions (A, C, and D).
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2.5 ~ ilities:

The probability that an extreme value of an event (say wave

height x) will not be encountered during the life “L” of a marine

structure is called non-encounter probability “NE(x)”. This, in

general, is given by [2.34]:

NE(x) = P [ no exceedence of x occurs during life L]
= P[Xm~~X] = [Fx(x)]L

(2.73)

where Xmu = maximum value during life L

L = life in years
FX (X) = distribution function of annual maximum.

The waiting or return. period, R, is the average length of time

between exceedence. Thus one may speak of a 100 year wave height

or 50 year wind velocity.

The waiting period in years has a probability law given by
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P[w=w] = FX w-l(x) [1- FX (x) ]

and therefore, the average waiting period, i.e., the return

period “R” is

R = E[W] = [ 1 -Fx (X) ]-1 (2.74)

The relation between the non-encounter probability “NE(x)”
and the return period “R” can be determined by eliminating FX (x)

from equations (2.73) and (2.74) , thus,

-I L
NE(x) = PIXmu Sx]= [l-R] (2.75)

If R = L, then NE(x) ~ e- 1

The probability of exceedence in this case = 1 - e-l = 0.632,

that is, there is a high probability (0.632) of exceeding the event

with a return period L during the “L” life years of the ~tructure.

In selecting return periods, one must distinguish between an

annual interruption of operation of the structure (L = one year) and

‘ultimate failur~ during life time ( L = 20 to 30 years). In the former

case a return period. R = 10 years may be adequate. Using equation

(2.75) with L = 1 and R = 10 we obtain a nonencounter probability of

90%. If R is increased to 100, the non-enco~nter probability becomes “

99%.

In the latter case where failure during life of, say ,20 years, is

considered, and the return period is 100 years, then the non-

encounter probability, from (2.75) is 81.8%. If the return period is

increased to 1000 years; the non-encounter probability becomes

98.0%.
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2.6 Stochastic co mbination of Loads on a Marine Structure

Undoubtedly, there are certain similarities between
decomposing ship response records of full-scale measurements into

their basic components and combining analytically calculated

components to obtain the total response. Since decomposing full
scale measurements can be done with a certain degree of success, it

is possible to invert the procedure in order to compute the combined

response from the analytically determined components.

In this section, a brief discussion is given of the decomposition

of full-scale records into their basic components. In the following

section, a method is presented to combine analytically-determined

response components.

A. Decompositions of measured records into their basic
components

A typical measured stress time history of a bulk carrier is

shown in figure 2.26 (from reference [2.35] ). Usually, such a record

consists of a rapidly varying time history of random amplitude and

frequency, oscillating about a mean value. The mean value itself is a

weakly time-dependent function and may shift from positive to

negative (sagging to hogging). The two dominant factors which affect
the mean value are:

1 The stillwater loads which can be accurately determined

from the loading condition of the ship floating in

stillwater.

2 The thermal loads which arise due to variations in

ambient temperatures and differences in water and air

temperatures.

A closer look at

be decomposed into

the rapidly varying part shows that it also can

components. Figures 2.27 and 2.28 illustrate
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records taken over shorter periods of time (larger scale). TWO main

central frequencies appear in these records. The smaller central

frequency is associated with the loads resulting from the motion of

the ship as a rigid body (primarily heave and pitch motions). This

lower central frequency is, therefore, close in magnitude to the wave

encounter frequencies for wave length nearly equal to ship length.
.* *

.>

i

Fig. 2.26 Typical voyage variation of midship vertical

for a bulk carrier. From reference [2.35]

bending stress

Figure 2.27. Decomposition of

vessel into low and
a stress time history of a Great Lakes

high frequency components.
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Figure 2.28. Decomposition of a stress time history of an ocean going

bulk carrier.

The higher central frequency is associated with loads resulting
from the two-node mode response of the ship when it vibrates as a

flexible body. This higher central frequency is thus close to the two-

node mode natural frequency of the ship. The high frequency

response itself can be due to “springing” of the flexible ship when

excited by the energy present in the high-frequency wave

components as shown in figure 2.27. It can be due, also to the

impact of the ship bow on the water as the ship moves into the

waves, i.e., slamming (possibly together with low-speed machinery-
induced vibrations), see figure 2.28. Though springing and

slamming may occur simultaneously, it is unusual to see records
which exhibit both clearly. These two responses can be distinguished

from each other by inspecting the records’ envelope. In general, a

decaying envelope (see figure 2.28) indicates a slamming response

whereas a continuous envelope of varying amplitude, as shown in

figure 2.27, indicates a springing response.

The rigid body and the high frequency responses do not always

occur simultaneously in the same record. Quite often only the rigid
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body response appears in a record; particularly, in that of a smaller

ship which has a high two-node mode frequency. Occasionally, only

the high frequency springing response appears in a record when a

ship is moving or resting in relatively calm water. In particular, long

flexible ships with low natural frequencies as those operating in the

Great Lakes do occasionally exhibit such records when operating in

calm water or in a low sea state composed mainly of short waves.

Under these conditions, a long ship will not respond as a rigid body

to the short waves, but the two-node mode frequency of the hull can

be sufficiently low to be. excited by the energy content of these short

waves. Figure 2.29 (from reference [2.36]) shows a measured

response spectrum of a large Great Lakes vessel where the response

is purely in the two-node mode S and higher frequencies with no

rigid body response appearing in the spectrum. The figure shows

that response at higher modes than the two-node mode can be

measured, although small and relatively unimportant in most cases.

Slamming response on the other hand never occurs separately

without rigid body response since, obviously, it is a result of the rigid

motion of the ship in the waves.

:
?.
z

13 ?

10
\

~mMs. .*0*s”l

5 $
I* Mom

2-WOC ,

G~
o 0.3120 0,7215 09165

FREOUENCY!HERTZI

Figure 2.29 Stress response spectrum of a large

Great Lakes vessel. [2,36].

5 The two-node mode is labeled in the figure as the first mode.
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Two main steps should be used in the procedure for combining

primary responses of a vessel.

Step 1

Step 2

SwLL

To combine the low frequency wave-induced

responses (rigid body) with the high-frequency

responses (springing or slamming).

To add the mean value to the response resulting from

Step 1. The mean value consists of the stillwater and

the thermal responses.

Consider an input-output system in which the input is common

to several components of the system; it is required to determine the

sum of the individual outputs. Here, the input represents the waves

which can be in the form of a time history if a time-do-main analysis

is sought, or in the form of a sea spectrum if a frequency-domain

evaluation is preferred.

r --+_ ____ ____ ____ _l

L_-___ –---- . . ..– ~i,; - i

Figure 2.30 Schematic representation of a multiple system with

common input.
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The components of the system represent the components of the

load response of the ship to waves, e.g., the low-frequency wave-

induced responses which consist of vertical, horizontal and torsional

moments, the high frequency responses such as the springing loads .

It is required now to determine the sum of these component

responses, i.e., to determine the output taking into consideration the

proper relations or the appropriate correlation of the response

components,

Schematically, the procedure is represented by figure 2.30. In

this figure, “n” pmallel linem components are considered which have

common input ? (t) and are summed up at the output to form ~ (t).
The output of each system is multiplied by a constant ai (i = 1, 2, ....n)

before summing up all the components at a common node to form

f(t). These constants ai give additional flexibility in the application

of the model and can be used to “weigh” the contribution of each

linear system to the sum.

In a time domain, the output ~ (t) is given by the sum of the

convolution integral of each system.

,’~’(t] ~i~lai[~rnhi(?)~(t - T)dT]
o

, * =~~hc(~)%t-T)d?
o

(2.76) ~ -

where

hc(~) = ~ aihi (T)
i=l (2.77)

hi (z) is the impulse response function of each linear system, i.e., the

response of each linear system to unit excitation multiplied by time
(response to the Dirac delta function). hc (%) is a composite impulse

response function which sums the responses of the individual

components.
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It should be noted that the impulse response functions of the
individual components “hi (~)” may or may not be easy to obtain

depending on the complexity of the system. With suitable

instrumentation, it is sometimes possible to obtain a good
approximation to hi (t) experimentally. For the ship system, hi (~)

can be determined for most load components.

In a frequency domain analysis, a similar procedure can be
used. In fact, since the system function Hi (co) is simply the Fourier

transform of hi (t), i.e.,

Hi(u) = f“’hi(t)e-j~tdt
o

therefore, we can define a composite system function Hc

(2.78)

(co) as

H=(u) = ]rnhc(t)e-j(”tcit
o

=i~laiHi (u)

(2.79)

It should be noted that for a single system,

between the input spectrum and the output spectrum is

usual relation:

the relation

given by the

[Syyfw)li = sxx(~)H*i(~)Hi(~l

= SXX(W) lHi(w) 12

(2.80)

where SXX(O) is the sea spectrum which represents a common input,

[Syy (0) ]i is a response spectrum

H* i (co) is the complex conjugate of

component.

The modulus of the individual

response amplitude operator of the

i..e.,

of an individual load component ,

the system function of a response

system function I Hi (U) I is the

individual response components,
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[R. A.O.li = [P(u)] = IHi(u)j
i

and, therefore, equation (2.80) represents the familiar relation

between the input and the output spectra of a single linear system.

For our composite system, an

(2.80) can be determined for the
“weight” factors “ai” as follows

equation similar to the equation

n-response components and the

Syy(w) = SXX(W)H*c(@Hc (w)

n
= sxx(~)~ ~ aiaj Hi (U)H*j (w”).

i=l j~l (2.81)

The double sum in equation (2,81) can be expanded such that a final

expression for the total response spectrum Sy y (OI), which combines

the individual response spectra, may be written in the form:

s
YY

(u) = [~ ai21Hi(u)[21SXX (u)
i=l

+ [~ f a.a. H. (OJ)H*j(W)]Sxx (u)
i=l j=l 1 J z (2.82)

(i#j )

It should be noted that the first term in equation (2.82)

represents simply the algebraic sum of the individual response
spectra, each modified by the factor ai . The second term, which cm

be either positive or negative, represents a corrective term which

depends on the correlation between the load components as can be
seen from the multiplication of Hi (m) by the complex conjugate of

Hj (o)).

If the system functions Hi (U) do not overlap on a frequency

axis (i.e., disjoint systems), that is, if

Hi(m)H*j (10) = o
(2.83)
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then the second term in equation (2.82) becomes zero and the load

components are uncorrelated. In this case, the total spectrum is
simply the algebraic sum of the individual spectra of the load
components, modified by the factors ai . Furthermore, if the wave
input is considered to be a normal random process with zero mean,

as usually is the case, then the respective output load responses are

jointly normal and are independent. Thus, the total response, in this
special case, is a zero mean normal process with a mean square value

given by:

‘Y 2
= (iyy (u) dw

‘i~lai’;lHi(w)I‘sXX(w)dw
o (2.84)

In the more general ( and more realistic) case where some or

all of the response components are correlated, the mean square is

given by

= (’Syy (u)dw
aY2

(2.85)

It should be noted that in equations (2.84) and (2.85) the mean

square is equal to the variance of the combined response since the

mean value of the wave responses is usually very small. As noted

earlier, the other responses which consist mainly of the stillwater,

and the thermal loads will be added later in the second step of the

analysis m form a mean value for step 1 combined responses.
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In connection with equations (2.84) and (2.85) it should be

ei~ that the usual R@ig~ multiplier used to estimate certain
average quantities, such as average of the highest one third,one tenth

response, etc., are not generally applicable in the case of the

combined response, since these multipliers are associated with a

nmrow-band spectrum for which the amplitudes can be represented

by a Rayleigh distribution. It is only in the case where each of the

load component responses is narrow-band and each happen to be

closely concentrated around a common central frequency “w;, that it
would be reasonable to conclude the combined response SYY (w ) is,

itself, a narrow-band process.

In the more general case, where the combined response

spectrum is not a narrow-band spectrum, the various statistical

quantities can be determined from a more

which includes the Rayleigh distribution

general distribution is given by equations

general distribution

as a special case.

(2.37) and (2.38).

(Rice)

The

.

Equation (2.85) can be written in a different form

more convenient ‘to use in applications, and which makes it

define the correlation coefficients between the different

components.

which is

easier to

response

(2.86)

where

Ui’= ~lHi(w) l’s (~)dw mxx variances
o

or mean squares - of the response spectra of the

individual load components. (2.87)

s,,~,= correlation coefficients of individual load
d

components defined by,
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pij =+rnHi(u)H*j (u)SxX(ti)dW
ijo (2.88)

Equation (2.86) with definitions (2.87) and (2.88) form the

basis for combining the step 1 responses of a ship hull girder in a

frequency domain analysis taking into consideration the correlation

between the response components. If the response components are
uncorrelated, i.e., if p ij = O, the second term in equation (2.86) drops

out and the variance of the combined responses (output) is simply

the algebraic sum of the individual variances modified by the factors

ai. AS discussed earlier, this occurs when the system function of the

various components do not overlap in frequency or overlap in a

frequency range where the individual responses are small. On the
other hand, if the individual components are perfectly correlated, p ij

may approach plus or minus unity and the effect of the second term

of equation (2.86) on the combined load variance a 2 y

substantial.

The physical significance of the correlation coefficient

can be

can be
further illustrated by considering only two response components for
simplicity. If p 12 is large and positive (i.e., approaching -t-l), the

values of the two response components tend to be both large or both
small at the same time, whereas if p 12 is large and negative (i.e.,

approaching - 1), the value of one response component tends to be
large when the other is small, and vice versa. If p 12 is small or zero,

there is little or no relationship between the two response
components. Intermediate values of p 12 between O and ~1 depend

on how strongly the two responses are related. For example, the
correlation coefficient p 12 of the vertical and horizontal bending

moments acting on a ship is expected to be higher than of the

vertical and springing moments since the overlap of the system

functions in the latter case is smaller than in the former case.

In a time domain analysis, the convolution integral represented

by equation (2.76) with the composite impulse response function as
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given by equation (2.77) form the basis for determining the

combined load response. The question of whether the time or the

frequency domain analysis should be used depends primarily on

what form the required input data is available. In general, most

wave data and practical analysis are done in a frequency domain,

although in some cases where slamming loads are a dominant factor,

it may be advisable to perform the analysis in time domain.

SEu

In this step, the stillwater and the

combined to form the mean value for

thermal responses should be

the rigid body motion and

higher frequency responses. The stillwater and thermal responses

are weakly time-dependent variables so that in a given design

extreme load condition they can be considered constants, say over

the duration of a design storm. Therefore, theses two responses can

be treated as static cases and can be combined for one or several

postulated design conditions without difficulty. Alternately, if

statistical data are available for each of these responses, the mean

and variances of the combined response can be easily determined.

The stillwater response can be accurately determined for all

loading conditions ti’ing computer programs such as the Ship Hull

Characteristics Prqgram. Several postulated, extreme but realistic,

weight distributions can be assumed in the final stages of design, and .

the corresponding stillwater response can be computed.

If a statistical description of the stillwater bending moment is

adopted, data have shown that the general trend assumis a normal

distribution for the conventional types of ships. A sample histogram

based on actual ship operations data for a containership from

reference [2.37] is shown in figure 2.31.

stillwater bending moment can be estimated

for all voyages, or for a specific route such

voyages.

A mean value of the

based on this histogram

as inbound or outbound
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Figure 2.31. Histogram of stillwater bending moment of a

containership.
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Figure 2.32. Correlation between measured stillwater bending
moment and air/sea temperature difference.
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These mean values together with a set of standard deviations,

which can also be estimated from the histogram, can be utilized to

determine the extreme total moment using a statistical approach.

Since the stillwater response, the rigid body motion response,

and the higher frequency responses are all functions of the ship

weight and its distribution, it is preferred that the combined

response be calculated for a group of selected loading conditions (and

selected temperature profiles).

Primary thermal response is usually induced by differences in

water/air temperatures and by variations in ambient temperatures.

A study of full-scale stress data measured on a larger tanker

indicates that the diurnal stress variations correlate well, as shown in

figure 2.32 with temperature differentials between air and sea.

Taking the North Atlantic route as an example, the average

diurnal change of air temperature is about 10 0F. The total diurnal

change of deck plating temperatures may vary from 1OC to 50° F,
depending upon the cloud cover conditions and the color of the deck

plating. For estimating the thermal loads on a ship hull, the sea

temperature may be assumed as constant. Once the temperature
differential along a ship hull is determined, the thermal stresses can

be calculated, using either a general purpose finite element computer

program or a simplified two-dimensional approach. The maximum

thermal response may be then added to the stillwater response for

certain postulated design conditions to form the mean value for the

low and high frequency dynamic responses.

Although high thermal responses may not happen in high seas,

a heavy swell may possibly occur under a clear sky. Therefore,

several temperature conditions are to be taken into consideration in

determining’ the combined design response.
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Generally, large tankers traveling in oblique seas may

encounter horizontal bending moments of the same order of

magnitude of the vertical bending moments. Therefore, the

combined effect of the vertical and horizontal moments can be

critical under certain conditions. The distribution of the primary
stress in the deck as a result of the combined effect becomes non-

uniform and assumes a maximum value at one edge. The combined
stress at the deck edge, 8C is given- by

(2.89)

where,
.

GC = combined edge stress
.

fiv(t) = the vertical bending moment component

fib(t) = the horizontal

Sv,sh = the vertical or

respectively.

bending moment component

the horizontal section modulus,

Defining the combined moment as the combined edge

multiplied by the vertical section modulus and using equation

we can write,

stress

(2.89),

tic(t) = %C(t)sv = hv(t) + kfih(t)

(2.90)

where,

s
Iz=$

h
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Applying equations (2.86), (2.87) and (2.88) and extending the
results for the case of a two-dimensional sea spectrum, the mean
square value of the combined response ~zM~ can be written as (see

equation (2.86)):

2=a 2 + K20~ ~ Z~v#aHVOm‘Mc Mv

where G*M~ and ah h are the mean square values of

horizontal bending moments, respectively, given by
as6:

(2.91)

the vertical and

equation (2.87)

aMv2= ~ /“%JM,u) IHV(W)[2 dwdp

-T o

(2.92)

= ;$/mSxx(u, U)IHh(w) 1’ dwdu‘Mh2 ~ o
-7 (2.93)

‘Using equation (2.88) the correlation coefficient is defined as:

1
‘vh

=—
‘Mv”w

77

“ ~ &x(wrU)H, =(w)H*h(m)dwdu
--

2

(2.94)

6 For simplicity of notation, the dependence of the RAO’S IHv(co)l and
IHh (m )1 on the ship heading with respect to wave components is
dropped from the notation.
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The Response Amplitude Operators IHV(U )1 and IHh(co)l and

more generally, the system functions Hv (OI) and Hh (OI) can be

determined from any typical rigid-body ship motion computer

program.

It should be noted that in equation (2.86), the coefficient al

was taken as unity and a2 was taken equal to

s
az

=K=$
h

(see equation (2.90)) in determining equation (2.91). It should be

also noted that the integrand in equation (2.94) contains the

information regarding the phase between the horizontal and vertical

moments and that the integration of such information with respect to
frequency and the angle ~ between a wave component and the

prevailing wave system leads to the determination of the correlation

coefficient as given by equation (2.94). Finally, the root-mean-
square (r.m.s.) of the combined edge stress is given by

.,
‘MC(rlns) = ~c v

where OMc is the r.m.s. of the combined

(2.91).

The r.m.s. of the combined moment and

(2.95)

moment given by equation

the correlation coefficient

as given by equations (2.91) and (2.94), respectively, were computed

in reference [2.38] for a large tanker of DWT 327,000 tons. The r.m.s.

values of vertical and horizontal moments were computed using a

rigid body. ship motion computer program and combined using

equation (2.9 1) to obtain the r.m.s. of the combined moment. The
results of the calculations are plotted in figures 2.33 and 2.34 versus
the heading mgle. =veral sicjnif icant wave heights



were considered in order to examine the general behavior of

the responses in low, moderate and high sea states. These results

show that the horizontal bending moments is not small compared

with the vertical bending moment (see figure 2.34). In severe seas,

the maximum response of the combined moment (and the vertical

moment) is in head and following seas. Figure 2.35 shows the

variation of the combined bending moment with the sea state as

obtained by three different methods. The first is based on equation

(2.91) with &MV, @Mh and ~ Vh given by equations (2.92), (2.93)

and (2.94) respectively. The second method is based on equations

(2.91), (2.92) and (2.93), also, but with a comelation coefficient ~ vh
equal to 0.32 obtained from the 1973 ISSC Proceedings (determined
empirically). The third method is based on ~ v h = 0.53 as

determined by averaging the responses in short crested seas as

determined from equation (2.9 1) for all headings and for the three
representative sea states. The mean value of ~ v h obtained in this

manner was 0.53, significantly higher than the ISSC value. However,

the effect of ~ vh on the r.m.s. combined moment is small, as can be

seen from figure 2.35.

As a second application example, the combined vertical and

springing mom-ent will be considered next. Using frequency domain
analysis and using equations (2.86), (2.87) and (2.88) with al = a2 =

1, we obtained the ,mean square value
“avs2” in long-crested seas as

of the combined response
. .

where,

@2 = mean square of vertical bending moment
,*

=
.J

Sxx(m) I Hv (u) 12do (2.97)
o

~s2 = mean square of the springing moment
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m

=
f

Sxx(m) I H~ (o)) 12

0

Y Vs = correlation coefficient

(2.98)

and Hv(m) and H~(u) are the complex system functions of the vetical

wave moment and springing moment respectively. The system

response functions can be computed using computer programs which

take into consideration the effects of ship flexibility in the response,

such as the springing -seakeeping program “SPRINGSEA”, [2.3 9].

Applications of equations (2.97), (2.98) and (2.99) to several Great

Lakes Vessels where springing is important is given in references

[2.38] and [2.39]. These equations together with equations (2.76) and
(2.77) for the time-domain analysis have a wide range of

applicability to any two or more dynamic random responses

including, combining primary and secondary~ responses [2.38],

vertical and torsional moments for ships where torsion is important,

high frequency loads with vertical and horizontal moments, etc. In
all of the cases, the coefficient ai must be appropriately determined.

When determining the various statistical averages from the

combined r.m.s. values, the more g’eneral distribution given by Rice

for the peaks should be used instead

distribution.

The above procedure for combining

of the usual Rayleigh

loads is not generally
applicable for combining slamming with wave induced loads.

Reference [2.40] describes a procedure for combining loads on a ship

when slamming is involved as one of the loads.

7 Such as primary inplane loads on grillages due to overall bending
of the hull and secondary lateral pressure arising from the randomly
varying water surface.
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3. STRENGTH INFORMATION REQUIRED FOR RELIABILITY

ANALYSIS OF MARINE STRUCTURES:

3.1 b tre tih Van riabilitv and Modelli~

Because of limitation on control of properties of steel and other

materials used in marine structures and because of limitations on

production and fabrication of their components, the strength of apparently

identical marine structures will not be, in general, identical. In addition,

uncertainties associated with residual stresses arising from welding, the

presence of small holes, etc. may affect the strength of the marine

structure. These limitations and uncertainties indicate that a certain

variability in strength or hull capacity about some mean value will result.

This will in turn introduce an element of uncertainty as b what is the

actual strength of the marine stmcture that should be compared with the

loads obtined in the pretious section.

Additional uncertainties in the strength will arise due to

uncertainties associated with the assumptions and methods of analysis

used to calculate the strength. Further uncertainties are associated with

possible numerical errors in the analysis. These emors may accumulate in

one direction or possibly, tend to cancel each other. Whatever the case may

be, the above uncertainties have to be reflected in any reliability or failure

analysis.

Designers and naval architects are aware of the presence of these

uncertainties. However, they are usually treated in a qualitative sense and

very few attempts have been made to quantify them. The qualitative

assessment of the uncertainties does not lend itself to systematic

improvement of design procedures based on previous experience. Full

advantage of that “experience” can be obtained by attempting to quantify

them.

It is convenient to divide and recognize two types of uncertainties

(hg [3.1, 3.2]):
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1. Objective uncertainties. These are uncertainties associated

with random variables for which statistical data can be collected and

examined. They can be quantified by a coefficient of variation

derived from available statistical information. The variability in the

yield strength of

2. Subjective

with the lack

determined only

and judgment.

analysis, error in

Variability

steel is an example.

uncertainties. These are uncertainties associated

of information and knowledge. They can be

on the basis of the engineers previous experience

Examples of these include assumptions of the

the design model, and empirical formulas.

in failure load that will cause yielding of a cross

section or buckling of plating results from uncertainties in the

following factors:

1. Uncertainties associated with the material yield strength and

Young’s modulus of elasticity of different components of the section

such

2.

plate

3.

as plates, girders and stiffeners.

Uncertainties associated with scantlings of components such as

thicknesses, stiffeners, girders, and face plate dimensions.

Uncertainties associated with the distribution of residual

stresses due to welding.

4.

beam

5.

Uncertainties

and depth of

Uncertainties

flaws, plate fairness,

In addition to

associated with major dimensions such as the

a cross section.

subjective

capacity of

associated with manufacturing

etc.

the above objective uncertainties,

imperfections,

the following

uncertainties cause a variability in the strength or

the marine structure:
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1 Uncertainties associated with the degree of effectiveness of plating

due to shear lag effects [3.3, 3.4].

2 Uncertainties associated with the usual Navier hypothesis of plane

section remain plane and perpendicular

(modelling assumptions).

3. Uncertainties related to the presence of small

may etist in the deck plating.

to the neutral axis

holes and cutouts that

4. Uncertainties associated with the residual strength after buckling

[3.5] and the effect of initial deformation on the buckling loads [3.6].

As more information and more knowledge is accumulated, some of

the factors identified under subjective uncertainties can be classified under

objective uncertainties.

Other classification

discussed later.
of uncertainties are also possible and will be

A physical reasoning may be used in the choice of strength or

capacity distribution. Two limiting cases are widely used to represent the

strength of a marine stmcture:

1. The Gaussian (Normal) Distribution:

The central-limit theorem is often used to justify the use of the

normal distribution. It is known that under very general conditions this

distribution arises (or is approached asymptotically) in many

practical problems. A sufficient condition for this is the possibility

of considering the deviation “of the given random variable from its mean

value as the sum of a large number of independent random variables

with different probability laws but none of which has large

variance compared with the others. This condition is satisfied in random
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quantities such as resistance of materials, weight of materials, and

geometric parameters of a section.

Thus in general the strength distribution of any structure

whose strength is a linear function of a number of independent

random variables may be considered to approach the normal

distribution. The rate at which the sum tends to normality depends

on the presence of dominant non-normal component [3.7]. The

normal strength model will be adopted in this report.

2. The Lognormal Distribution:

The lognormal distribution arises as a limiting distribution

when a random variable is a product of a number of independent

and identically distributed random variables. In modelling the

strength of a component by Iognormal distribution, the advantage of

precluding non positive values is obtained. However, the strength or

resistance of the member should be regarded as the product of a

number of random variables.

3. z Limit States Associated with Marine Structures:
,-

Several limit ktates may be defined
These include: ‘ “

1 Ultimate strength limit state (extreme
2. Fatigue limit

3. Serviceability

The ultimate

state

limit state

for a marine structure.

load)

strength limit state can be further

into two modes of failure: “

a. Failure due to spread of plastic

predicted by plastic limit analysis and

deformation,

fully plastic

beams (initial yield

under this category)

decomposed

as can be

moment for

and shake down moments can be also classified

[3.26].
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b. Failure due to

stiffeners (flexural or

longitudinal stiffeners

instability or buckling of a

tripping) or overall buckling

of a

Each of the above

analysis and are discussed

3.8] for ships.

grillage.

panel longitudinal

of transverse and

two modes require separate methods o f

thoroughly in reference [3.25, 3.26 and

The fatigue limit state is associated with the damaging effect of

repeated loading which may lead to a loss of a specific function or to

ultimate collapse. This particular limit state requires independent

type of analysis and is treated in a reliability framework in
chapter 9.

The serviceability limit state is associated with constraints on

the marine structure in terms of functional requirements such as

maximum deflection of a member or critical buckling loads that

cause elastic buckling of a

3.3 Analysis of uncertainty:

As discussed earlier

plate.

uncertainties can also be classiiled under

objective and subjective uncertainties. They can also be classified

under inherent and model uncertainties. The former is associated
with physical phenomena that

of ocean waves. The latter is

or prediction of reality such

ultimate strength of a marine

of yield stress tests.

are inherently random such as height

associated with models for estimation

as theoretical models for predicting

structure or imperfection of sampling

Uncertainties, both inherent and model, can be expressed in

terms of a full probability distribution or more simply by coefficient

of variation (c.o.v.). The method of quantification depends on the

form of available data [3.9].



a. Sample Data Available [3.9].

Consider a set of sample data ( Xl , q, . . . . . . ,x. ). The mean ~ ancl

standard deviation &Xcan be estimated from
n

and

12=— n z
x.1

i=l
n

2 1a =
n- 1 E

( x. -Z)a
x 1

i=l
thus the inherent uncertainty as given by a C.O.V. is

u

6
x=—

x x

The estimated mean value may not be totally accurate in

comparison to the true mean value because of the sample size n. The
sampling or model emor in estimating ~ is

Therefore the uncertainty associated with the sampling (model)

error is
v-

Ax=—
;

b. Range of Values Known

In estimating uncertainties that require judgement, it is often
convenient and mom realistic to express each in the form of a range,

i.e., upper and lower bounds (e.g. ultimate strength of a member).
Consider now a random variable X with lower and upper bounds

%! and %U , respectively. The mean and C.O.V. can be determined
depending on the assumed distribution. Ang and Tang in reference
[3.9] give these values for several representative distributions as

follows:

If a uniform distribution is prescribed between X ~ and K. then



and

1z=—
2 (X1+X”)

x -x
6‘=*(X:+X:)

f(x)

1

‘m.‘u-xl

xl x~

Figure 3.1. Uniform p.d.f.

If a symmetric triangle distribution is assumed, then

2= +(X1+X”)

f(x

I

2
——— —

Xu-xl

x

‘u

Figure 3.2. Symmetric Triangular p.d.f.
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If there is a bias towards

distribution shown in Fig. 3,3 is

z= +(X1+

higher values then the upper triangle

more appropriate, and in this case

2xu)

x ‘x
6Y=A(”

‘ F 2XU+X:)
f(xJ

Lower

J

Triangle

1 \

:
I

xl x
%

Figure 3.3. Upper and Lower Triangle p.d.f.

If there is a bias towards the lower range, then a lower
triangular distribution may be used (see Fig. 3.3), thus,

and

x -x
8“+:++ )

If a

limits of ~
normal distribution is assumed (Fig. 3.4) with specified

k standard deviation, then

1%=—
2 ( ‘l.+X” )

and

6X -& (
x

u -x
1

~ U+x
1

)
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f(x)

x
xl

Figure

3.4 Random Error Analysis:

In the calculation

x~

3.4. Normal Distribution.

of the strength parameters, use is usually
made of the theory of error. This theory can be found in applied
statistics books such as [3.10], and its application to ships has been

discussed in [3.11] and to other structures [3.12, papers (i), (ii) and

(iii)]; therefore, it will not be repeated here. It” is shown in
references [3. 10] and [3. 11] that if the strength, S, has a functional

relationship with its constituent partss , & ~El -. -.~n , in the form

and if t; are independent, then,
mean ~ ,and variance ~zof S are given

tn) (3.1)

the approximate estimate of the
by9 :

. .

8 ~; are the random variables which

yield stress, plate thickness, stiffeners’

F*)

affect the strength

dimensions, etc.

(3.2)

“ S“ such as

9 The random variables, Ei are assumed to be closely distributed

about their mean; S and its derivatives are assumed to be
continuous.
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“ = k@s/tk,)tg,,z
i-l

(3.3)

where ~: and ~fiAare the mean and the variance of the random variable

E: ● The p~tial derivatives in equation (3.3) are to be evaluated

at the mean value Et . Equation (3.3) can be normalized and written

in terms of the coefficient of variations (COV):

(3.4)

where 6%= ~ is the strength COV, and s~i=~: /~L are the COV of &i and

the partial derivatives are to be evaluated at the mean values.

If the variables ki are correlated and the correlation

coefficients ~ij between EL and ~~

still gives the mean of the strength S in

the C.O.V.of $ becomes
- .-

are known, then equation (3.2)

terms of the means of ~1 but

6== z + ))* P.
as. lJ (— aci )(*)UU

P J
E.1

i J
‘J (3.5) “ .

where the partial derivatives are evaluated at the mean values.

3.5 Uncertainties associated with ship strength:

The strength or a limit state associated with a ship is a function

of several variables. In order to determine the mean and C.O.V. of the

strength, information must be obtained on those variables affecting

it. With that purpose in mind the following variables were

evaluated: material yield strength, material ultimate strength,
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Young’s modulus, ship steel plate thickness, ship steel corrosion

rates, residual stresses, and fabrication tolerance.

Computerized on-line periodical searching was used [3. 13] to

cover efficiently as much ground as possible for three of the

variables. Several data bases, available from the DIALOG system and

representing several million citations of journal articles, symposia,

conference papers and U.S. Government technical reports, were

searched. This yielded about 300 citations which were further

reviewed for suitability and included as appropriate. The striking

result from these broadly based searches was the lack of statistical

data on the appropriate variables, even though extensive literature

exists on the subjects in general.

Yield stren~th. ultimate strength, and Youn#s modulu~ The

measurement of yield and ultimate strength is the most basic test

that can be made in materials research, yet most papers will include

only one or two tests to show the relative merits of a new process or

alloy. Even when statistics are reported, another difficulty arises,

namely, lack of uniformity in the test method and results reported.

Under the general category of yielding, there are measurements of

proportional limit, elastic limit, yield strength (0.2 percent off set),

yield stress level, upper yield point, and lower yield point. Alpsten

[3. 14] discusses the weakness of each one of these measurements

and points out that all of them are affected by the strain rate and or

residual stresses in the sample? He recommends use of the 0.2

percent offset measurement because it compares well with static

strain tests. Measurement of yield points is particularly sensitive to

strain rate, but most of the older data do not report this value.

Table 1 provides a summary of more than 60,000 samples of

various steel types and test methods. Galambos [3.15] in reviewing
much the same data suggests that any numerical analysis is probably

worthless since the measurements are so varied. His judgment is

that for rolled shapes the mean yield stress be taken as 1.05 Fti in

flanges and 1.10 ~a in webs with CC)V’S of 0.10 and 0.11, respectively.
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Fj is the specified yield stress for the steel grade used. The
weighted average of the COV’S for the data presented in Table 3.1 is

0.089.

The results for ultimate strength are safer to compare since

this measurement is not particularly affected by strain rate. Table

3.2 presents results for about 4200 samples but representing several

different types of steel. Here the weighted average of the COV’S is

0.068.

Finally, Table 3,3 gives the results of 300 samples measuring

Young’s modulus. Overall, the weighted

30.07 x 10 ksi and the weighted average

Ship steel plate dimensions:

average of the mean value is

of the COV’S is 0.031.

A careful literature review

revealed only limited statistical data on the thickness of ship steel

plate [3.16]. There is an extensive body of literature on the detail of

manufacturing plates and how to improve the quality, but no specific

numbers as to the variations that typically occur. Informal contacts

with one major

are collected in

In [3.17]

steel producer tend to confirm that whatever data

the mills are considered proprietary.

Basar

but he did not report

~Q; This

did obtain such data from one manufacturer,

any statistics.

is another topic where there is a lot of

literature, but few statistical data. Only one paper [3.18] giving

actual shipboard corrosion rates has been found, but the data are

based on observations of a single tanker only. Two other papers ~

were found which have statistics on rates, but they were for

unprotected steel samples [3. 19, 3.20], thus any comparisons are of

limited value. Table 3.4 presents a summary of this information.

Residual stress: Statistical data on residual stress are

extremely difficult to find; in fact, this search revealed very little.

While this subject has received considerable study, the testing
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method is prohibitively expensive, which precludes gathering
statistically significant amounts of data. Alpsten [3.14], for example,

reports that surveying a single plate for residual stress took 140

hours, not man-hours, but the time it took a team to collect the data.

Two representative papers which give results and empirical methods

for predicting residual stress are included in the list of references

[3.21, 3.22].

~ While no extensive

search was conducted on this subject, it seems safe to say that the

literature on the subject is limited. Basar [3.17] in his survey of
structural tolerances

“The quantity

limited partly due

in the U.S. shipbuilding industry, states that

of structural deviations data obtained was rather

to the fact that the yards did not maintain a

statistical record and partly due to the fact that actual measurements

proved to be difficult to carry out in that it interfered with the yards

work in progress. ”

As far as “in service” deviations are concerned, again not
enough data were available due to the fact that

being recorded and sometimes not even reported.

This led the International Ship Structures

1976 report to recommend for future research the

such data are not

Congress in their

establishment of a

comprehensive “Damage Recording System.” The report cites the

need for all parties concerned-that is, the classification societies, ship

owners, and ship repairers-to “take a more liberal view of the

subject and to release information of this type for the benefit of the

industry. ”

Two other related papers were located: [3.23], which gives

statistical data and distributions for steel-plated highway bridges,

and [3.24], ‘which discusses fabrication errors in a Japanese high-rise

building.
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arbon structural ?4- ●nd I in. plata and ‘/s-in.

loflfi$y +4- and l-in. plata
low-alloy Yt.in. late
ASTM A7-55T $JF barns, flanges
ASTMA7-55T,WF hama, web
ASTMA7-55T,WFbea~, cover platea
Mill tek 4 different contimmcnt VISAS,

SA516 GR70
Mill tut. 1 con~inment VHS4 SA516GR70

.

P
*

Tabla3.lUtllmalo alrangthdda
. .

No. of
T-1 Samples Mean, kai COV Distribution Remarks

Tcnaion 58.291 0.043 ,..
Tens;on 3;

cold straighten shapa
57.909 0.089 ,.. cold straighten shape

Tension 84.039 0.1124 .
Tension

annealed, alloy Wed

Ten~ion
; 124.9 0.1796 . . .

60.405 0.0719 ,..
quenched, alloy steel

Tcnaion
nominal maximum straas, varioua platex. st~ctural skel

;: 73.525 0.074 .
Tension 80.39

nominal maximum atreca, various platac, low-alloy s*1

Tension
0.109 . . .

l;: 62M
nominal maximum stress, various plates, low-alloy 9tccl

0.0226 . . . ASTMA7-MT,WF Iwama, flatrgm
Tension 64.33 0.0341 ,., ASTM A745T, WF barns, web
Temion u
Tension

60.84 0.0241 . . . ASTMA7-55T,cover plates
39:; 64.27 0.0703 . . .

Tensile strength
mill Wta

59.27 0.044 . . . 1W8testsABSClass A plataq ‘h % in.
Tensile s~ength 79 0.091 . . .
Tensile strength

1948 tasta ABS Class B plataa, ‘/1~ % 11/1~,~4,1%6,7A,1%6, 1 in.

13
Tension

R% 0.051 .,. 1948tsaraABSClass~ plata, 1Ylt. l?I~, 1‘~, 1%,11Ain,
6257 0.044 norm41

Tensilestrength ~;#A&B&&,% o.&7 normal
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Ta&+a3.3Ywtg’smodulusdints

T=t
1N04i}f

Samples Mean, ksi Cov Distribution Remarks

Tcnaion
Tension

Tension
Compression
Tension
ComprSion
Tension
Compression
Tension

Ten~ and stindard
..-. ..—-

104 30.0x lW
19

O.owln
26.98x 102 0.0M9

22 29.50 xl@ o.(w2
29.49x 1(P 0.0146

:: 29.59x l@ 0.CN156
20 29.Mx ltP 0.IJ370
10 29.56x l@ O.(HH

29.61X 10s 0.01106
$’ 29.42X I@ 0.01%

94 31.20 x 10s 0.060

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

structural a~l from brid es
!variousM.A ●lloys,annm ad and quenched,●nd

drawn samplm
structural steel
structural akl, same ssmpla as above
low alloy
low alloy, same sampl~ as abve
low Slloy
low 4UOY,same aamplm u ake
variom-sixe a~ens from Y4,‘~ and 1in. plate,

sune WI& atn.rctural 3W1
sttucturd steal

(i) Mean corrmion ra~ for ~ ~nker
L-5.l&3

CorrosionMean
and .%ndard

Membr or Groupi@
Deviation
miIs/year

herd steel, upper 15 ft
Internal steel, lower 30 ft
~k longitudinal
Bottom ]ongitudinals
Deck phe
Shell plate sid~
Bottom phe. wing Mnks
Bottom plate, cen~r bsnka

6.5 & 0.4
3.3 * 0.2
6.5&0.4
3.3 i 0.2
11.4+0.7
5.4* 0.6
5.4i 1.6
17.9+ 2.9

(ii) Corrosion Ratesfor Unpro~d Stael in Brackish Water [3 .20J

Mean and Standard
Deviatirmin

Maximum p]t depth
Uniform corrosion

(iii) Corrmion Rat= for Unprotected St4 in Seawater [5. 131

Exrmaure depth 0.5 m 1.5m

Uniform Corrosion. mii/year~ 5.5 * 0.3 5.7* 0.2

● Originally reporti as millimetam of corrosi(m after :18
months.

4 originally reported M g/m2 weight ha after 16 mwlths.
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4. BASIC RELIABILITY CONCEPTS BASED ON FULLY PROBABILISTIC

METHODS - LEVEL 3:

4,1 Introduction n - Reliability Levels;

Structural reliability is currently categorized under three different levels

that depend mainly on the degree of sophistication of the analysis and the

available input information. Level 3, which sometimes is referred to as the fully

probabilistic approach, is the most demanding in terms of the required input

information. But even if the input information is available, the analytical or

numerical evaluation of the restilting integrals for estimating the probabilities of

structural failure is extremely difficult. The basic concept of Level 3 reliability

analysis is that a probability of failure of a structure always exists and may be

calculated by integrating the joint probability density fimction (j.p.d.f.) of variable

involved in the load and strength of the structure. The domain of integration is

over the unsafe region of the variables.

Because of the difficulties in connection with determining the j.p.d.f. of the

variables and in evaluating the resulting multiple inte~ation, Level 2 reliability

(semi-probabilistic approach) analysis was introduced. In this level, a reliability
index, rather than a probabili~ of failure, is introduced to assess the safety of the

structure. The reliability index is c~nne~t~d to the probability of failure, and,,
under certain circumstances, the exact probability of failure may be directly

obtained if the safety index is determined. For example, if the design variables

are uncorrelated and normally distributed and the performance function 10 is

linear, the probability of failure can be determined from the safety index using

tables of the standard normal distribution function. If the variables are

correlated and not normally distributed, certain transformation

10 The performance function is a function that contains the load and
strength variables and determines the performance or the state of the
structure.
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(Rosenblatt transformation (1 969)) can be made to obtain equivalent

uncorrelated normal variables, thus, approximate probability of

failure may be determined. Similarly, certain approximation can be

made for nonlinear performance functions.

Originally, the safety index (Level 2) method was based on a

simple mean value first order second moment analysis (MVFOSM),

see for example [4.1, 4.2, 4.3].

Later Hasofer and Lind [4.4] introduced a more consistent

invariant method based on first order reliability which entails

expanding the performance function in a Taylor series at the most

likely failure point and retaining only the frost order terms.

Although Level 2 is easier to apply in practice, it is still of

limited use to practitioners. Normally a designer needs factors of

safety to apply in the design process such as those applied to the

yield strength of the material and to the loads. This need resulted in

the introduction of Level 1 reliability analysis. In this level partial

safety factors are determined based on Level 2 reliability analysis.

If these factors are used in a design, their cumulative effect is such

that the resulting des~gn will have a certain reliability

certain safety index). Thus, code developers and

societies may determjne (and specify in their codes)

safety factors that ensure that the

specified reliability level.

Level 3 reliability is discussed

two chapters describe Level 2 and 1,

resulting design

level (i.e., a

classification

these partial

will have a . .

in this chapter. The following

respectively.

4•2 The Basic Problem - Level 3

Level 3 reliability is based -on the direct integration of the joint

probability density function (j.p.d.f.) of the random variables

involved in a design. Therefore it will be called here the “Direct-

Integration Method”.
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The probability of failure or the probability of reaching a

specific limit state is determined from:

pf = J ..*J f&(x, ,x2 ● *.** Xn) dxldx . . ..dxn2 (4.1)

where fx ( . ) is the joint p.d.f. of the important design random

variables X 1 . . . Xn. The domain of integration is over the unsafe

region of a limit state associated with a structure. The limit state
function may be represented as g (XI , x2 . . . xn ) and the

corresponding unsafe region (integration domain of equation (4.1)) is

given by:

fdxl, x 2 . . ..xn) ~~
(4.2)

The above general equations can be simplified for specific

cases. In fact, the first basic reliability analysis started with two

variables only, the strength of a member “S“ and the load acting on it

“z”. In this case, instead of the “n” variables described in equation
(4.1) , we have only two variables Xl = S, X2 = Z. Failure occurs when

the load Z exceeds the strength S. The unsafe region is therefore

dxl ,x2) = g(s, z) = s - z 5 0 (4.3)

The probability of failure for statistically independent S and Z is then

given by (s= equation 1.3) :

Pf ❑ P[s I-z So]=m F~tz) fz(z) dz
o (4.4)

a

❑

f
[1 - F+) ] f~(z) dz (4.5)

o

These two convolution integrals given by equations (4.4) and

(4.5) can also be determined from the general formulation for n

variables given by equation (4.1). In M case of two variables S and

Z, this equation reduces to:
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pf z
I I ‘s,2 (S,2) d= dz
[(s,2):s-250]

and if S and Z are independent, then

pf =
I [ f@ fZ(z) ds dz
[(s,2):s-2s0]

(4.6)

(4*7)

from which equations (4.4) and (4.5) can be obtained.

Figure 4.1 shows graphically the pdf of S and Z. The overlap of

the two curves represents a qualitative measure of the failure

probability. This figure shows that a reduction of the probability of

failure can be achieved by:

a. increasing the distance between the means of the two
probability density functions fs (s) and fl [%) , that is, by increasing the

mean of the strength or decreasing the mean of the load.

b. decreasing the standard deviation (or c.o.v.) of either p.d.f., that

is, decreasing the uncertainty.

Figure 4.1. Probability of Failure

s)

The reliability of the structure can be measured by the

probability of survival or the non-failure probability given by
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P~=l-pf
(4.8)

4.3 The Normal Tail and Margin of Safety:

The probability of failure can be given also in terms of a

margin of safety M defined as the difference between the strength

and the load variables, i.e.,

M= g (X1,X2) =s -z
(4.9)

the probability of failure is therefore

f

o
Pf = PIM<O] = fM(m) dm ❑ FM(0)

.m (4.10)

This is represented graphically in Fig. 4.2.

fM(m)
1

m

area= pf

Figure 4.2. P.d.f. of the Safety Margin.

If both S and Z are normally distributed and independent, then

M is also normally distributed with a mean
Fti

and standard
deviation ~~ given by -

(4.11)

and
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2 2

‘M=%+=: (4.12)

The standard distribution of M is obtained by subtracting the

mean ~~ and dividing by the standard deviation i.e. ~~~ . This
standard normal variable has a zero mean and a unit standard

deviation, i.e., N(O,l). Equation (4.10) then yields

[1-PM
Pf =FM(0)=#— ❑ 1 - 4 (p)

‘M (4.13)

where PM
$z—

‘M

is called the reliability or safety index, Note that the probability of

failure decreases as the safety index
P increases.

In this particular simple example of independent normally

distributed variables the probability of failure can be exactly

determined from ~ and ~ is given by .

P’— ‘:=% (4.14)
and

P= q-~) =1-r(d)
f (4.15)

For example, if ~ = O, Pj= 0.50; if /?= 1,?} =().16 ~dif ~ = 3.1, PF= l(j3

The relations k- 6 and p ~ for otherdistributionof S and Z with
a mrgin gi~ by equation(4.9) are plottedin section11,1.2of @p31diX 1.

4.4 Probabili ~ of Failure of a Ship Hull Girder

Although level 3 reliability is usually limited in application to
actual structures because of the complexity of the analysis, this level

of analysis can be still applied to assess ship primary strength when

the ship is considered as a beam. In order to determine the
probability of failure as described

first to determine the probability
in the previous sections

distribution of the total
one has

load (in
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this case, the total bending moment) acting on the ship. The total
bending moment consists of stillwater bending moment and the

extreme wave bending moment as developed by one of the methods

described earlier.

In principle, the magnitude of

also a random variable since it is a

and the shape of the wet envelope

the stillwater bending

function of the cargo

moment is

distribution

which contains a certain amount

of randomness. However, the variability in stillwater bending

moment due to random factors is expected to be much less than that

in the wave moment, and, may for this reason, be considered as a

deterministic quantity of a certain maximum value. This maximum

value may be determined from the distribution of cargo that gives

the maximum permissible stillwater bending moment for the

operation of the ship according to classification society rules.

Actual data on stillwater bending moment analyzed by Soares

and Moan in reference [4.5] show that the normal distribution fits

well the data. In this example we will consider both cases.

stillwater moment is first considered as deterministic quantity
maximum value m. and then is considered normally distributed

mean m and standmd deviation as.

The

with
with

First let Zn = m. + Yn represent the extreme amplitude of the
total bending moment in n- encounters, where m. is the stillwater

bending moment considered to be deterministic. Yn is a random

variable representing the extreme wave bending moment using

order statistics and based on the Weibull distribution with

parameters k and 1 as the initial distribution.

The probability density function and the distribution function

of Z~are given respectively by [4.6]:

()
nl z—m~-~

42.(4 = ~ y

-e-(’%9’.[,- ,-(7)’]”-1 .> ~ (4.16)

= o otherwise
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@zm(,, = [1- ,-(s%=)’]9,> ~
. 0 otherwise “(4.17)

The above results are extended to the case when the variability of

the stillwater bending moment is not neglected. The stillwater
bending moment is considered to follow a normal probability law

given by

(4.18)

where +T ( b) is the probability density function (pdf) of the stillwater

bending moment T, ~~ is its standard deviation, and m is the mean.

The extreme total bending moment Z ~ is simply the sum of the

stillwater bending moment and the extreme wave bending moment

Zn=T+Yn (4.19)

The distribution function of Z ~ is

,-

. .

(4.20)

where ~YA,r (.9 . ) is the joint probability density function of the

random variables Y ~ and T; and the domain of integration is overall
values of y ~ and t such that yfi +Ef%; t’ is a dummy variable.
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Differentiating the last equation of (4.20) with respect to “z” to get the

pdf of Zn, we get

s
+s”(4 = - #r”ir(Y”lz– y“) ~Ym

o (4.21)

The stillwater bending moment T is assumed to be statistically
independent of the wave bending moment Yn. Therefore equations

(4.21) and (4.20) can be written respectively in the form

wher,e the dummy variable Yn is changed to y and t’ to t for

simplicity of notation.

Using the Weibull distribution as an initial distribution for Yn

and equation (4. 18) in (4.22) and (4.23), we obtain

and

d--

R is represented by the ratio of the strength to the
moment, R = S/Zn. The probability law of R can be

the probability laws of both S and Zn. If statistical

The safety
extreme bending

determined from

independence is assumed between the extreme total bending
moment Zn and the strength S, then the probability density and

distribution functions of R are given respectively by

(4.26)
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J
+.

FR(r) = 42.(4-F~(rz)&
o

Integrating equation (4.27) by parts and
probability of failure pf is

P/ - P[R <11- ~R(l)

(4.27)

noticing that the

(4.28)

pf can be written either in the form (see also equations (4.4) and

(4.5))

(4.29)

or

J
+.

p/=l - @zm(z)Js(z)dz
0 (4.30)

The strength S is assumed to be normally distributed with
mean = v and standard deviation = a. Its probability density function
is given by

and the corresponding distribution

(4.31)

function is

d -- ()F~(s) - I “ j~(8)d!l- *= s
u (4.32)

is the standard normal

will be considered next.

function tabulated in many

First, the case when the

where Ys ( . )

statistics books.

Two cases
stillwater bending moment - is regarded to be deterministic of value
m o. Using equation (4.17) for Ozn(z) and equation (4.31) for fs(z) in

equation (4.30), and noticing that z > m., the probability of failure

can be written in the form
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p/-l-

Equation (4.33)

is dependent on the
ship is underway (see

that is to say, as the

s0

A. [1 - ~-(r-ww u] .,-i(’3’&
(4.33)

is a function of n; i.e., the probability of failure

number of encounters or the length of time the

Fig. 4.3). It should be noticed that as n + =,

[1 - #r+/w]~ ~oandpt~ 1

ship encounters wave loads for an infinitely long
time, failure will eventually occur with probability equal to 1.

FREQUENCY
OF OCCURRENCE

f
f ‘

SAGGING HOGGING

P*
LOAD BENDINGMOMENT OR ULTIMATE

) BENDINGSTRENGTH

Figure 4.3. Probability of failure under extreme bending moment

A closed-form solution of equation (4.33) in its general form is

not possible. It is best at this point to specialize in the short- and

long-term analyses individually.

For short term, (Rayleigh initial distribution ) 1 = 2 and k =~, ’11)
and assuming, for the moment, n = 1, equation (4.33) becomes

W ~ = ~~ = 2 x man square of the process.
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For long term exponential distribution, ~=landk =~, and letting
n = 1, equation (4.33) becomes

p,,*d - [1-++)]
u-mo d

+e (-T%.* P - ~ @—..
u k) (4.35)

= Pi’r+ Pf” = Pf”

where ~ ( . ) indicates the standard normal distribution function of

(*).

We now return to the second case where the stillwater bending

moment is assumed to be a random variable that follows a normal

distribution with mean m and standard deviation G3 . Substituting in-

equation (4.29) for @Zn from equation (4.24) and F~ (z) from equation

(4.32), the probability of failure in this case is given by

S+-f-+=“ = ;“+= , Jo @/k) ’-l

*[(Z - $J/ukiz
(4.36)

For short term, , [ = 2 and k =~, and letting n = 1, equation

(4.36) reduces to

–sJ.0

Prl.-l - (1/%)v2/@ ~ ~ *[(Z - P)/@l - (yi~a

.e-’@’-:c*m)* &@ (4.37)

For long term, ~ = 1 and k =’~, and letting n = 1, equation (4.36)

becomes
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“w(z:-:)”v(=)& ““38)

where equation (4.38) can be

equating it to equation (4.35)

representing the probability

further reduced by letting c~

with m. = m. If the fiist term

of failure under stillwater

=0 and

in (4.35)

bending
moment is neglected, then

The equality in equation (4.39) holds if

( )
v =m–f =1.0U*

in the relevant range of z. This leads to the condition

P —m? u; + 4.O(U,+ u) (4.40)

Using equation (4.39) in equation (4.38) yields

For the more general- case when n >1, Bernoulli trials may be
assumed, and the total probability of failure, pf, can be written in the

form

n
Pf=l-[l-pfln=ll (4.42)
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Equation (4.42) is applicable for both short and long terms, and

also for deterministic and random stillwater bending moment.

It should be noted that several values may be assumed, in the

case of deterministic stillwater moment, m v , over different periods

of the life of the ship, if a long-term analysis is considered. The
corresponding values of n and the probabilities of failure during

these periods can then be calculated. Since different values of ma
correspond to mutually exclusive events, the total probability of

failure is equal to the sum of probabilities of failure. In this way an

allowance can be made for discrete variation of m ~ .

Although the derivation of the probability

as given above seems to be complicated, the

Equations (4.34) and (4.35) for a deterministic

of failure for a ship

final results are not.

stillwater moment are

simple algebraic equations that can be easily used to calculate p ~ for

a given set of values for the variables. For the case of a random

stillwater bending moment, equation (4.41 ) for the long- term

analysis gives a simple means for calculating p ~ . Equation (4.3 7)

which gives p ~ for a random stillwater moment under stationary

condition (short- term) is not simplified further since these

conditions are- unrealistic from a practical point of view. In the

short-term analysis (p’.g. a storm condition) it is more appropriate to

consider a deterxqinistic constant value of the stillwater moment

rather than a random one, therefore, eq”uation (4.34) is more .

appropriate to use. Finally, equation (4.42) may be used to calculate

p~ for values of n larger than one. It should be noted that this

equation may give large errors if n is very large, and, in this case

numerical integration may be necessary. Numerical examples of the

use of the derived equations for p will be given later (-@er 10).
F

Notice that, in principle, the hull girder may fail in hogging or

sagging mode (see figure 4.3). Since these two events are mutually

exclusive events, i.e., the hull can

mode, then the total probability

be either in a sagging or a hogging

of failure is the sum of the two
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individual failure probabilities provided that the distributions are

determined separately. In practical application, however, the total

probability of failure is controlled by the direction of the stillwater

bending moment (just as in the deterministic approach). Thus if the

stillwater bending moment is a hogging moment, the total probability

of failure is simply equal to the probability of failure in that mode

since the probability of failure in the sagging mode will generally be

very small. Sum naml vessels ~r, may Ha- fmm this rule.
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5. LEVEL 2 RELIABILITY ANALYSIS

As mentioned in Chapter IV, Level 3 reliability analysis can be

very difficult to apply in practice. The two main reasons for this is

the lack of information to determine the joint probability density

function of the design variables and the difficulty associated with the

evaluation of the resulting multiple integrals. For these reasons,

Level 2 reliability was developed. In Level 2, the safety index

concept which was first introduced by Cornell [5.1] in 1969, was

further developed by several researchers. In the next few sections,

the development of Level 2 reliability will be presented starting with

the simple safety index concept, followed by several improvements

of the concept.

5.1 The Mean-Value First-Order Second-Moment (MVFOSM) Method :

If Z is a random variable representing the load and S is a

random variable representing the strength, then the safety margin as

defined previously is:

Failure occurs when

ultimate capacity S, that
Therefore, the probability of

Pf = P[M s O]

M= S-Z (5.1)

the total applied load Z exceeds the

is, when the margin M is negative.
failure pf is

= FM(0) (5 .2)

For statistically independent load Z and strength S, the mean

~- and variance ~~ of the margin are given by
P-= p-p
m s z
2 (5*3)

2+a 2v *Om s z

The standardized margin G, which has a zero mean and a unit

standard deviation, can be written as
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M-pm
G= um (5.4)

Failure occurs (or a limit state is reached) when M ~ O so that

equation (5.2) can be written as

Pf = FM (0) = F~
[ ‘~: 1= ‘G ‘-d) ‘5-5)

where ~ =~~fn= safety index, which is the inverse of the coefficient of

variation of the safety margin.

If the distribution function F ~ (.) is known, then the exact

probability of failure associated with the safety index can be

determined.12 But even for unknown or unspecified distribution

function FG (.), there will be a corresponding though unspecified

P
probability of failure for each value of . Thus

P
may be taken as a

safety measure as is the case in the MVFOSM method.

The foregoing results can be generalized as follows. Define a

limit state (or performance) function g(.) as

M=g (Xl,xz ..*. xn) (5.6)

where &~ are the applied and strength parameters considered as
random variables, and the limit state function g(.) is a function that

relates these variables for the limit state of interest (serviceability or

ultimate state). The limit state is reached when:

M= g (X LSX2 ..*. xn) so (5.7)

Notice that the above equation is the same as the integration

domain in the Level 3 reliability (see equation (4.2) ). The limit state

function can be expanded using Taylor’s series, and if only the first

order terms are retained, we get

12 Se section Al. 2’of Appmdix 1 for the relationship h~ @and the
probahili~ of failurefOr severaldistributions.



*
where z ~ is the linearization point, and the partial derivatives are

evaluated at that point. In the MVFOSM method the linearization

point is set at the mean values ( El, -Zz -- --- ‘ ~n ).

The mean and variance of M are then approximated by

Bm=g(zls% . . ..zl) (5*9)

(5.10)

where f!i ~d ‘s the correlation coefficient and the subscripts ~i and

.~~ denote evaluation of the partial derivatives at the mean point.

The accuracy of

effect of neglecting the

If the variables

remains unchanged but

equations (5.9) and (5. 10) depends on the

higher-order terms in equation (5.8).

~i are statistically uncorrelated, then (5.9)

(5. 10) becomes

(5.11)

As an example, if the margin M is represented by the variables

S an Z only, that is

~ =g(x],xd= g(s,z)= s - z

then applying equation (5.9) and (5. 11) for determining the mean

and variance, one immediately obtains identical results as given by

equations (5.3). Equations -(5.2) and (5.5) follow accordingly. This

method is called the ~VFOSM method because the linearization of

the limit state function takes place at the mean value (MV); only the

first-order (FO) terms are retained in Taylor series expansion, and up

to the second moment (SM) of the random variables (means and
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variances) are used in the reliability measure rather than their full

probability distributions.

A geometric interpretation of the safety margin M = S - Z will
be useful particularly for the discussion of the Hasofer Lind

reliability index which will be presented later. First we notice that
M >0 represents a safe state or region, M < 0 represents failure state

and M = O represents a limit state or failure surface (or line in the
mse of twoti~les). h standard or “reduced” variates of S and Z can

be written as

s-p Z-pz
s’ = s .* 21 =

o u
s z

Therefore, the limit state function M = O can be written in the

space of reduced variates as:

M= UgS’-UzZ’+P~-lJz =0

which is a straight line shown in Fig. (5.1).

, .

Failure
~gion

o
s’

Figure 5.1. Limit State Function in the Space of Reduced Variates

The region on one side of the straight line which contains the

origin “O” represents the safe state (M > O) and the other region
represents the failure state (M ( O). Thus the distance from the
origin to the line M = O can be used as a measure of reliability. In
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fact, from geometry, the minimum distance “D” shown on Figure 5.1

is given by

“R

Notice that D is equal to the safety index

normal variates and linear limit state function

for this case

~ for the case of the

discussed earlier, i.e.,

Pm
$ =D=— a“1++

and

5.2

the probability of failure is thus

Pf = 4 (-D)

Improvements to the Mean Value First Order Second Moment

Reliability Index:

The MVFOSM method described previously has three basic

shortcomings:

mean

from

First, if g(.) is nonlinear and the linearization takes place at the

values of %; , errors may be introduced at increasing distance

the linearization points by neglecting higher-order terms.

Second, the method fails to be invariant to different equivalent

formulations of the same problem. In effect this means that the
safety index ~ depends on how the limit state equation is formulated.

For example if the M is set to be a nonlinear function of ,S and Z such

as
M=s2_z2
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then PF = FM (O)* still given as before by equation (5.5); however,
when r h and r. are computed from (5.9) and (5. 11) and

substituted in P
m

$ =—
0

(5.12)

m

the following
!

is obtained

P; - P:’
$=

[ 1
4p: 0; + 4p2 02 0“5Zz (5.1s)

which is different from the
P

obtained when M is taken as M = S - Z,
even though the criterion of failure is still given by equation (5.5).

Third, in the MVFOSM method the safety index ~ can be
related to a probability of failure in cases when the variables xi am

normally distributed [and when the function g(.) is linear in xi]. It is

known that wave bending

exponential distribution.

advanced method over the

such distribution information

moments in ships follow a Weibull or

Thus, one of the improvements in an

MVFOSM method would be, to include

(s= -tion 5.2.2).

5.2.1 The Hasofer/Lind Index:

The first two shortcomings discussed previously are avoided by

using a procedure usually attributed to Hasofer and Lind [5.2].

Instead of expanding Taylor’s series about the mean value point,

which causes the invariance

at some point on the failure

state function g(.) and its

problem is formulated. “

In the Hasofer/Lind

problem, the linearization point is taken

surface. On the failure surface, the limit

derivatives are independent of how the

procedure, the load and resistance
variables, Xi, are transformed to

with zero mean and unit variance

reduced (standardized) variables

by
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Yi =
x. - ii.

1 1
u

x.
1

The Hasofer/Lind reliability index

(5.14)

is defined as the shortest

distance from the origin to the failure surface in the reduced space.

This point is found by solving the following set of equations

(5.15)

(5.16)

failure surface in the reduced space, and

point closest to the origin in the reduced

All

this
“-. the

P

partial derivatives are evaluated at the

procedure is equivalent to linearizing

(5.17)

G(.) is the

Y
*, are coordinates of the

spkce (the checking point).

checking point. In effect,

the llmit state function in
reduced variables space at the checking point and computing

associated with that point.

In the original space, the checking point or the most likely

failure point is obtained from

*
x. =%.+0

1 1 x Y:
i

=2 .-0
1 ai $

‘i

(5.1s)

In general, for a linear limit state function, the Hasofer/Lind

method will yield the same result for ~ as the MVFOSM method. For

nonlinear limit state
is invariant “to
this @nt, the

functions, this method” yields a safety index ~ which

the formulation of the performance function. TO ill~~~
fdlwtig _le is considerd (seeref. [~. Ill ).
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Suppose that a simple beam is subjected to random loading that produces a
maximum stress with a mean value ~Z = 20,000 p.s.i. and a standard deviation Oz

= 2,500 p.s.i. The beam is made of material of mean yield strength P6 = 30,000

p.s.i. and a standard deviation cr~= 3,000 p.s.i.

The following three limit state functions are considered. They all represent

failure of the beam and, therefore, should yield the same value of the safety index

if the method used to determine the safety index is consistent (i.e., invariant to the

formulation of the limit state function). The three limit state functions are:

MI = S-Z (5.19)

Mjj = S2.Z2 (5.20)

w = ~+yz (5.21)

The strength S and the load Z are independent; S is normally distributed

and Z follows a Weibull distribution. The safety index ~ will be computed for each

of these three limit state functions using, first, the mean value first order second

Imoment method (MVI?OSM) then the Hasofar-Lind method. Notice that the first

limit state function (5.19) is linear; the other two are non-linear.

P. The Mean Value First Order Second Moment Meth@

In this method the safety index ~ is defined as (see equation 5.12)

Where the margin means ~m and its standard deviation ~m are computed

for each limit state function using equations (5.9) and (5. 11), respectively. The
resulting ~’s for the three limit state equations (5. 19) to (5.21) are:
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h =
k-vz

(0s2 + aza) 1/2

~2.p;
132 =

(4ps26s2 + 4p~20.2)1/2

b p@ - hp~
133 =

(%% 2 + GZVpz 2 )1/2

(5.23)

(5.24)

(5.25)

Substituting in the above equations the values of ps, ~z, as andaz, one

obtains the following results:

h = 2.5607 ~ = 2.4282 P3 = 2.5329

The values of P’s are not the same indicating that the MVFOSM method is

not invariant to mechanically equivalent formulation of the same problem. Notice

that we have not made use of the distribution information (S: Normal and Z:

Weibull) in the calculation. of the ~ values.

If the probability of failure for each limit state is to computed from pfi = @(-~j,

an emor will result since this equation is valid only if all the random variables are

normally distributed and the limit state fmction is linear. Let us, however, use

this equation in order to compare the results with those obtained by a more

accurate method described in the next section entitled “Inclusion of Distribution

Information”. Using,

the following values are obtained:

WI = 0.005223 Pf2 = 0.007574

(5.26)

Pf3 = 0.005655
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b, The Hasofar/Lind Method

Equations (5.15) to (5.17) are applied to determine the ~ value for each limit

state function according to this method. For the non-linear limit state functions,

these equations must be solved iteratively since the evaluation of the derivatives

required for calculating ~ will depend on the coordinates of the most likely failure

point which are unknown. An iterative procedure would be simply to assume

values for the most likely failure point (e.g. mean values of the variables) and to

evaluate the derivatives of the limit state function at that point as required by

equation (5.17). Equation (5.17) is then substituted in (5.16) to obtain a set of
coordinates y? which will be a function of the unknown ~. These coordinates are

substituted in (5.15) and the resulting equation is solved for ~. The obkined ~ is

then used in (5.16) to obtain a new set of coordinates of the most likely failure

point. The procedure is repeated until convergence is obtained. The procedure

will be described in more detail in Chapter 6.

The procedure was applied to the limit state equations given by (5.19) to

(5.21). The linear limit state function (s.19) did not require any iteration; the
second limit state function given by (5.20) required five iterations and the last one

(5.21) required seven. The following results were obtained.

h = 2.5607- ~ = 2.5607 ~ = 2.5607

These results indicate that the value of ~ is invariant to the formulation of

the problem. They also show that the MVFOSM method gives identical result to
the Hasofar/Lind method if the limit shte function is linear (see ~1 obtained using

the MVFOSM method).

The probability of failure calculated from equation (5.26) for all ~ values

according to Hasofar&ind method is 0.005223. Here again no use is made of the

distribution information given in the problem. Therefore, unless all variables are

normally distributed (which is not the case in this problem), the probability of

failure computed using equation (5.26) will be in error. More accurate values of

the probability of failure will be given for this example fir the next section.
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5.2.2 Inclusion of Distribution Information:

The third and final refinement of the advanced method over

the MVFOSM method is that the information about the variable

distributions (if known) can be incorporated in the computation of

the safety index and the corresponding probability of failure. In the

MVFOSM method the index ~ can be related to the probability of

failure in cases when the variabIes ~~

when g(.) is linear in Ki ]. This relation is
are normally distributed [and

given by [see equation (5.5)]

(5.27 )

where ~ is the standard normal distribution function. In order to be

able to use equation (5.18), approximately, in the case of non-normal

variables, a transformation of these variables into equivalent normal

variables is necessary prior to each iteration in the solution of

equations (5.1 5) to (5.17’).

The tail of the distribution is usually the location where most of

the contribution to the probability of failure comes from. It is,

therefore, better to fit the normal distribution to the tail of the non-

normal distribution at the linearization point Z?, which is where

failure is most likely to occur (that is, minimum ~ ). This is the basic

idea of the Rackwitz/Fiessler method as given in [5.3].

By requiring that the cumulative distributions and the

probability density functions of both the actual distribution and the
normal distribution be equal at the linearization point, one can

determine tie man P’x and standard deviation a‘ ~ of W equivalent no-
variable, that is

(5.28)

and
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++7-71M%”)=“*
(5.29 )

where + (.) is the standard normal probability density.

Since we are concerned with finding ~~ and ~=’, the parameters

of the equivalent normal distribution once fitted at the linearization

point, we can solve for them as follows:

~, = P{’l-l[FX(x*)])
s

M*)
(530 )

(531 )

This process is illustrated in Fig. 5.2.

, Since }he linearization point xi*, changes with each iteration,

~X. and ~Z~ must be calculated for each iteration also. These values
are ;hen used in equations (5.15) through (5.17) as before. Note that
if the iteration is performed in reduced space, then distribution

transformation into reduced space has to be performed in each step.

f*(x)

A

\

‘w- ACTUAL DISTRIBUTION

\

NORMAL DISTRIBUTION
\

\

“X*” x
LINEARIZATIONPOINT

Figure 5.2. Equivalent Normal Distribution at Linearization Point
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In our simple beam example discussed earlier, the load follows a Weibull

distribution while the strength was assumed to be normal. An equivalent normal

distribution can be determined for the load using the procedure described above.

The three limit state functions describing the failure of the beam are given by

equations (5.19) to (5.21). II one uses Hasofar/Lind method, then one must

determine the parameters of the equivalent normal distribution in each step of the

iteration procedure for the nonlinear limit state functions (equations 5.20 and 5.21).

The results for the ~ values including the distribution

are [5.11]:

and

~~= 2.6690 ~ = 2.6690

information

~3= 2.6690

the corresponding probability of failure is pf = @ (-~)= 0.003802.

The results indicate that the ~ values are invariant to the problem

formulation since ~1= 13z= ~3. They also show that, in this case, inclusion of the

distribution information inmeased the ~ value from 2.5607 to 2.6690 and decreased

the corresponding probabli@ of ftilure from 0.005223 to 0.003802. The values of ~

and ~ deterrnined including the distribution information are more accurate. It

should be emphasized that inclusion of the distribution information does not
always yield larger safety index.
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5.3 Correlated Random Variables

So far, the random variables %~ have been assumed to be

uncorrelated. If the variables are normal and correlated through a

correlation matrix [C], a transformation to a set of uncomelated

variables Yi is possible. The new uncorrelated set can be then used in
the procedure developed earlier for computing the safety index .

P

The set of uncorrelated variables : can be determined from the
../ Y

reduced variables ~-; using the orthogonal

where T is an orthogonal transformation—

transformation

(5. 32)

matrix and the superscript
U indicates the transpose. The transformation matrix ~ is such

that

Et [1
c?

[1
‘J=A (5. 33)

where [ C“] is the covariance matrix of X‘ and [ ~ ] is a diagonal matrix

of the eigen values of [ C’]. The covariance matrix of X‘ is to be related

to the covariances of the original variables ~ throug~
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11 ’12 P13
----- Pln

1

where

P~~ 1 ’23

[11

----- ~2n

c+ ❑
’31 ’32 1

------- p3n

I-------------- ------- 1

1‘nl ‘n2 ‘n3
- - --- - 1

J (5. 34)

P. =
Cov IXiixjl

lj a u
x.1 ‘J (5. 35)

The safety index P can be then calculated from equations (5. 15 to

5.17 ) for the new uncorrelated set Y or more directly from (see

reference [5.4]):

J-q-qz= (5. 3F)

where G* is a gradient
(most li~ely failure point),

*+~z
[

ag
ax;

Notice that since ~ is orthogonal, (~-l =Tk)andfrom (5.32):

Et =~~

and

vector evaluated at the linearization point

i.e.,

ag ag
ax: .* .*. ax; 1

* (5. 37)

where

[1rx = Q
x

2

0 ‘%=, u
xn

(538 )

(5. 39)
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I

i

x
n

1

It can be shown (see reference [5.5] ) that the eigen values [~]

are also the variances of the variables YL .

For 1inear performance function g(x) represented by

g(x)=ao+
2

ai Xi

i
(5.40 )

equation (5. 36) for calculating ~ is reduced to:

*
where ~,, is given by (5..35).

‘d

The above procedure is valid for transforming a set of
correlated normal variables to a set of uncorrelated normal variables.

If the variables are non-normal, then as an approximation,

equivalent nokmal Yariables can be determined as described

previously under “Inclusion of the distribution information”. A more
exact procedure would be to use Rosenblatt transformation [5.6]
which requires information on the joint probability density function

of ~. The degree of approximation is illustrated through a numerical

example given in [5.5] and is usually small.

5.4 ‘Rend of the =liahili~~ Ind= for Ei hteem Ships

First order reliability” was used to calculate the safety indices

for eighteen existing ships. A linear performance function was used,
therefore the MVFOSM method yields the same results as the

Hasofer/Lind method. The margin “M” or performance function for
the primary strength is simply given by:
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M= 9-2

where S is the hull resistance given in terms of moment capacity and J

Z is the total applied bending moment which consists of stillwater

and wave moments. A worldwide mission profile was chosen for

sixteen of the ships as indicated in figure 5.3. The remaining two

ships have mission profiles shown in references [5.7, 5.8]. Three of

the eighteen ships are large tankers (190,000 dwt or larger), nine are

small to medium-size tankers (26,500 to 75,500 dwt), and the rest

are cargo and bulk carriers. Table 5.1 shows the general

characteristics of the eighteen ships. A strip theory program was

used in conjunction with Pierson-Moskowitz spectra [5.9] in order to

determine the root mean square ‘and the mean values of the wave

bending moment in different sea conditions specified by their

significant wave heights. Figures 5.4, 5.5 and 5.6 show these results

for sixteen ships. The required results for the remaining two ships, a

Mariner and a tanker, were obtained from references [5.7] and [5.8],

respectively. Reference [5. 10] was used in order to determine the

frequency of occurrence of the different sea conditions. The mean

value of the wave bending moment was then obtained from the

mean values in the different sea conditions and the frequency of

occurrence of these sea conditions. A typical procedure is illustrated
“ in detail in references [5.7, 5.8]. The variance of the wave bending

moment was determined using the equation:

Variance = Mean square - square of mean value

In the computation, the following assumptions regarding the
sea description were made in order to reduce the computer cost:

(a) Pierson-Moskowitz spectra were used (fully developed

seas)

(b) Long-crested head seas were assumed.
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Table 5.1. General Characteristics of Eighteen Ships.

1,000,000

900,000

800,000

i 700,000

600,000

500,000

400,000

300,000

200,000

100,000

SHIP
TankerNo.1
TankerNo.2
TankerNo.3
TankerNo.4
TankerNo.5
TankerNo.6
TankerNo.7
TankerNo.9
TukerNo.10
TankerNo.11
TinkerNo.12*
ol&ep
CartishipNo. 14
Cargo chipNo.15
CargoshipNo.16”
B::-cay

Bu;llce~

T;nk;rNo.8

1076.IM
1069.25
l$KJ.CUJ

754:70
754.70
7s.69
719.10
620.81
.594.WI
775.W

dwt
LBP (ft]B (ft) d (ft) Cb (approx. )

174.87 81.40 0.86
163.25 Sa.o.i 0.R3
154.76 60.45 0.83
115.99
104.46
105.65
105.65
82.50

% E
105.50

42.01O.fi
U.40 0.82
4474 0.s09
44.74 O.MM
39.15 0.786
35.72 0.784
$.$ :.g

40;970
31,500
26, !ss0
75,500

700.65 9s.4340.70Oani 45,100
528.50 73.9929.SS 0.61.513,400
520.00 75.W 31,420.573 12,750
528.W 76.0029.800.6W5 13,400

Uoo.oo 106.00 44.550.840 74,200

6ii6.2093.8042.630.793 ::,~:
693.75 97.0039.170.77.5 , -

i Tanker and mariner ships from referenoeaf~,;~nd[s.~ $mWctivel y

● TM4KER No. 1

i~

412 KNOTS

6 KNOTS

1 I I 1 I I
5 10 15 20 25 30 35 40 45 50

SIGNIFICANT WAVE HEIGHT [FT]

Figure 5.4. Rms of Wave Bending Moment for Three Large Tankers
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● . No. B
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5.5. Rms of Wave Bending Moment for Eight Medium-Size

Tankers

.

● OIL-OFX CARRIER MO. 13
● CARGO SHIp No. 14
v CARI=OSHIP No. 15
4 BULK CARRIER No. 17

+BULK CARRIER No. lE

15 KNOTS

; ~~

●
:

+
b 1

13.S KNOTS

20 KNOTS
●

:

+
4 /

1S KNOTS

o 5 10 15 20 - 25 30 35 40 45 50

SIGNIFICANT wAw HEIGHT [ml

Figure 5.6. Rms of Wave Bending Moment for Cargo and Bulk

Carriers

143



The strength coefficient of variation V$ was investigated next.

A detailed procedure for determining this coefficient is described

and applied to three ships (tanker, cargo, and frigate) in references

[5.7, 5.8]. The strength coefficients of variation of these three ships
were in the range of 7 to 11.3 percent. These figures include the
estimated subjective and the computed objective uncertainties. The
eighteen ships under consideration were assumed to have a strength

coefficient of variation = 13 percent. This is rather pessimistic and is
on the conservative side. The mean values of the strength, m~ were

considered to be equal to the section modulus of the ship multiplied

by the yield strength, taken = 30 k/sq in.

Obviously, the foregoing parameters for the eighteen ships

were determined in an approximate manner. More accurate
procedures can

a preliminary

safety index ~

With these parameters determined for all the ships, the safety

be used. However, the main objective was to

investigation of the order of the magnitude

for as many ships as possible.

provide

of the

index is computed from the equation:

‘=+
where 0 = ~5/mZ and V5 and V2 are C.O.V. of the strength and load,
respectively.

Figure 5.7 shows the computed values of the safety index of
?

these ships plotted versus the length between perpendiculars. These
results show a wide variation of the safety level, with ~ ranging

from about 4 to about 6.5. There seems to be a general tendency for

higher longitudinal strength safety, that is, higher ,
P

ship size.

The safety index P was also plotted versus

parameters. Figure 5.8 shows P plotted versus
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MS = pgL2Bd, which is proportional to

Only 15 ships are shown in this figure as
and 3 have very large MS values (470 x

106, respectively) and would change the

They do however follow the same general

the static bending moment.

the three large tankers 1, 2,
106, 310 X 106, and 267 X

abscissa scale considerably.

trend of the data, which is
higher safety ~ for higher Ms. The physical significance of this figure
is that designing ships on the basis of the static bending moment Ms

would lead, in general, to higher safety for larger ships; that is, the

seems to overestimate the load on large ships.

t

t.

l?igure 5.7. Safety index ~ for Eighteen Ships

1

t

I I I 1 I I I I I I
10 20 10 40 50 60 70 [0 so (x 10$ %

Figure 5,8. Safety Index ~ for Fifteen Ships
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Figure 5.9 shows the computed safety index ~ plotted versus

the parameter

(ml) Uy

F~ =

pg Lz Bd

Where (SM) is the elastic section modulus, cry is the yield

strength, p g is the water weight density and L, B and d are the
Iength, beam and draft, respectively. The parameter Fs is

proportional to a conventional factor of safety defined by dividing

the ship strength by the static bending moment. The figure shows
that some of the eighteen ships may have actually a lower safety ~
than the others even though Fs may indicate the opposite. This, and
the scatter in the data, suggest the inadequacy of the parameter Fs as

a measure of the real safety of

out in reference [5.8] for a more

P

7

1

:
6

~ ‘%

f

)

s _.

b

1

z

ships. The same result was pointed

specific case.

t *
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: :‘m
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n
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1.s 1.1 2.0 2.2 2.4 2.C 2.0 2.0 3.2 ).4 3.6 lx 10-% r,

Figure 5.9. Safety Index ~ for Eighteen Ships

In general, the wide range of the safety level of the eighteen
ships indicated by ~ as shown in figures 5.7, 5,8 and 5.9 could be due

to several reasons. The lack of allowance, or at least the lack of

uniform measure for the allowance of the uncertainties in the
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bending moment and the strength in the traditional design procedures is a

possible reason. Another reason is the possibility ofinadequacy inthepredition

of the wave bending moment when using the traditional static balance

procedures. A third reason may be due to the slightly different niles of the

different classification societies used for dete rmining the section moduli of the

ships. In addition, the variation of the actual values of the section moduli of the

ships with respect to those specif5ed by the rules is also a contributing factor.

Finally, a more exact procedure for determining the parameters used in this

application may lead to a slightly different range of level of safety.

5.5 Shin Sa etv~ef x Based on Non-Linear Limit State Function;

The following analysis is presented to illustrate the use of Hasofar/Lind

procedure and the method of including the distribution information in calculating

the safety index for a ship. The following limit state fimction is considered

g(x) = (SM) fY- M~W- MW (5.41)

where

(SM) = minimum section modulus
fy = yield strength of the material

MSw = stillwater bending moment

MW = wave bending moment

Notice that the product in the first term of (5.41) -makes the limit state

equation nonlinear. The limit state equation in the reduced space is

g(i) = (Vsm+ ~srn (SM’)) (Vfy+ afy f;) - (1.Lsw+ ~s~ M’Sw)

“ (p*+awM~) = o (5.42)

where the prime superscript indicates a reduced variable and p and c indicate the

mean and standard deviation, respectively.

The derivatives required in evaluating the direction cosines (equation 5.17)

are:

147

Irl



(5.43)%rn (lJfY+ ‘fY$) = %m fy

Wy(m (5.44)

Ggw (5.45)

-% (5.46)

The direction cosines ~i can then be calculated from (5.17). Using these,

the coordinates of the most likely failure point are calculated from (5.16) and

substitut&in the limit state equation in the reduced space (equation 5.15) to yield

the following resulti

~%m - asrn ~*Srn~ ) ( ~fY- ~fy ~*fY~ ) - .

(vsw-aswa*swpb(~w-a~a*wp) = o (5.47)

Equation (5.47) is to be solved for ~. Notice that the U*i are to be evaluated at

the most likely failure point, i.e., fYand (SM) values at that point must be inserted

in equations (5.43) and (5.44), respective y, when evaluating ~*i given by equation

(5. 17). Since these coordinates are unknown apriori, the mean values of these
variables can be used as initial values in an iterative procedure. fir solving for

~ from (5.47), a new set of coordinates can be determined from (5.16) and used ta

determine a new set of ~*i. The procedure is repeated until conve~.nce is

achieved.

is accurate if all the random variables in the limitThe above procedure

state function (equation 5.41) are normally distributed. However, as discussed
earlier, the wave bending moment MW follows a Weibull or an exponential

distribution. In this case, the mean and standard deviation of an equivalent

normal distribution must be determined in each iteration step according to

equations (5.30) and (5.31) and used in equation (5.47)prior to solving for ~. This
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transformation will produce additional non-lineari@ in the limit state equation in

the reduced space.

For an exponential distribution with a parameter i, the equivalent

parameters (@ and pn) of the normal distribution for the wave bending moment

can be calculated from equations (5.30) and (5.31) which yield:

This procedure is further illustrated by the following numerical example.

Numerics 1 Examp~

consider a Tanker of the following characteristics:

Iagth = 763 ft Beam = 125 R Depth = 54.5 R
Draft = 41.33 R Blofik Coefficient = 0.805

Displacement = 90,650 L.ton

The values the means (@ and coefficients

the Iimit state equation were determined as:

were

I&m = 150,441 inz -ft

Vfy = 18.16 tiid

I&w = 425,000 fhtin

l.1~= k = 150,500 ft-kan

DTW = 75,650 L.Inn

of variation (S) of the variable in

r)~~ = 0.09

%’ = 0.10

8Sw = 0.35

& = 1.0

For the first iteration in the procedure described above the mean values

taken as the most likely failure point. The parameters for the equivalent



normal distribution for the wave bending moment can be calculated directly from

(5.48) and (5.49). The derivatives and timction cosines are then calculated from
equation (5.43 to 5.46) and (5.17), respectively. The resultig direclion cosines are

substituted in (5.47) yielding an equation in ~. The first iteration solution for ~ is

5.95. Using the determined value of ~ a new set of coordinates of the most likely

failure point is determined according to (5.16). The procedure is repeated and the
second iteration result~~a ~ value of 5.04.More iterationsshould be performed until

convergence is achieved. For comparison, if the information on the wave bending
moment distribution was not included, the resulting ~ values are 5.83 and 5.73 for

the first and second iterations, respectively.
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6. LEVEL I RELIABILITY 31WLYS1S :

Although Level 2 is easier to apply in practice, it is still of

limited use to practitioners. Normally a designer needs factors of

safety to apply in the design process such as those applied to the

yield strength of the material and to the loads. This need resulted in

the introduction of Level 1 reliability analysis. In this level partial

safety factors are determined based on Level 2 reliability analysis.

If’ these factors are used in a design, their cumulative effect is such

that the resulting design will have a certain reliability

certain safety index). Thus, code developers and

societies may determine (and specify in their codes)

safety factors that ensure that the resulting design

specified reliability level. The method of determining

safety factors for a given safety index is discussed next:

level (i.e., a

classification

these partial

will have a

these partial

6.1 Derivation of Partial Safety Factors from Level 2 Method:

The partial safety factors (psf) or load and resistance factors

LRF are simply safety factors that are multiplied by the basic design

variables in order to assure a specified reliability level ~ . They are

usually applied to the mean values of the design variables, thus, w e

may write the limit state function as:

8 (Aipx ,A2PX , . . . . . Anpx ) =0
i 1 n (6.1)

where A;

equation

are psf and ~X: are the mean values of the variables. Since
(6. 1) represents the failure stmface, 4: ~z: must fall on the

,*
surface, preferably, the most probable failure point, i.e.,

$
x.

Ai=l
Px

i
(6.2)

In the normalized variate space (see equation (5. 19 ) we may write
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Thus the original variate is

* *x. = +axx?i=~1 Pxi x. -af#ux
i 1 i

= ~x(l-a~dvx)
i i

(6.3)

Comparing equations (6.2) and (6.3) we conclude that

Ai=l-afpvx
i (6.4)

Evaluation of the psf Ai requires evaluation of the direction cosines
x i at the design point, i.e., the most probable failure point t:. For

non-linear limit state functions, the determination of @~ requires an

iterative solution. The following simple procedure may b~ used [6.1]:

I.

2.

3.

4.

5.

the

the

4.

x; -
Assume x ~ and determine ~ ?~ = 1

~xi
i ax:

Evaluate(~)=~d a:

Determine
“* *

‘i ‘lx+axxbi’~x-m~ fl~.
i i i i

Use, the new values of X; from step 3 again in 1 until
convergence is achieved.

Calculate the psf from Ais 1 - at P vxi for a given ~ .

Notice that if ~ is not prescribed but is to be determined, then

above procedure can be -modified as follows. After Step 3, follow
following steps:

Substitute x; determined in Step 3 into (~~, ,-- K; ) = o and solve
for .

P
9
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5* Using
P

obtained in “4” above, reevaluate x‘ ~ ❑ - mxip. *

6. Repeat Steps 2 to 5 until convergence is obtained.

6.1.1 Linear Performance Functions:

In this case the psf are such
g ( AIPX , 9**.*

1
and

that

or isl
n

)

a. +
1

a i Ai Px =0

i
i=l

Because of linearity the partial derivatives ~~~ are independent
of xi, that is i

ag
axti za.o1

‘i

(since X.=a1 ~x’+p
i i xi

Therefore from (6.4), the psf are

,% a. c1 x.
=1’‘i ,-

1
pv

[1 1

1,
( aiax )2 T. ‘i

i (6.5) .i

6.1.2 Example

Consider the simple linear performance function

M= 8.(X1,X2) = s - z

where S represents strength and Z represents load.

In order to determine the psf for a given value of
P , we first

write the reduced variables as
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Z-pz
; z’ =

‘Z

and i3M
; az~ = - ‘z

u a

therefore as = s and a = - z

[
2

1

i z 1

a + 0: T
[

2 2

s
+ a

‘a )
T

z

The psf are thus:
u

8

he=l-a~$~~=l-$v~

[ 1

1
2

a 2+a -r

s z

and u

AZ=l-UZ$VZ=l+$VZ
z

[ 1

1

0 2+#; T
s

Notice that At L ~ Wd AZ } ~ , as expected. The determination

of psfs for eighteen ships will be given in Chapter 10 of this

report.

6.2 Recently Developed Reliability-Based rorle.&●

The procedure described above for the derivation of psf may

be used to develop safety factors for use in codes. This necessitates a

change in code format as well. Changing from a working stress

design code to a reliability-based code is not an easy task.

Complicating the procedure is the fact that there is no set method for

introducing reliability into a code. The implementation of reliability

theory in design codes changes from organization to organization.

Even when two organizations use the same reliability-based design

format, the details differ as it must for different types of structures.
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It is the objective of this

implementation methods and use

design codes. Specifically, work
American Petroleum Institute, the

Comite Euro-International

Codes of several other

compared.

section to review and assess the

of reliability analysis in certain

attributed to or sponsored by the

National Bureau of Standards, and

du Beton are examined in some detail.

organizations are also discussed and

Proposed American Petroleum Institute Code Format

The work reviewed in this subsection is the proposed revision

to the “API Recommended Practice for Planning, Designing and

Constructing Fixed Offshore Platforms” (RP2A) which is issued by the

American Petroleum Institute (API) [6.2]. API is currently
sponsoring research aimed at changing the code format of RP2A from

working stress design (WSD) to load and resistance factor design

(LRFD), with the release of an LRFD-based RP2A for industry review

and comment envisioned in the near future. Much of the information
reviewed here that pertains to the proposed LRFD RP2A was

obtained

In

or yield

stress.

from references [6.3, 6.4, 6.5, 6.6].

the currently used working stress approach, the maximum

stress is divided by a safety factor to obtain an allowable

Designs are then limited so that the maximum calculated

stress under extreme operating loads does not exceed this. allowable

value. The basic safety checking format is of the form:

where

R

SF

D

L

w

R
SF z D + L + W + other load effect=

= nominal component strength
= safety factor
= nominal gravity load effects
= nominal live load effects on
= nominal environmental load

(6.6)

on components

components

effects on components
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Presently, nominal loads are all combined with factors of 1.0,

and constant safety factors of 1.67 and 1.25 are used for operating

and extreme loading, respectively. Note that there is a probabilistic
statement implicit in the given safety factors, in that since extreme

events are by nature, rare, the associated safety factor can be
reduced.

Design based on the WSD format has provided structures ‘with

high reliability without explicitly considering uncertainties and

probabilistic safety descriptions. The WSI) format, however, does not

provide for structures with uniform reliability. The problem with

WSD is that the one safety factor in equation (6.6) cannot possibly

account for uncertainties in all variables, including those arising from

the theories and analysis methods employed.

In the LRFD format, individual partial safety factors are

calibrated according to the different component strength” and loading

uncertainties. The advantage of LRFD with its multiple factors is that

proper weight is given to the degree of accuracy with which the
various loads and resistances can be determined, resulting in a more

rational procedure and. a greater uniformity or reliability [6.7]. The

LRFD format recommended [6.3, 6.4, 6.6] for API RP2A has the form

‘Ri Ri>yDD+rLL+rw w+. . . . (6.7)

where

L=

w=

3w=

nominal strength or resistance of component i

partial resistance factor for component i

nominal gravity or dead load effect

load factor- for dead load

nominal live load effect

load factor for live load

nominal environmental force effects with

prescribed return period (usually 100 years)

load factor for environmental load
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Each resistance factor 4 k;
is calculated as the product of two

terms representing component strength uncertainty ( +: ) and system

consequence (+5 ), that is

*Ri = ‘i ‘ ‘=

The component resistance factor #i takes into

in material properties, strengths of fabricated

(6*8)

account variations

components, and

errors in mathematical predictions of strengths (due to underlying

assumptions and approximations).

The system consequence factor reflects the relative

consequence on the entire structure of the failure of a component.

This, in turn, depends on whether the component was redundant or

not, brittle or ductile, main or secondary, etc. ~ In addition, the system

consequence factor covers any other social and economic impacts of

platform failure.

The load factors ~ are also calculated as the product of two

terms. These terms correspond to uncertainty in the load intensity

“ ( y~ ) and uncertainty in the analysis required to calculate the load
effects (7A ). We then have,

~ Load effects = (J intensity) X ~ analysis) =zi~x~ (6.9)

,

In an actual design, the # - and ~-values would be tabulated,

and the design equation would be checked for all specified load

combinations. Actual derivations of load and resistance factors for

proposed use in API RP2A are explained in [6.8, 6.6].

Comite Euro-International Du Beton Code Format

The code discussed in this section is a joint effort of the Comite

Euro- International Du Beton (CEB), sometimes referred to as the

European Committee for Concrete, and the International Federation
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for Prestressing (FIP). The design code is entitled “CEB-FIF Model

Code for Concrete Structures” [6.9]. Information explaining the use of

probability in the CEB Model Code can be found in references [6.9,

6.10]. It should be mentioned that CE13~has been studying structural

reliability for many years and, for this reason, is considered a leader

in the field of such code development.

The CEB

where ~~

The

structural

of partial

design checking equation has the general form

(6.10)

is design resistance and s~ the design load effect.

CEB code is a Level-I code, meaning appropriate levels of

reliability and provided by the specification of a number

safety factors. The code development uses the Level-II

method whenever possible to assms appropriate values for the

safety factors used in the code. The code considers both ultimate and

serviceability limit states.

The format used for defining the design load effects, following

CEB notation, is

(6.11)

where

Sd =

s{... ) =

G=

P=

design (factored) load effects

refers to load effects due to all loads in brackets

(that is, it is not a numerical operator)

nominal dead load

a representative value of prestressing force

characteristic value of principal variable load

characteristic value of other less important variable

loads
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xptfl~y= partial safety coefficients
poL = load combination factor

The CEB Model Code uses, in general, two types of partial safety

xfactors, ~ and II , related to the strength and the loads [as in

equation (6. 11)], respectively.

yf is the partial safety factor which is multiplied by the

characteristic action (load) value, Fk, to obtain the design load effect,

that is

IJ t-KDesign action = - (6.12)

is a function of

accounts for

3three factors: ~rl , ~~z , ~d FJ .

variations in load magnitude from the

specified characteristic (that is, nominal) value. It is
analogous to the ~ i factor used by API.

reflects the reduced probability of combinations of loads

all acting at their respective characteristic values. r{ is
referred to as a load combination factor. [ l~Z is &tten
as @Ciin ~quation (6.1 l).]

accounts for the structural response to loads and the

possibility of redistribution of the load effects. ~~ reflects .

inaccuracies in predicting load effects, and is a ffnction of

the construction material, design and construction

process, and the limit state under consideration. In

equation (6.1 1), ~~ -values are written as ~j , ~f, and

1$ since the 7J -value differs for each load. Also in the

CEB nomenclature,

refers to a variable

ym, the second type of

structural analysis by dividing

F refers to a load in general while Q

load.

partial safety factor, is used in the

the characteristic

( ~K) by Ym to obtain the design strength of the

strength of a section
section, that is
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design strength = f /xk n (6.13)

ym, accounts for any uncertainties in the predicted strength of

the materials used to build the structure. Specifically, it reflects any
variation in the strength of materials from the specified

characteristic value; any variation in the strength of the materials

from that predicted by control test specimens; possible flaws in the

structural material due to either the construction process or the

material itselfi dimensional inaccuracies of the material; and the

effect on the predicted structural resistance of inaccurate values of
material strengths. The ym partial safety factor is the CEB version of
a resistance factor such as~Ri used by the APL

There is an additional factor in the CEB code - the modifying
factor yn. This factor takes account of the inherent structural

behavior, that is, of parts of the structure which can fail without
warning, and the consequences corresponding to this failure. yn is

broken down into two factors:

yn 1 reflects the type of failure (ductile or brittle)

Yn2 accounts for the consequences of failure

yn is not used explicitly, but

[6.8, 6.6], actual values of some of

National Bureau of Standards Code

only modify ym or yf -values. In

these factors are presented.

Format

The design code referred to in this section is American National

Standard A58, Building Code Requirements for Minimum Design

Loads in Buildings and Other Structures, published by the National

Bureau of Standards (NBS). Much of the information dealing with the

use of reliability in this Code was obtained from “Development of a

Probability Based Load Criterion for American National Standards

A58’’[6.11].
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The format recommended for use in the A58 Standard is a

combination of the CEB-FIP format described previously, and the

load and resistance factor design format proposed by Ravindra and

Galambos [6.12]. Since the CEB format has already been described ,

The LRFD format of Ravindra and Galambos is explained together

with how the two formats are combined in an optimum way.

Information concerning the LRFD method of Ravindra and Galambos

can be found accompanying reference [6.12] in the September 1978

Journal of the Structural Division of the American Society of Civil

Engineers.

The LRFD criterion can be expressed

M. Z YE(YDCD13m + YLCLL.

where

u.=

The terms

side of equation

resistance factor

nominal resistance

as

+ -yWcwwm + ...) (6.14)

partial safety coefficients

deterministic influence coefficients

mean dead, live, wind loads, etc.

representing the load effects (that is, the right-hand

(6.14) are defined as follows:

are deterministic influence

transform the load intensities to
is partial safety factor

coefficients that

load effects.
representing the

uncertainties in structural analysis. It accounts for

approxima?,ions and assumptions in the underlying
theory and is somewhat analogous to the VA 10ad

analysis factor used by API.
account for the degree of uncertainty inherent in

the determinations of the loads Dm, Lm and Wm.
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The major difference between the CEB and the Ravindra and

Galambos load representations is that the live load is a separate case

with its own load factor in equation (6.14), but is a multiple of the

maximum load ~0~ ~i~ in equation (6.11). NBS believes that the

computational simplification realized by expressing the arbitrary-

point-in-time load as per equation (6.11) will outweigh certain

advantages due to the increased accuracy of having a separate

loading case in equation (6.14).

The CEB format is not considered advantageous in other ways,

however. If the methodology of the CEB format was applied to a

situation combining dead, live, wind, and snow loads, a total of 32

loading combinations is possible [6.11]. On the other hand, the LRFD

method has only four combinations to be considered. Since it is
desired to explicitly state just a small number of fundamental load

combinations for simplification in design, the LRFD method is the
optimum choice in this regard.

The NBS format for load factors is therefore a combination af

the best features of two methods. However, the NBS format for load
factors follows LRFI) much more closely than it follows the cEB

format. The CEB method is used such as in the case of factored

arbitrary-point-in-time loads, mentioned earlier when comparing the

two methods. The design equations for load effects. take the LRFD

form, however, as it is simpler to use in the design process. Also,

from now on, the NBS format will be refereed to as LRFD.

In the case of resistance factors, # , the LRFD method is used

and not the CEB concept of using material partial safety factors, ~m .

This factor is closely analogous to the factor used by API. The

resistance factor, always less than unity, accounts for variability in

member strengths due to assumptions used in determining the

resistance equations, variability of material

dimensions, uncertainties in fabrication,

component to the structure.

properties, variability of

and importance of the
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In summary, the format recommended by NBS is

(6.15)

NBS has tabulated many y-values for various materials and

loading combinations, and has outlined a procedure to determine

values consistent with an organization’s objectives. These values of
y and the ~ determination procedure are discussed in references [6.8,

6.6].

Code Formats of Other Organizations

The American Institute of Steel Construction (AISC) released, in

September 1983, a proposed design code entitled, “LRFD Specification
for Structural Steel Buildings,” for the purpose of industry trial and

review. The code is based directly upon the LRFD method of

Ravindra and Galambos which represents a prototype for a new

generation of structural design codes. The implications of the

proposed change of the AISC code to the LRFD format will be felt by

other organizations which use this code in some way. The American

Petroleum Institute is one such organization as the current working

stress based API RP2A adopts several of its design provisions

through explicit reference to

Another organization

American Concrete Institute

the AXSC Code.

which uses an

(ACI). In fact,

LRFD procedure is

ACI introduced split

the

load

factors to North American design codes back in 1963. The history of

the use of reliability in the AC1 code is presented by MacGregor

[6. 10]. In [6.8], the ACI method of deriving partial safety factors is

discussed.

split

The National Building Code of Canada [6.13] uses the following

load factor format for load effects:

Load effects = S{T@ + ~(Y~L + 7,0W + y~~]~ (6. 16)

165

llj



where

s{... } = load effects due to all loads in the brackets (that is,

it is not a numerical operator)

TDfm?““ “= load factors

D,L =9**. are the loads (dead, live, . . .)

v= load combination probability factor equal to 1.0,

0.7, or 0.6 depending upon whether one, two, or

three loads are included within the brackets

m= 1.25 if D acts in the same way as the loads in the

brackets and is 0.85 if D acts in the opposite way.

The load factors account for variations in the load effects due to
model errors and uncertainties in the structural analysis. The v term

reflects the reduced probability of maximum dead, live, wind, etc.,

loads acting simultaneously. Note that if both live and wind loads
were present, equation (6. 16) would design using the entire wind

effect (depending, of course, upon the chosen load factor). The LRFD

procedure and the CEB method are bcth considered more flexible

than the format of equation (6.16).

Another organization which uses a split load

factor format in a design code is ~et norske Veritas
and resistance

(DnV) in their

“Rules for the Design, Construction, and Inspection of Offshore

Structures” [6. 14], although the partial factors are not reliability

based. The format is somewhat similar to other European codes such

as CEB. The general format for ultimate limit state design is

(6.17)

where

Rk . characteristic resistance (strength)
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Ym = material factor
Rk/ym = design resistance

K= factor depending on type of resistance

S[z F:Y~i} = design loading effect
Fi = characteristic load

Yfi = load factor

The material presented in the foregoing subsections gives a

description of the major reliability-based code formats. There are, of

course, other formats, but these are generally variations of the

formats given herein. The format used more widely than any other,

at least in North America, is the load and resistance factor design

method. Whether it be the procedure proposed by Ravindra and

Galambos, or a variation thereof, LRFD seems to be a good practical

way of incorporating reliability into a design code. Most importantly,

an LRFD-based code is the simplest to use in practice, and

be a major consideration.

Deciding upon a design code format which allows

implementation of

However, once an

format, the work is

design code format

reliability methods is a complicated

this may

for the

process.

organization has chosen a reliability-based code

by no means over. A load and resistance factor

may look

use without the corresponding

Generally, the first step

quite impressive, but is of very little
load and resistance factors.

,..

in deriving partial load and resistance

factors for use in the LRFD format is to calibrate these factors based

on the reliability level inherent in the current design criteria. From
this inherent reliability, a corresponding target reliability level ~ is

established. Using this target value, load and resistance partial

safety factors are determined for the new format such that they

minimize the deviation of the calculated reliability from the target

level over the range of design applications. Although the target

reliability level cannot be reached for all design conditions, it should

be achieved on the average. Reference [6.8] gives more detailed
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information on this procedure as well as some typical values of the

1oad and resistance factors corresponding to code formats developed

by the various organizations discussed previously. Examples and
additional information can be found in [6,8, 6.6, 6.3, 6.9, 6.11, 6.15].
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7, SIMULATION AND THE MONTE CARLO METHOD:

7.1 General concept

In general, simulation is a technique for conducting experiments in a

laboratory or on a digital computer in order to model the behavior of a system.

Usually simulation models result in “simulated” data that must be treated

statistically in order to predict the future behavior of the system. In this broad

sense, simulation has

business environment,

been used as a predictive tool for economic systems,

war games and management games.

The name “Monte Carlo method” was introduced in 1944 by von Newmann

and Ulam as a code name for their secret work on neutron diffusion problems at

the Los Alamos Laboratory [7.11. The name was chosen apparently because of the

association of the town “Monte Carlo” with roulette which is one of the simplest

tools that can be used for generating random numbers.

.Monte Carlo simulation is usually used for problems involving random

variables of known or assumed probability distributions [7.21. Using statistical

sampling techniques, a set of values of the random variables are generated in

accordance with the corresponding probability distributions. These values are

treated similar to a sample of experimental obsemations and are used to obtain a

‘”sample” solution. By repeating the process and generating several sets of

sample data, many sample solutions can be determined. Statistical analysis of

the sample solutions is then performed.

The Monte Carlo method thus consists of the three basic steps:

a. Simulation of the random variables and generation of several

using statistical sampling techniques

sample data

b. Solutions using the sampled data

c. Statistical analysis of the results
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Since the results from the Monte Carlo technique depend on the number of

samples used, they are not exact and are subject to sampling errors. Generally

the accuracy increases as the sample size increases.

Sampling from a particular probability distribution involves the use of

random numbers as will be discussed later. Random numbers are essentially

random variables uniformly distributed over the unit intenal [0,1]. Many codes

are available for computers for generating sequence of “pseudo” random digits

where each digit occurs with approximately equal probability. The generation of

such random numbers plays a central role in the generation of a set of values (or

realizations) of a random variable that has a probability distribution other than

the uniform probability law.

The Monte Carlo method is considered now as one of the most powerful

techniques for analyzing complex problems. Since its chief constraint is

computer capability, it is expected to become even more commonly used in the

future as computer capabilities increase and become less expensive to use.

.2~ fM r 1 li ili nli

As was discussed in Chapters 1,4 and 5, the reliability of a structure can be
~characterized by a.lirnit state function g@ = ~x1,x2 . . . xn), where xi are random

.
variables representing the basic design variables. The inequality g(~ ~ O

corresponds to failure, while g(~ s O represents the safe region. In the Monte
Carlo approach a random sample values xi for the basic design variables is -

generated numerically according to their probability distributions using a

random number generator (see the following section). The generated sample

values are then substituted in the limit state function whose value is then

computed to see if it is negative or positive, i.e., failure or no failure. Repeating

this process many times, it is possible to simulate the probability distribution of

g(~. TMs will require a very large number of samples. The probability of failure
can then be estimated from either of the following methods:

a. The probability of failure is given by
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(7.1)

where N is the tatal number of trials or simulations and n is the number of trials

in

is

which g(~ ~ O.

The ratio nLNis usually very small and the estimated probability of failure

subjected to considerable uncertainty. In particular the variance of n/N
.’ depends on the total number of trials N, decreasing as N increases. That is, the

uncertainty in estimating pf decreases as N increases. Statistical rules can be

used to establish the necessary number of trials which depends on the magnitude
of p~ Many variance reduction techniques have been developed to decrease the

variance of n/N with smaller number of trials than would have been necessary

otherwise.

b. In the second method, the probability of failure is estimated by, first fitting

an appropriate probability distribution for g(~ using the trial values described

earlier [7.3]. The moment or any other established statistical method may be used

in the fitting process. Elderton and Johnson [7.4] suggested some distributions

that are suitable

determined from

Pf =

for fitting the g(~ data. The probability of failure is then

~“f~ (m) dm (7.2)

where M = g(~) is a random variable representing the margin and fM(m) is its

probability density function as estimated from the fitting process.

7.3 Ge eration o Rando Numbers or a IUmdon“ f m F m Van ‘able With a Presc rib~

(-lontinuou~ Prob abilitv Distribution:

As mentioned earlier the process of generating random numbers with a

specified probability distribution may be accomplished by first generating

uniformly distributed random number between O and 1. Through appropriate

transformation, one may then obtain a corresponding random number with a
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specified probability distribution. Therefore, in this section we will first discuss

how to generate uniformly distributed random numbers then how to obtain the

corresponding random numbers with a specified probability distribution.

7.3,1 Random Numbers With Uniform Distributions~

Special devices may be used to generate uniformly distributed random

numbers within a given range. For example, by equally subdividing the

circumference of a wheel into a number of ‘intewals equal to the given range and

spinning the wheel, the desired uniformly distributed random number can be

generated. Uniformly distributed random numbers are also tabulated and are

available in the literature for pencil-and-paper Monte Carlo simulations.

In computer simulation, methods for generating uniformly distributed

random numbers are generally based on recursive calculations which, because of

cyclic effects, do not generate truly random numbers. The generated set

eventually repeats itself after a very long cycle and, therefore, referred to as

pseudo-random or quasi-random. An example of a recursive calculation of the

residues of modulus “m’* that produce such a set of pseudo-random numbers is

Xi = a xi.1 -t b (mod m) (7.3)

where a, b and m are nonnegative integers and the quotients xi/m constitute the

sequence of pseudo-random numbers [7.1, 7.21. Such a sequence repeats itself

after almost m steps, i.e., cyclic. For this reason m must be set very-large e.g; 108

or larger.

7.3,2 Random Numbers with Prescribed Distribution

Based on a generated set of uniformly distributed random numbers between

O and 1, one may obtain the corresponding random numbers with a specified

probability distribution. This can be done using a method known as the “inverse-

function” method. The method is suitable if the inverse of the prescribed

cumulative distribution function “C.D. F.” of the random variable can be

expressed analytically. The method is illustrated as follows.
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Suppose that a set of random numbers are to be generated fora random
variable Y which follows a prescribed distribution with C.D.F. I?y(y). The value of

Y at F~y) = x is

Y= FY-l(x)

where FY-l(x) is the inverse of the C.D.F. at

random variable “r.v.” between O and 1, then

(7.4)

“x”. If X is a uniformly distributed

Fx(x) = “X O<x<l

Thus if x is an outcome of the r.v, X, the corresponding value of Y obtained

from (7.4) will satisfy the following equations.

P[Ygy] = PIFy-l(X)syl =P[X~Ffiy)] = l?x[F#y)] = F~y)

This means that if (xl, X2 . . . xn) is a set of numbers of the r.v. X, the

corresponding number obtained from equation (7.4), i.e.,

Yi = FY-l(xi) i=l,2, . ..n {7.5)

will have the C.D.F. Fy(y) as required. As an example consider the r.v. Y to have

a Weibull distribution with C.D.F. given by

The inverse function is

Y= FY-l(x) = k[-ln(l-x)]~~= k[-lnx]~! (7.7)

since x and (1-x) have identical distributions, i.e., uniform distribution. Thus one
can generate the random numbers yi, i = 1, 2, . . . n corresponding to uniformly

distributed random numbers xi according to (7.7) from:

Yi = k[-lnxi]~? (7.8)
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The Weibull distribution can be reduced to the Rayleigh and the exponential

distributions as discussed earlier. If the Weibull parameters k and ~ are equal to

~E and 2, respectively, the Weibull distribution reduces to the Rayleign

distribution. If k and 1 are equal to L and 1, it reduces to the exponential

distribution. Thus, substitution for k and! in equation (7.8) w-ill lead to a set of

random numbers for these two special distributions as well.

7,4 Sanmle Size and Variance Reduct on Teci hniaue~

As mentioned earlier, the simulated data according to Monti Carlo method

should be treated as a sample of experimental observation, and therefore, is

subjected to sampling error. If the probability of structural failure is to be

computed from the simulated data the underling error becomes an important

consideration since the sought probability of failure is usually small. Shooman

[7.5] developed the following expression for estimating the error in the estimated

probability of failure:

l-pfl12
error =

()
z- (7.9)

where N is the total number of simulations (sample size) and pf is the probability

‘of failure. There is a 95% chance that the actual error in the estimated probability

is less than that given by equation (7.9). It is seen that the error is dependent on
the number of simulations N and the probability of failure p~ it decreases by

increasing N or pf. Therefore, if the estimated probability pf is small which is

usually the case, N should be large enough to

There are techniques, however, which

without increasing the sample size. These

decrease the error.

may reduce the error (or variance)

techniques are known as variance

reduction techniques, and the one that is used often in stmctural failure problems

is called “Antithetic Variates”. “

7.4.1 Antithetic Variates

Let Y1 and Y2 be two unbiased estimates of Y as determined from two

separate sets of samples or simulation cycles. The average of these two unbiased
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estimations Ya = l/2 (Yl + Y2) is also an unbiased estimator since its expected

value E [Ya] is equal to Y. The vafiance “~~a2” of the new estimator Ya is

determined from the individual variances “OYIZ”and “OY2Z”as:

ayaz = U4 [ OY12+ @ + 2 Covml, Y2) 1 (7.10)

If Y1 and Y2 are negatively correlated, i.e., the COV. (Yl,Y2) <0, it is seen

from equation (7.10) that the third term becomes negative and

(7.11)Oyaz < l/4 (CY12+ UY22)

That is, the accuracy of the estimator Ya can be improved (or its variance

can be reduced) if Y1 and Y2 are negatively correlated estimators. The antithetic

variates method is thus a procedure that ensures a negative correlation between
Y 1 and Y2. This can be accomplished in structural reliability problems as

follows.

If X is a random vatiable uniformly distributed between O“and 1, then 1-X is

also a uniformly distributed random variable between O and 1 and the two random

variables X and 1-X are negatively correlated. Each of these random variabl~s can
be then used to generate the basic random variables Yi which have prescribed

probability distributions as described earlier. This results in a pair of negatively

correlated basic random variables. The procedure is repeated for all the random
variables Yi in the limit state equation. The limits stite equation is then solved for

each negatively correlated set of random vafiables separately and the results are

averaged to estimate the population mean. Note that the emor (or variance) of the

result is reduced because of

variables according to equation

7.5~J

the negative correlation between the generated

(7.11).

71mri of Anal i 1 n im 1 Ev 1~ ion f a

Function
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The purpose of this example is to compare numerically simulated results

obtained using a “standard’ random number generator with exact analytical

values. For this purpose, the random process x(i)(t) was examined in ref. [7.6]

x(i)(t) = Asin(at +6(i)) (7.12)

where A and o are fixed (deternxinistic) constants and e(i) is a random phase

angle with uniform distribution shown in Figure 7.1.

Analytical Results

The analytical result for the first order and joint probability density

functions (jpdfl of x given that e is uniformly distributed can be derived by

standard statistical methods. These are given by

f(x) = l/ CHJQ2 - x~l -A<x<fq

= 0
and otherwise

f(xl ,x2) = l/[~~J92 – ~lz] ● –A <(X1,X2)< A
C S(X2 – xlcasa~ + dA2 - x12 s.inur)

‘- ‘5(X!? - Xl C05i.U~ - J~2 - X12 ~~jq~~)] (7.13)
=

Otherwise

where ~ = ~ - tl. ““-0
,

●

The first order pdf of x is shown is figure 7.2. In general, the jpdf is ~ -

difficult to represent graphically. It is three-dimensional with spikes when the

argument of either of the two delta functions is equal to zero. The occurrence of
these spikes will depend on the values of A,o and z as well as the c,urrent values of
x 1 and X2. The factor in front of the delti functions modifies their sum so that the

total area underneath the jpdf will equal one.

Numerical Results

First Order PM For given values of A, a and ~, a data file of N random

phase angles and the corresponding values of the x was created. The values of x

were generated by simply substituting the random values of e into equation (7.12).
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BASIC language was used to create the data file, because it contains a random

number generator. A separate routine was written in FORTRAN to compute the

pdfofeither the random phase angle ortherandomx’s. This routine divided the
range from O to 2n for 6, or from -A to A for x, into n intervals of size A6 or Ax.

Then the number of 9’s or x’s in each intenal was counted. The value of the pdf

at the center of each intenal is given by,

f(.) = ( #of occurrences per interval)/ [ ( Ae or Ax ) * N ]

where N is the total number of samples (simulations).

The probability density function of theta compares well with the expected

uniform distribution, see figure 7.3. The pdf of x was computed for the case of

A= 1 magnitude unit

a = 1 rad / (time unit)

t “= 1 time unit

N= 100000 samples

The numerically computed points compare extremely well with the analytical

curve, see figure 7.4. There is, however, disagreement between the computed

talues and the analytical curve at the singularities, x = Q.

Second Order PDF: The numerical procedure used to calculate the jpdf was

very similar to that for the first order pdf.

Some easily visualized cases of the jpdf were investigated. Consider the
case when tl = t2 so that w = O. Since sin(0) = O and COS(0)= 1, the argument of

both delta functions in the analytically derived result (equation 7.13) simplify to
(Xl - x2). This implies that the jpdf will consist of spikes along the line, xl = X2.

The numerical results for this case with

A= 1 magnitude unit

N= 100000 samples
Axl, Ax2 = 0.05 magnitude units
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is given in figure 7.5.

Another interesting case is when a = 1 rad / (time unit), tl = 1 time unit and

~ = 2.57 time units, then a = tiz. Since sin(n/2) = 1 and cos(ti2) = O, the argument

of both delta functions will equal zero when X12+ X12 = A2. This means that the

jpdf will be a series of spikes along a circle centered at (xl, x2) = (O, O)and of radius

A. The numerically computed jpdf evaluated under this condition is shown in

figure 7.6 and it indeed appears as expected.

Effect of Number of Samples and Size of Increment: The

derivation of the probability density function assumes an infinite

analytical

number of

samples and infinite resolution of x. In a numerical computation, however, both

N and AX are finite values. On the average, the number of samples per interval

will equal the total number of samples divided by the numbers of increments, i.e.,

# samples per interval = N / [ 2MAx ].

The trend shown in figure 7.7, as well as, in figure 7.8, shows that as N increases

for a constant Ax, the numerical values converge to the analytical result for the

pdf. In addition, comparing figure 7.7 to figure 7.8 for a constant N, shows that
decreasing the size of the interval Ax appears to increase the spread of the

fiumerical data. Therefore,. in order to get an accurate numerical representation

of the probability density function, not only the total number of samples and the

size of the increments are important, but mainly their relationship in

determining the number of samples per internal is important.
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?,5,2 A~nlication of Monte Ca rlo Method to Reliability of Shi~ Structures

(excerpted from White and Ayyub [7.7]):

In order to compare results of the Monte Carlo simulation method with the

other reliability methods discussed earlier in Chapters 4 and 5 an example

problem is solved using each method. The problem chosen is to determine

probability of ductile yielding of a vessel’s deck under extreme bending moments.

Any of the other possible modes of failure could have been chosen, for example,

plastic collapse or buckling, but the availability of data on this problem facilitated

comparison of methods. The vessel chosen for the analysis is a naval frigate, the

same one used by Mansour and Faulkner [7,8]. The principal dimensions are

given in Table 7.1 and the midship section is shown in Figure 7.9.

The problem is essentially a simple beam in bending and can be written as:

Mu = CY (7.14)

where Mu is the ultimate bending moment; C is the section modulus of the vessel;

Y is the tensile yields stress of the vessel material.

In order to see the effect of different, but mechanically equivalent

formulations on each method two limit-state equations will be used. The first

limit-state equation has a simple linear form:

Z= R-Q (7.15)

where R is the resistance, given in tons/in2 and is equal to Yin Equation (7.14); Q

is the total load in tondinz .

Next a more complicated non-linear form is used. This form separates the
wave and still water bending moments, Mw and M. respectively; and Z is .

expressed in units of bending moment:

z =YC-MO-MW (7.16)
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The basic variables for each form are shown in Table 7.2 along with their

respective statistical properties.

First Order Reliability Method (Level 2): The method described in Chapter 5

was applied in [7.7] to the linear and non-linear limit state functions given by

equations (7. 15) and (7. 16), respectively. In both cases the distribution information
was included in the analysis. The results for the safety index “~” and the

corresponding probability of failure “p~ are given in column 2 of Table 7.3.

Direct Integration Method (Level 3): The method described in Chapter 4

was applied in reference [7.8] using the linear limit state equation only (equation

7.15) and assuming the stillwater bending moment to be deterministic. In

reference [7.8], the probability of failure was computed for ship operation period of

twenty one years (n=3). To be consistent with the results given in this example,

the value given in [7.81 must be divided by 3 and the corresponding resulting value
for pfis 1.3x 10-6 which is shown in Table 7.3.

Monte Carlo Simulation Method: In reference [7.7] the same problem

(equations 7.15 and 7.16) was solved using Monte Carlo simulation technique
described in this chapter. TJse was made of Antithetic Variate reduction method

and conditional expectation in order to reduce the number of simulation cycles.

The primary steps involved in the solution according ta reference [7.7] are:

step 1.

step 2.

step 3.

Step 4.

Step 5.

step 6.

Identify the basic variable with the most variability in the limit

state equation.

Condition the variable in Step 1 with respect to all the remaining

variables in the limit state equation.

Generate a uniformly distributed random deviate for each of the

conditional variables.

Generate a second uniformly distributed random deviate which is

negatively comelated to the one from Step 3.

Using the inverse transform method produce a random variable

for each deviate from Step 4.

Calculate the probability of failure using the probabilistic

characteristics of the variable identified in Step 1 for each set of

random variables.
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step 7. Find the average probability of failure for the two pf’s in Step 6.

Step 8. Repeat Steps 3 ta 7 N times.

step 9. Calculate the statistics of the N number of probabilities of failure

thus generated.

The results are shown in Table 7.3 for 2000 simulations cycles. Figures 7.10

and 7.11 from reference [7.7] show the simulation scheme converges on a solution

with increasing N.
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Table 7.1. Vessel Characteristics

Length Between Perpendiculars 360.0 R (11O.OOm)

Beam (molded) 41.0 R (12.50 m)

Depth 28.9 ft (8.78 m)

Draft 12.0 ft (3.66 m)

Displacement 2800.0 tm.s (2845.00 tmnes)

Section Modulus (at deck) 5700,0 inz ft (1.12 ma)

Table 7.2. Probabilistic Characteristics of Basic Variables

Basic Variable Mean Cov Di4tibutiou

Linear Formulation

R 22.20 tonahn2 .0710 Normal

Q 2.70 tanshz .5390 Weibul

Non-Linear Formulation

Y ~ 22.20 tonsAn2 ,0610 Normal

c 5700.00 in~ft .0379 Log-Normal

M. 7080.00 R-tins --- Deterministic

Mw 8290.00 fbtins Loom Weibul (k=l)
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Table 7.3. Example Problem Resul&

First Order Direct Integration Monte Carlo

Method Method Method

I
Linear Limit p = 4.75

Stab Equation (7.15) pf = 0.97x 10+ pf = 1.33 x 10+ M = 0.98X 10~

(C*O.V. = 0.0192)

..-

Non-Linear Limit p = 4.75

State Equation (7.16) pf = 0,976X 10~ M = 0.98X 10~

(C.o.v. = 0.0174)
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8. SYSTEM RELLM31LI~

8.1. Introduction

The reliability analysis discussed in Chapter 4, 5 and 6 has been mainly

concerned with a single failure mode (or a limit state) defied by a single limit

state equation. Marine structures, however, involve several modes of failure, i.e.,

there is a possibility that a structure may fail in one or more of several possible

failure scenarios, The subject of system reliability deals specifically with the

methods of combining the probabilities of failure associated with these modes in

order ta determine the total reliability of the stmcture as a system.

Two main sources of “system effects” are identified. The first is due to

possible multiplicity of failure modes of a component or a structural member. For

example, a beam under bending and axial loads may fail in buckling, flexure or

shear. Each one of theses modes can be defined by one limit state equation. Even

though in this case, we are dealing with a single member (beam), system

reliability methods must be used in order to combine the possible failure modes

and to obtain an assessment of the total risk of failure of the beam. The probability

of failure of one mode may be larger than the others, but the fact that there is a

possibility that the others may occur indicates that they must be included and

combined ta obtain-the tot@ probability of failure of the beam.

Another example of.multiplicity of failure modes is the primary behavior of

a ship hull. In the primary behavior, one treats the ship as a single beam “ ~

subjected to weight, buoyancy and wave loads which induce sagging and hogging

bending moments. The hull may fail (or reach a limit state) in one of several

possible modes, e.g., buckling of deck or bottom panels or grillages, yielding of

deck or bottom plating, etc. Here again, system reliability methods must be used

to combine these different modes of failure and to obtain a total probability of

failure.

Multiple, modes of failure of a member are usually modelled in system

reliability analysis as a series system. A seties svste m is one that is composed of

links connected in series such that the failure of any one or more of these links

J constitute a failure of the system, i.e., “weakest li~ system. In the case of the



primary behavior of a ship hull, for example, ~nv ow of the failure modes

discussed earlier will constitute failure of the hull (or a limit state to be prevented)

and therefore can be considered as a series system. Series systems will be

discussed in more detail in a later section of this chapter.

The second source of “system effects” is due to redundancy in multi-

component engineering structures. In such structures, the failure of one

member or component does not constitute failure of the entire system. Usually

several members must fail to form a “failure path” before the entire structure

ftils. The failure of each member is defied by at least one limit s-te equation

and a corresponding probability of failure. These individual member probabilities

of failure must be combined to get the probability of failure of the system for a

particular “failure path’. Thus, system reliability methods must be used to

determine the reliability of a redundant structure. An example of a multi-

component redundant stmcture in which system effects are important is a fixed

offshore platform. For such a platform to fail, several members must fail to form

a failure path. The probability of failure of the system in this case is usually

modelled as a parallel svsterq in which 911links along the failure path of the

system must fail for the entire structure to fail. More over, there will be several

possible paths of failure any of which will constitute failure of the entire platform.

Therefore each failure path and the associated probability of failure can be

‘ considered as a link in a series system since failure of any link constitute a failure

of the system in the series model. The total offshore platfomn can be thus

modelled as several parallel subsystems each of which represents a failure path

connected together in series since any of them constitutes failure of the platform.

Parallel systems and general systems consisting of series and parallel

subsystems will be discussed in later sections of this chapter.

8.2. General Formulation

The exact system reliability problem taken into consideration possible time-

dependent random variables is an outcrossing problem. If the time-dependant

loads or response of the structure exceeds (outcrosses) one or more of several

possible failure modes (surfaces), failure of the structure occurs. The problem

formulated in terms of stochastic processes however is difficult to solve. Only a

few cases of very simply structures with certain load history models can be
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evaluated in this manner and the reliability of the stn.mture at any time during its

life can be calculated. For a single time varying load it is possible to treat the

peaks as a random vaxiable and its extreme-value distribution may be formulated

to perform the reliability calculation.

At the present, the general problem is formulated as a time-independent

problem which is suffwient only for the evaluation of an instantaneous reliability.

As such, the form of the equation to evaluate the system reliability is the same as

that cifcomponent reliabili~ (equations 4.1 and 4.2) except that, now, the multiple

integration is earned out over all possible limit state functions corresponding to

the potential modes of failure. For k modes of failure, and n random variables,

the system probability of failure can be written as:

~Pf= . . . J fx(xl, xz, . ..xn) ~l...dXn (8.1)

gi@<O

i=l,2, . ..k

where fX (xl, X2 . . . xn) is the joint probability density function of the n random

variables and gi(~ are the k limit state fuctions. The domain of integration in

,equation (8.1) is over the entire space where each of the “k’ limit state function is

negative or zero,.

The same difficulties encountered in the level 3 computation of component

reliability will be encountered in determining system reliability from equation

(8. 1), namely, the determination of the joint densi@ function and the evaluation of
the multiple integration. In addition, the domain of integration over all possible

modes of failure in equation (8.1) will present additional numerical difficulties.

For these reasons this general exact formulation is not used, and instead of

determining the combined total probability of failure of the system as given by (8.1)

only an upper and lower bounds on that system probability are determined. These

upper and lower bounds are usually determined by considering the structure to be

a series system “or a parallel system or a combination of both (general system).
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It should be noted that, in principle, simulation methods and the Monte

Carlo technique can be used to solve equation (8.1) in basically the same manner

discussed in Chapter 7. In this case numerical simulation of the random

variables is performed according to their prescribed joint distribution and all limit

state equations are checked to see if failure occurs. The ratio of failure

realizations to tital number of simulations gives an estimate of the probability of

system failure. Reduced variate techniques and other methods for improving

convergence may be used here. UsUally, for realistic stmctures the number of

simulations required for a reliable estimate of the system probability of failure is

still high, but these methods have potential for application in system reliability.

8,3. Bounds on the Pro babilitv of Failure of a Series SVS~
.

A series system is one which fails if any one or more

fails. Such a system has no redundancy and is also known

of its components

as “weakest link”

system. Schematically a series system is represented as in figure 8.1

‘----m--m+ ‘3t---

Figure 8.1. Schematic Representation of a Series System

A typical example of a series system is a statically determinate structure

where a failure of any member constitutes failure of the structure. Another

example of a series system is a beam or an element which may fail in any of

several possible modes of failure each of which may depend on the loading

condition of the beam. A ship hull girder in its “primary behavior” is such a

system with the additional complication that failure may occur in hogging or

sagging condition. Each condition includes several modes of failure. A third

example of a series system arise when combining the probabilities of failure of

several possible failure paths in an offshore platform, any of which constitutes

failure of the platform.

If Fi denotes the i~ event of failure, i.e., the event that [gi W q 01, ~d Si

represents the corresponding safe event, i.e., [gi ~) a 01, then the combined

19Q



system failure event FS is determined as the union “U of dl individual failure

events Fi as

Fs =UFi
1

i=l,2, . ..k

The corresponding probability of system failure is

P(Fs) +(y Fi) = 1-

where n represents the intersection

using

of all

lower

The calculation

equation (8.2) is

failure events.

()P nsi
i

or mutual occurrence of events.

(8.2)

of the probability of systems failure for a series system

generally difficult and requires information on correlation

Approximations are therefore necessary and upper and

bounds on the system probability of failure are constmcted instead of

evaluating the exact value. Two types of bounds can be constructed; first and

second order bounds.

First Order Bou~

These are bounds on the probability of system failure which require no

information on the correlation between the events of failure. In other words, the

user of such bounds does not need any information on the correlation between the

events of failure which, in many cases, are not available. They are constructed as

follows (see reference 8.1).

If the events of failure of a series system are assumed to be perfectly

correlated, the probability y of system failure is simply the maximum of the

individual probabilities of failure. For positively correlated failure events, this

assumption leads to the lower’ non-conservative bound on the actual system

probability, i.e.,

max. P (Fi) s P (Fs) (8.3)
1
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On the other hand, if the events of failure are assumed to be statistically

independent, an upper bound (consemative) can be detemnined. In this case, for

independent, failure events of a series system, the right h~d side of equation (8.2)

reduces to

k k

()
1-P nsi =1- ~ P(Si)=l - II [1- P(Fi)l (8.4)

i i=l i=l

.
k

where 1“1P( Si ) represents the product of the probabilities of suwival. The result
i= 1

given by equation (8.4) represents an upper bound on the true probabili~ of system

failure, i.e.,

k
P(Fs)~ 1- II [1- P(Fi)] (8.5)

i=l

Combining equations (8.3) and (8.5), one obtains an upper and lower

bounds, i.e.,

k
max. P(Fi)~P(Fs)~ 1- II [1- P(l?i)l (8.6)

i i=l

Although the upper bound in equation (8.6) is not dMcult to evaluate, it can

be further simplified by noticing that

k k
1- 11 [1- P(Fi)l s X P(Fi) (8.7)

i=l i=l

therefore, equation (8.6) can be written as

k
max. P(Fi) ~ P(Fs) ~ z P(Fi)

i i=l
(8.8)
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Equation (8.8) gives the final result for the bounds of a series system and

states the obvious conclusion that the actual probability of system ftiure lies

between the maximum of the individual probabilities and the sum of all

individual probabilities. These bounds are narrow if one mode of failure is

dominant, i.e., if one of the individual probabilities of failure is much larger than

the others. If not, these bounds may be tio wide to be useful. In such cases a

more narrow set of bounds should be considered (second order bounds).

s~co nd Orde r Bounds:

These bounds were developed in references [8.2, 8.3, 8.4 and 8.5] and are

given in terms of pair-wise dependence

called second order bounds. The original
are given as [8.2, 8.31:

k i-1

between failure events, therefore, are

bounds for k potential modes of ftilure

P(F1) + z max. { [ P(Fi) - E P(Fi Fj) 1 ; O} ~ P(Fs) s
i=2 j=l

k, k-
Z P(Fi) - Z max. P(Fi Fj) (8.9)

i=l i=2 j<i

where P(F1) is the maximum of the individual probabilities of failure ~d P(Fi Fj)

is the probability of inte~section (mutual occurrence) of two events of failure, Fi

~d Fj. P

. .

The bounds given by equation (8.9) depend on the ordering of the failure

modes and different ordering may correspond to wider or narrower bounds.

Therefore, bounds corresponding to different ordering may have to be evaluated to

detmn.ine the narrowest bounds.

The evaluation of the joint probability P(Fi Fj) required in

remains difficult. A weakened version of the of these bounds

bounds) was proposed by Ditlevsen in [8.4] as follows.

equation (8.9)

(more relaxed

In the lower bound of equation (8.9), P(Fi Fj) is replaced by [8.5]
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P(Fi Fj) s P(A) + P(B)
—.

whereas, in the upper bound, the same term is replaced by

P(Fi Fj) = max [ P(A), P(B) 1

where

and W“) is

individual

correlation

(8.10)

(8.li)

(8.12)

(8.13)

the standard normal cumulative distribution fmction and pi are the

safety indices (Hasofar-Lind) as discussed in Chapter 5. p is the

coefficient between two failure events (or modes). Such a correlation
coefficient between the failure events (Fi) = (gi ~s O)~d (Fj) = (gj N ~ O) - be

evaluated from [8.4]:

where

and

[1[1Sg. agj
COV (gi,gj) = mgl#

m. 8xrn*

“gi=[21[511’”

(8.14)

(8.15)

(8.16)

(8.17)
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In equations .(8.14) to (8.17), ~, ~ ., .% are the reduced random variables

and the derivatives are evaluated at the most likely failure points as discussed in

Chapter 5. The proposed bound by Ditlevsen [8.4] apply only for normaliY

distributed random variables.

Narrower bounds than the second order bounds can be constructed, but,

they involve intersection of more than two failure events and are much more

complicated.

8.4 Bounds on the Probabilitv of Failure of a Parallel Svstem~.

A parallel system is one which fails only if all its components fail, i.e.,

failure of one component only will not necessarily constitute ftilure of the system.

Schematically, such a system can be represented as shown in Figure 8.2

●

IZIEIEI

+

Figure 8.2. Schematic Representation of a Parallel System.

A typical example of a parallel system is a statically indeterminate

structure where, because of redundancy, failure of several members along a

“failure path” must take place for

such a structure depends also on
the entire structure to fail. The behavior of

whether the members are brittle or ductile.

203



Generally, brittle failure implies that the member looses completely its load-

carrying capacity while in ductile failure, the member maintains a certain level

of load-carrying capacity after failure.

If Fi denotes again the i~ event of failure and & the corresponding safe
event, then the system failure event of a parallel system Fp of k components (i.e.,

failure events) is the intersection or mutual occurrence of all failure events, i.e.,

Fp = flFi i=l,2, . ..k (8.18)
i

The corresponding probability of system failure is

P(Fp) ()=PnFi
i = 1-p(Ysi)

(8.19)

Equation (8.19) for failure of a parallel system should be compared with

equation (8.2) for failure of a series system. It is clear that the failure of a series.
system is the union (any) of the component failures, whereas, the failure of a

parallel system is the intersection (all) of the component failures.

Just as in a series system, the evaluation of equation (8.19) for determining

‘ the exact system failure of a parallel system is generally difficult, and,

approximation by constructing bounds is usualIy necessary.

Simple first order lower and upper bounds can be constructed using

similar arguments as for the series system. Now however, perfect correlation
between all failure events (p = 1.0) corresponds to the upper bound and no

correlation between any pair corresponds to the lower bound. Thus, for positively

correlated failure events, these bounds are:

k
II P(Fi) s P(FP) & @n. P(FJ (8.20)

i=l 1

Unfortunately, the bounds given by equation (8.20) on the probability

failure of a parallel system are wide and no second order bounds are available.
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some special cases, however, the “exact” system failure can be evaluated. For

example, Theft-Christensen and Baker (see reference [8.7]) evaluated the

probability of parallel system failure under deterministic loading and other

restrictive conditions.

8.5 General Svst ems,

A general system is one that consists of a combination of series and parallel

subsystems. A useful general system from an application point of view, is one

that consists of parallel subsystems connected together in a series. An example of

application for such a general system is an offshore platform (or, in general a

statically indeterminate stmcture) where each failure path can be modelled as a

parallel subsystem and all possible failure paths (parallel subsystems) are

connected together in a series since any of them constitute failure of the platform.

This representation is called “minimal cut set” since no component failure event
in the parallel subsystem (a failure path) can be excluded without changing the

stati of the structure from failure to safe. A schematic representation of parallel

subsystems connected together in a series is shown in figure (8.3).

Fm-
%“

~F31

--m-

Figure 8.3. Schematic Representation of Parallel Subsystems

Connected in a Series (Minimal Cut Set)

A general system may also consist of a series of subsystems connected

together in parallel (minimal link set). Such systems, however, have less
potential for application to structural reliability and therefore will not be

discussed further.
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The failure event “Fg” of a genenl system consisting of parallel subsystems

connected together in a series (minimal cut set) is given by the union (seties) of

intersection (parallel) of individual failure events, i.e.,

u n (Fij)Fg=j i (8.21)

where (Fij) is the iti component failure in the ~ failure path. The probability of

failure of such a system is thus determined from

P(Fg) = P[y ~n (Fij)1 (8.22)

Exact evaluation of (8.22) is difmilt and requires information of the joint

dependence of failure events. Similarly bounds on the probability of failure given

by (8.22) are not available in general. If however, one is able to determine the

probability of failure of each parallel subsystem (for example, under restrictive

conditions), then first or second order bounds can be determined using equations

(8.8) or (8.9) for the remaining series system.

8.6 The Probabilistic Netwo rk Evaluat ion Techniaue (PNET);

The PNET is an approximate method for estimating a single value of the

system probabilityy of failure rather than bounding it [8.5]. The motivation behind

the method is that the bounds given by equations (8,8) or (8.9) for a series system

can be wide if none of the events or modes of failure is dominant, i.e., if none of the

probabilities of failure is much larger than the others. The same problem is

encountered if the series system consists of parallel subsystems (failure paths)

none of which is a dominant failure mode.

The PNET method is based on the fact that perfectly correlated (or, as

approximation, highly correlated) events of failure in a series system have a

system probability given by the lower bound of equation (8.6) or (8.8), whereas,

independent failure events have a system probability

Therefore, one may select a threshold value for the
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assumes that failure events with correlation coefficient ~lj above or equal ta the

threshold value to be perfectly correlated, thus can be represented by a
“representative event” which is the event among them that gives the maximum

probability of failure, say P(Fr) (see lower bound of equation 8.8). M a set of n

failure events (modes) Fi where i = L . . . n is amanged in a decreasing order then
the failure probability of the representative event is P(F1). The remaining, events

with p Ij c p~ are again rearranged in a decreasing order of their failure
probabilities. Let these be F2, F3, . . . Fk and the pair-wise correlation are p&, p&,

. . . P&- Those ev@nts with p~j >0 are represented by F;. The rem~~ng ones are

rearranged in a decreasing order and the procedure is repeated to search for

other representative events (modes) of failure. The mutual correlation between

the representative events will be low therefore,

Thus, the probability of system failure maybe

of equation 8.6)

n [l- P(F,)]P(F) =l-r

they may be assumed independent.

approximated by (see upper bound

(8.23)

8.7 Fault Tree and l%e nt Tree

Fault tree is a systarnatic and effective method of identifying various

possible failure events and their interaction that lead to a main failure event

called “top event”. It is usually represented by a “fault tree diagram” which

starts with basic events whose probabilities of occurrence may be readily

estimated and describes the various possible combinations (unions and

intersections) of such events that lead to the top event or failure of the system. Its

value becomes more important in complex systems where some possible modes

failure may be overlooked.

Fault tree analysis finds many applications in the design and operation

of

of

nuclear power plants. It can also be applied to complex stmctural system such as

offshore platforms. In such “analysis the fault tree diagram will help in

identifying in a systematic manner the various component failures that form a

“failure path” and the different possible failure paths that will lead to the top

event, the failure of the entire structure. In
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failure paths, the fault tree analysis may single out the critical events that

contribute significantly to the likelihood of failure of the structure.

The probability of top event (main failure) in a fault tree analysis is

calculated through unions and intersections of subevents which are expressed in

terms of basic events (component failure) for which the failure probabilities can be

estimated. Although fault tree analysis provides the logic leading to the top event,

it does not eliminate the dif3kuIties in computing the probabilities of unions and

intersections of comelated events. Approximations and bounds may still have to

be used if a quantitative assessment is to be made of the probability of occurrence

of the tap event.

Qualitative evaluation of a fault tree can provide also valuable information

to desigpers. Without knowing accurately the probabilities of failure of events and

subevents, the fault tree analysis may point out the critical basic events and the

critical paths that contribute significantly to the occurrence of the top event. With

this knowledge a designer may then take the appropriate steps to reduce the

probability of occurrence of such critical basic events.

Event tree analysis on the other hand starts with the top event (main

failure) and examines in a logical manner all possible consequences resulting

from the occurrence of such an event (for example loss of life, pollution, explosion,

fire, etc). The consequences of the top event (now called the initiating event) may

or may not be series depending on the possible occurrence of other adverse events

following the initiating event. The identdlcation of all possible subsequences and

scenarios is best accomplished through an event tree diagram. Each “path” in

the event tree represents a sequence of subsequent events leading ta a particular

consequence. The probability of occurrence of a spetic consequence depends on

the probabilities of the subsequent events and is simply the product of conditional

probabilities of all events along that path.

8.8 Reliability Bounds for shin Primarv ~tren~~

Reliability bounds for ship primary strength were developed in 1972 in

reference [8.6]. In the primary behavior, the ship hull is considered as free-free

non-uniform beam supported by water pressure. Wave loads (bending moment)
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are calculated using the equations of motion of the ship if dynamic effects are to be

included otherwise by balancing the vessel on a wave configuration. The loads on

the vessel alternate from hogging which produce compression in the bottom

plating to sagging which induce compression in the deck. This

must be considered in the hull reliability analysis.

In each hog/sag condition there will be several possible

hog/sag variation

modes of failure,

eg., plate and panel buckling, tensile yield, etc. If Fh and FS represent hogging

and sagging events of failure, respectively, then the combined event of failure FCis

given by the union of the two events, i.e.,

(Fe) = @h) U(FS) (8.24)

Since hogging and sagging are mutually exclusive events, i.e., the vessel

can be either in hogging or in sagging condition (but not both at the same time),

then the union of the two events given in (8.24) is simply their sum. The

probability of combined event of failure is thus

P (Fc) = P (Fh) + P (Fs) (8.25)

As mentioned earlier, each of the hogging and sagging conditions will have

several possible modes of failure (or limit states). In each case these modes can be

modelled as a series system since any of them constitute a failure of the hull (or a

limit state to be prevented). Thus bounds on the probability of failure in hogging

condition P(Fh) and in sagging condition P(Fs) can be constructed using equation

(8.8) or (8.9) for first or second order bounds, respectively. The bounds on the
combined probability P(Fc) are simply the sum of the bounds on each condition as
implied by equation (8.25).

Experience indicated that in many cases either hogging or sagging

condition is governing in the. reliability analysis depending on whether the

stillwater bending moment is hogging or sagging (in much the same manner as

in the usual deterministic

must be included othemvise

analysis). In some cases, however, both conditions

the estimated reliability will be unconsemative.
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8.8.1 Numen “cal Examde~

In reference [8.6], the probabilities of fkilure (or reaching a limit stite) were

calculated for a Mariner class vessel in hogging and sagging conditions using

level 3 reliability method. The stillwater moment for the Mariner is a hogging

moment. Several modes were considered in each condition and the results are as

follows:

i) Tensile yield of deck plating pf = 6.16x 10-7

ii) Compressive post-buckling yield of inner bottom plating pf = 4.o3 x

105

iii) Compressive post-buckling yield of bottom plating under lateral and
inplane loads: pf = 62.99x 10-5

iv) Compressive grillage failure of bottom shell under combined loads:

Pf = 1,47x 10”5

The first order bound on the probability of fdure in hogging condition p?

were thus obtained (see equation 8.8) as

ma.x (6.16x 10-7,4.03x 10-5,62.99x 10-5, 1.47x 10-s)< p?

< 6.16X l&T+ 4.03X 10-5+ 62.99X 10-s+ 1,47X 10-5

or

6.3 x 104 s p? s 6.8 X 10~ (8.26)

Notice that these bounds are tight since one mode of failure is dominant

(post-buckling yield of bottom plating). There is no need to consider second order

bounds.

b. Saztinr Condition

i) Tensile yield of bottom plating pf = 1.55x 10-14

ii) Inelastic buckling of deck plates between stiffeners: pf = 2.29x 10-11

iii) Grillage instability of deck: pf = 2.18x 10-7
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Bounds on the probability of failure in sagging condition p~ can be
,

constructed in a similar manner as those for the hogging condition. The sum of

the two sets of bounds would then give the bounds on the combined probability of

failure. It is clear, however, that in this case the bounds on the failure modes in

sagging are of the order - 10-7, much smaller than those given by equation (8.26)

for the hogging condition. The latter bounds, therefore, can be considered as

bounds on the combined probability of failure.

.
.-

,
●
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9. FATIGUE RELIABILITY

9.1 INTRODUCTION

Fatigue is the degradation in material, element, and system strength and

stiffness as a result of cyclic straining-stressing.

Materials in marine structures can consist of steels, concretes,

synthetic fibers, and soils (foundation). Elements can range from

bulkheads to hatch cover openings, from cylindrical braces to mooring

lines, and from deep (piles) to shallow (anchors, mats) foundations.

Systems represent assemblages of elements, and can range from cargo ships

to fixed and floating platforms.

Cyclic straining can develop from a wide’variety of environmental

(thermal, wind, wave, current, ice, earthquake), construction

(installationtransport, launch), and operational (slamming, equipment,

cargo) causes. The relentless cyclic forces are perhaps one of the most

distinguishing characteristics of the marine structures’ environment.

Design for fatigue reliability has four p~incipal.lines.of defense:

1. Minimize stress-strain risers (stress concentrations) and cyclic

straining-stressingthrough good engineering of the structural

system and its details. This requires a high level of

engineering quality assurance (QA) at the concept-development-

design stage.

2. Minimize flaws (misalignments,poor materials, porosity-voids,

etc.) through good, practical material and fabrication
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specifications and practices. This requires a high level ofQA

during the development of plans and specifications and during

construction (involvingmaterials selection, fabrication,

transportation and installation). Further, there

QA program required during operations to properly

system.

3. !!LW!l@ degradation at the local elemen~ through

is a similar

maintain the

selection of

good materials and fabrication practices, and good engineering

designs (e.g. crack stoppers, damage, localizer, and repairable

elements). This requires a recognition that when (not if)

fatigue degradation occurs, all reasonable precautions are taken

to restrict its development and effects. Note, again QA plays a

key role, particularly during operations to disclose the

presence of fatigue degradation (early warning). -

4. Minimize ~a~~he svstem~ so that when (not if)

local fatigue degradation occurs, there are no significant

effects on the system’s ability to perform satisfactorily. Here

good fatigue design requires system robustness (redundancy,

ductility, capacity) and system QA. Inspections and monitoring

to disclose global system degradation are another strategy to

minimize potential fatigue effects.

The purpose of this discussion has been to outline the major factors and

the complex interplay of these factors in determining fatigue

reliability. Cyclic strains, material characteristics, engineering

design, specifications, and life-cycle QA (inspections,monitoring) are

all parts of the fatigue equation. This is the engineering equation of

“fail safe design” -- fatigue may occur, but the structure can continue

214

22 b



to function until the fatigue symptoms are detected and repairs are made.

The alternative is “safe life design” - no significant degradation will

occur and no repairs will be necessary. Safe life designs are difficult

to realize in many long-life marine structures or elements of these

structures.

Uncertainties and variabilities are present in each of the parts, and

thus, reliability methods can play an important role in assisting the

engineer to achieve fatigue reliable-durable structural systems.
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9.2 FATIGUEANALYSIS

A fatigue analysis can be organized

1.

2.

3.

4.

5.

-

Characterize the life-cycle

conditions.

Determine the cyclic forces

structure (system).

into five basic components:

(short term and long term) CYC1ic

imposed on or induced in the

Evaluate the cyclic strains-stressesdeveloped in the element

(detail) of concern.

Determine the degradation in strength and stiffness (damage of

the element (detail) caused by the cyclic strains-stresses).

Given the fatigue damage, evaluate the acceptability of the

element (detail) performance.

In development of the following simplified fatigue design procedures

[?.1], itwill be assumed that waves are the source of cyclic forces. It

will be assumed that the long-terni(e.g. T = 100 years) wave height

distribution can be represented by Weibull distribution (Figure 9.1).

For storms, the cumulative distribution function [CDF = FX(X)] of wave

heights (h) is:

FH(h) bexp[.(;)k] (9.1)
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For non-storm conditions, the CDF is:

FH,h, = l-exp[-($]”mo] (9.2)

The structural detail fatigue stress range (peak to peak) (Sf) will be

taken to be a function of the wave height:

s, = CHa (9.3)

Next, the number of cycles to “failure” (N) of the detail subjected to a

cyclic stress range (Sf) will be taken as (Figure 9.2)* [9.2]:

N = KS;m (9.4)

Accumulation of fatigue damage (D) will b’eassumed to be described by a...

linear damage accumulation rule (Palmgren-Miner):

I
R(Sfi)

(9.5)
D=—

1 N(Sfi)

*Footnote:

Log N = Log K

and, Sf= (K/N)l/m

and, N = K Sf-m

- m Leg Sf

m = negative slope of S-N curve

Log K = life intercept of S-N curve
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Where

n(Sfi) = number of stress cycles at stress fi

N(Sfj) = ‘numberof cycles to failure at stress fi.

The summation is overall stresses, Sfi, experienced by the structural

detail. When D = 1, failure is presumed to occur.

Fatigue damage (DL) accumulated over the life (T) of the detail can be

computed from the following equation [9.1]:

DL = *( YO+YJ

Where

-s

No
m.

() am
Y. = ~~~m(lnNO)fO~ 1+—Eo

- am

N] —

( )am
Y, = ~H~”(lnl’Jl)”~ l+—

El

(9.6)

(9.7)

( 9.8)

r(a) = Gamma function

Now, let the design accumulated damage be limited to a fraction of the

life damage:
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DL
D~=—

F.,

or the design service life (T~) be:

T. = (F,,)OT

where

F~f = fatigue life or damage Factor of Safety (commonly in

the range of2 to 3).

The fatigue design stress (SfD) will be related to the fatigue design

wave height (HfD) as before:

s ID = CH;D

Thus,

s ID =

(9.9)

(9.10)

(9.11)

(9.12)

T,(YO+YJ

Based on an HfD = 70 feet,* the long-term wave height distribution in

Figure 9.1, and the API-X S-N curve (weld without profile control, Figure

9.2), SfD can be computed as functions ofT~ andm (Figure9.3) [9.1].

Note:

Use an HfD close to extreme condition design wave height, e.g. 100-year
height.
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For example, for a detail life of 25years and a factor-of-safety of 2

(TS = 50 years), and a wave height exponent (a) of 1.0, the design stress

range is indicated to be 65 ksi. For a detail stress concentration

factor (SCF) of 3, this would equate to a nominal allowable design stress

of 22 ksi (based on API X S-BN curves, Figure 9.2). For an a”= 1.5, the

design stress range would increase to 150 ksi. For an SCF = 3, the

nominal stress range would be 50 ksi.

In design practice, it is often useful to state the design stress range,

SfD, as a peak stress value, SpD. This can be accomplished by defining a

stress ratio, R, that is the ratio of the minimum stress, Smin,

maximum stress, Smax for the design wave height, HfD. Thus:

SjDs —PD = (l-R)

The values of Rwill be structure dependent. For conventional

template-type, shallow water platforms, R is typ~cally close to

,-

to the

(9 .13)

-0.33.

? .
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9.3 RELIABILITYllODELS

Based on a fatigue analysis as outlined in the previous section, the

principal sources of uncertainty can be organized as follows:

1. S-N relationship (Eq. 9.4, Figure 9.2)

2. D-N relationship (Eq. 9.5)

3. S-H relationship (Eq. 9.3)

4. H-N relationship (Eqs. 9.1, 9.2)

5* S-SCF relationship

6. DD-DL (or LD-L) relationship (Eqs. 9.9, 9.10)

7. Other factors such as corrosion and cathodic protection

Additional details on these sources of uncertainty are given in Table 9.1

[9.3]. There are many sources of complexly interrelated uncertainties

and variabilities. It is the primary purpose of a fatigue reliability

analysis to logically organize these sources, and then to quantitatively

evaluate them to determine what factors-of-safety (e.g. Eqs. 9.9 and

9.10) (alternatively, levels of reliability) should be employed in a

given design-analysis framework.

Wirsching [9.3, 9,4] has made extensive fatigue reliability studies for

fixed offshore structures. Munse [9.5] has made similar studies for ship

structures. Recently, Wirsching and Chen [9.6] have summarized and

contrasted results of these two studies. The following discussion will

be based on these developments.

Alternative methods for computing fatigue damage are summarized in Figure

9*4 [9.3]. Table 9.2 [9.3] summarizes the alternative analytical

expression for computing fatigue damage at a joint (detail).
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TABLE q.1

A SUMMARY OF FACTORS AND CONSIDERATIONS

RELATED TO FATIGUE IN WELDED JOINTS OF OFFSHORE PLATFORMS

‘ATIGUEBEHAVIOROF WELDEDJOINTS

● Oeffnftfon of f~tlgue faflunfnS-Ndata

● Size effect in S-N datS

● Effect of ~ld pruffle

. Effect ofcormslon ard cathodic pmtectl~

● Assumtlon of ● llnearmdel md lognomsl distribution for N

● Classiffcatlon of jofnt on the bas~s of gemmtm rlther than load Ptttem

. Relationship ktwen stress at jointandstress used to obtain S-N curve

● Ignoring possiblestnss endurance in 5-NCUIWC

● Cmqatibility of determination of hot SpOt stress with S-N CU~C

WNUFACTURIN$CONSIDERATIONS

9 F~bri cation uncsrtaintf es “

● Requimmnts onwld contmm notmt
DEFINITION OF THE ENVIROWENT

s Use of full scitter diagram of ti~ - To

● Variations in TB

● Z occummceestimates

● Wavedirectionality
● Interaction of Waves and Currents

● Theo~eti cal mdel used for ocean waves

HYDRODYNAMICLOAbSON STRUCTURE

● Inertia and Drag Coefficient

● Oimctional wave spectra uhich accounts for wave Spreadf ng

● Marine growth

● Sheltering effects

STRUCTURALRESPONSETO tiYMODYWIIC LOADS

. Ass@tions mde In spectml analysis

a. 1i near mponse dud ng transfer functf m devehmmnt.
b. 1t nearf zatlon of drag tem
c. at jofnts, 1. No flexibility

f1.●ffectofan
iif.centertocenter cmrdf nates

d. Sof1 stf ffness in Dynamic Mo41
●. D@ ng *f fects fn stntctiralresponse
f. Dynamic res~se mt accounted for fnanalysis

FATIGuESTRESSESATJOINT

● Hsthodof ●slmis to ●vtlwte stress concmtrstionfactors{SCF)
. Paranmtrfc quatfm used for SCF

. Pofnt at lnte~eei~whitefafllt~0CCW5

FATIGuEDAMAGEEWTIONS

. Assmption of Nfner’s Rule

● Am,smtlon of nerrw bsnd @sage equationfn spectralapproach

● Ammqtian of Uefbull di stributf on for stress ranges in stress distribution
●pproach

WHERCONSIDERATIONS

. Bad judgenent during Wfng and fns~l latfon

● In semica lads



FIG. %4 cLAssfF~CATION OF FOUR BASIC METHODS OF COMPUTING FATIGUE DAMAGE
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TABLE %2 ~

A SUMMARY OF EXPRESSIONS FOR FATIGUE DAMAGE JOINT

FATIGUEDAMAGEAT TIME T,

D = TBmQ/K

m,K = paramters fran S-N curve

B = factor to account for uncertainties in estimating fatigue

stresses from oceanographic data

n = stress parameter ~

STRESS PARAMHER USING VARIOUS APPROACHESTO THE STRESS OISTRIWJTION

Wave Exceedance Diagram (Deterministic Method) .

n= fozcisim
i

f. = average frequency of stresses

si = stress range

Gi = fractionof total stress ranges that Si is acting

Spectral Method (Probabilistic Fiethod)

n= k(m)(247)mr(f+ l)~Yifiuim

X(m) = rainflow correction

r(-) = gama function

Yi = fraction of time in ith seastate

fi ● frequency of wave loading in the ith seastate

. th
ai = RMS of stress process in the I seas Q te

Heibull Model for StressRanges

Q = a(m)fo$~[ln~]+’%f+ 1)



Wirsching’s reliability analysis has been cast in a lognormal format in

which the random variables are assumed to have lognormal distributions.

The time for fatigue failure (T) is expressed as a function of the

accumulated damage (D = A), the S-N curve parameters (K, m, Eq. 9 .4), a

stress range model error parameter (B = actual/computed stress range),

and a stress range parameter (n, Table 9.2):

,.fi
(9.14)

B“f2

The probability of a fatigue failure (Pf) is taken as:

Pj = P[TST,]

where P[”] is the CDF of T, and T~ is the service life.

(9.15)

P, = @(-p) (9.16)

where *c”]= standard Normal distribution function and P is the Safety

Index:

ln”~/T. (9.17)
P ‘ ~,n7

where

p. = median value of T, and

●Note: z will be taken as the median (50th percentile)
value of the parameter x.
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T==- ( 9.18)
Bmfl

U,nT = [ln(l+cj)(l+c~)(l+c~)m’]’” (9.19)

in which the C’s are the Coefficients of Variation (COV = C) of each

variable.

Uncertainty in the stress ranges (S) is expressed through the stress

range model error parameter (B). The errors are attributed to:

1.

2.

3*

4.

5.

Thus,

and

Fabrication and assembly (BM)

Seastate characterization (Bs)

Wave load predictions (BF)

Determin~tion of member loads (BN)
,---

Estimation of stress concentration factors (BH)
●

B = BM”B.”B~”BN.B~

c,= [(?(,+ci)-q’”

(9.20)

(9.21)

for i =M, S, F, N, H.
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Tables 9.3 and 9.4 summarize the statistical estimates on the B

components and K, B and d random variables, respectively. At the bottom

of Table 4, note the range of Safety Index implied by API’s RP 2A design

wave peak stress rule (limits nominal brace stress to 60 ksi).

Munse’s fatigue reliability analysis [9.5, 9.7] has been based on a two

parameter Weibull distribution of stresses (S) and cycles (N) (Figure

9*5).

[()]
1!

F~(s) = P(S<S) = l-exp - ~

where

(9.22)

E = Weibull distribution shape parameter

6 = Weibull distribution scale parameter

Defining a design stress (Sm) such that this value is exceeded on an

average once every NT times:

~= Sm[llliVT]”:

NTA is the total number of cycles in the service life T. Thus,

F,(s) = l.exp[-(:)flm,]

(9.23)

(9.24)

*Note: NT =’ Ts f. = Service Life x Average Stress Frequency
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TABLE %3

SUMMARY OF BIAS AND COEFFICIENT

OF VARIATION OF COMPONENTS OF 6

Random variables representingsources
of unwk.inty infatiguestress estimates’ Bias’ Cov’

(1) (2) (3)

BM 0.90-1.W O.lo-o.w
Bs o.6&-l.20 0.4W0.W
BF O.w-l.lo 0.10-0.30
BN 0.80-1.10 0.20-0.0
l?~ 0. W-1.20 O.lo-o.w

‘Bias = actual load or stress/load or stms estimated by current analysis pro-
cedure; for each Bi, the bias =n be interpreted as the median value 5,.

‘COV = vexp (az) - 1, in which u = ‘h (Xu/XJ/6; and XU and XL = upper
and lower limits of X.

CBS= FP”Bn = (0.9)(0.7) ~ 0.60 in which P = percent occumence of each seas-
tate; and D = directiondity.

‘This relatively large figure, which dominates C-, is due to the sensitivity of
the dynamic response to small variations in Tn. The figure of 0.40 is due to this
effect only.

‘1’hh figure was obtained by ~.218 by assuming “maximum” COV’S of 0.4
for dynamic response, and 0.3 each for directionalityand percent occurrence ef-
fects. Theresultingfigureof 0.60 is mnsidemdto be the largest reasomble vake.

‘Thisbiasoccurs when wave spreadingis not considered in the development
of theresponsespectra.

These extreme values should be used cmlywhen supportingevidence exists.
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TABLE %4

EVALUATION OF SAFEIV INDEX’, $

IMPLIED BY API RP2A DESIGN WAVE PEAK STRESS RULE

USING DIFFERENT DATA SETS

Daslgnfactom
[1)

S-N ame, inkips m
per squm in~ K
units . c~

Rainflowcorrection k
Damage mtio A

c
Stress modeling “ BA

error c~
Average frequen~, f.,

in hertz
Safety index implied bys

RP2A design wave peak
stress de (60 .ksi rl.lk)i B

I Data$et

AIB

-

4*W 4.38’
4.6E12 4.6E12
0.73 O*73
0.79 0.79
1.(M) 1.00
0.30 0.30
O.w o.7d
0.17 0.50

0.25 0.25

5.34h 12.78

CID”

4.42’
L55F12
1.35
0.79
1.00
,0.30
o*7cf
0.50

3*ocr
5.25E1O
0.73
0.86
1*(K)
0.30
0.7(Y
0.50

1’0.25 0.25

12622.09 ●

E F
(6) (7)

3.ti 3.00’
1.29E11 1.46E1O
1.25 0.67
0.85“ 0.86
i.oo 1.00
‘0.30 0.30
0.7CY o.7cf
0.50 0.50

I
0.25 0.25

2.57 1.83

‘Data from Conunentasyof API RF2A, ~. 81, Fig. (2.5.3-2
‘AWSX data, elastic range only. “
T and K joint data providedbymemberof TechnicalAdvisoryCommittee
‘T and K joint data: an “improved” vemionof data set D.
‘VaIues provided by memk of Technical Advisory Committee. Value of C~

now thought to be 10W;
‘Values provided by member’of TechnicalAclvisory Committee. Numbers are

now considered reasonable for %orst ~“ analysis in which wave spreading
and wave directionalityare not mnsidered.

‘As computed by solvingfor ~ in Eq. 7.16
‘Relativelyhigh value due to srmdlvake’of C.. See supersaipt e above.
~~e ‘T~e” from UK K)C)ERULES

Note: For a 2@year life, S~ = 53.2 ks~ ~ = 0.69 for 20 year-wave. (Same stmc-
tum would have S~ = lUi ksi and ~ = 0.57 for I(Byear wave climate.)
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Figure 9.5 [9.3] shows this distribution’for NT = 108 cycles. Figure 9.6

[9.7] shows measured 1ong term, low frequency, wave-induced ship hul1

girder stresses. Shape parameters (~) in the range ofO.7 to 1.3 model

these data well.

The Weibull shape parameter (E)will depend on a large number of factors

such as wave conditions, type of structure, dynamic response of

structure, position of fatigue detail in the structure. E characterizes

the severity of the fatigue stresses relative to the extreme design

stress. ~ = 1 yields a straight line on a semi-log plot (Figure 9.1),

and F = 2 resu”ltsin the Rayleigh distribution.

Guidelines for~ for platforms in the Gulf of Mexico are g ven in Figure

9.7 [9.8]. Waterline braces and floating marine structures may have ~ in

excess of 1.0. Munse reports [9.5] E’S in the range ofO.7 to 1.3 for

hull girder stresses in tankers and cargo ships.

Munse’s fatigue reliability model addresses the uncertainty of fatigue

life (expressed as COV = $N) as a function of uncertainties in stress

evaluation (Cs), workmanship in fabrication of the details (Cc), and

fatigue assessment (cF): .

CN = [C;+my:+cyz (9.25)

where

CF = “[S:N+C:R] (9.26)
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and

CSN = COV associated with S-Ndata

c~R = COV associated with Miner’s rule

m . slope of N-N curve

Based on available fatigue data [9.7], Munse estimates the following

coefficients of variation:

, CSN = 0.62

0 CMR = 0.15

0 Cs = 0.10

0 cc = 0.40

0 CN = 0.96

These estimates do not incluci,?any effects due to corrosion. Munse [9.7]

recommends use of a total uncertainty (CN) of 0.80 until letter values

can be established. Mun~e’s CN can be directly compared with Wirsching’s

CK (0.73 to 1.35, Tables 9.1 and 9.4).

Again, assuming Miner’s rule and that D = 1,

E(sm) = ;
(9.27)

where R is the mean life, and E(Sm) is the mean or expected value of Sm,

gives the probability of failure (Pf) at the service life (N~) as:
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[

~;l.ca

T, E(sm)r(l+c;l”Os)
PI =

K 1
where

E(Sm)
()

= A(mJSmF ~+ 1

Note that the Weibull shape parameter ~ has been approximated as:

E = c;1”08

and the scale parameter b determined as:

b
N

= r(:+l)

(9.28)

(9*29)

(9.30)

(9.31)

where

N = mean life to failure obtained from a least squares analysis

of fatigue data.

As noted in Table 9.2, a correction factor, identified as the rainflow

correction factor Am [9.9] should be applied to the stress parameter

when the Weibull parameters (Et6) are based on an analysis which uses the

assumption of a narrow-band process (Rayleigh) used to describe short

term distributions of wave heights in each of the stationary seastates

composing the long-term distribution. ForS-N curve slopes ranging

between m = 3 and m = 4, and short-term seastate spectral widths greater

than O.5, ~m=0.86to~ =0.80 [9.3].
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9.4 DESIGNAPPLICA710NS- DETAILS

Reliability evaluations of the fatigue design of a structural detail

(joint) can be developed from either the Wirsching lognormal based

distribution ofN (Eqs. 9.16 to 9.19) or the Munse Heibull based

distribution of N (Eqs. 9.25 to 9.29).

Using these two approaches, an allowable/design stress range, SfD, can be

defined based on a Weibull distribution of stresses as [9.5, 9.6]:

s fD = S,PR~ (9.32)

where

~f= K“rn=
()

mean stress range for failure at N cycfles (9.33)
z

@ = ‘“+’(’:)1’
=random load factor

= Munse Reliability Factor [9.7]

1

1

[

z 1
z

R Fw =
E exp(~DulnT )

- Wirsching Reliability Factor [9.6]

(9.34)

(9.35)

(9.36)
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where Pfd and BD are the design probability of failure and safety index,

respectively.

Ideally, pfd andp, should be based on considerations of the design

details’ influence on capacity of the structural system, inspectability,

and repairability. Life cycle operations, reliability, and costs should

be optimized.

Munse’s fatigue design

Step 1 - Establish

designed. This is

shape parameter, F

[9.7].

process proceeds through six steps:

the expected loading history for the detail to be

equivalent to choosing a Weibull distribution

(Figure 9.5). ~ commonly ranges from 0.7 to 1.3

Step 2 - Identify the type of detail to be designed. An extensive

summary of typical ship details is given in reference [9.7].

Step 3 - Obtain the mean fatigue stress ranges and slope of the S-N

curve based on the type of details and the design number of cycles

(NT). Based on laboratory tests of typical ship details, reference

[ %7] summarizes Sf and m data.

Step 4 - Compute the random load factorv from Eq. 9.34 based

~ and m.

Step 5 - Compute an appropriate reliability factOr, RFM, from

9.35 based on an estimate of the COV of fatigue life (e.g. CN

and desired probability of failure (e.g., PfD = 10-2).

Step 6 - Determine the design fatigue stress range from Eq. 9.

on NT,

Eq.

= 0.8)

32.
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Wirsching’s [9.3, 9.4]

through six steps:

Step 1 - Define an

shapes parameter ~

procedure for a fatigue design check proceeds

appropriate value of of the Weibull stress range

(e.g. Figure 9.7) for the environment, type of

structure, and detail location.

Step 2 - Define an appropriate stress ratio (R = Smin/Smax, Eq. 9.13)

for the detail.

Step 3 - Define an appropriate S-N curve slope, m (e.g. Figure 9.2)

and then use Figure 9.8 to establish the design stress range,

SfD = SR, for the desired service life, Ts.

Step 4 - The peak stress value for the detail is computed as

SpD= SfD/(1-R) (Eq. 9.13).

Step 5

stress

SpDN =

Step 6

- The fatigue strength can be stated in terms of a nominal

by using an appropriate stress concentration factor (SCF) or

SpD/SCF. :
, *

- The detail (joint) is taken as satisfactory if SmS S~D,

where Sm is the hot spot stress corresponding to the “design wave”

(assumed to be the 100-year wave). Alternatively, SmN s SpDN, where

S~ is the nominal (brace) stress.

Wirsching’s procedure is based-on,a “code calibration” approach to define

the fatigue design safety index (P,) [9.3, 9.41. Table 9.5 summarizes

the data and method used to construct the design stress range curves of

Figure 9.8.
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TABLE 9.5

SUHNARY OF THE DATA USEDTO ESTABLISH THE
DESIGN STRESS RANGECURVES OF FIGURE 9.8

Figure g.8(a) Figure 9.8(b)

m 4.38 3.00

k 4.6E12 5.25E1O

cK .73 0.73

h .79 .86

2 1.00 1.0

c, .3 .3

B ●7 0.7

CB .5 0.5

FO (tiz) 0.25 0.25

P, 2.78 2.62

Method for constructing curves: Consider Data Set B for which the target
safety index is B. = 2.78. SR forTs = 100 years is computed directly using
Eq. (a) with~ = 2.78. The 20-year curve we know must pass through the
reference. From Eq. (a), B = 1.63 for the 100-yearwave condition. Using
this 8, the 20-year curve is establish from Eq. (a). For#. = 2.78 for a
Ts = 40 years, Eq. (a) fixed SR=52.4 ksi. This value Is scaled to SR = 78.7
ksi for the 100-year wave. Then.corresponding to~ = 0.57, Eq. (a) gives @ =
2.11 for the 100-year wave. This value of~ in Eq. (a) is used to construct
the 40-year curve; a B = 2.11 for 100 years ensures B = 2.78 for 40 years.
Eq. (a) is:

SR(mS,D) = [ln(fo~J]:
[

AK

A~OT~Bmexp(pOd,n,)~(~+ 1) 1
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Based on the fatigue analysis process outlined in Eqs. 9.1 through 9.13,

Geyer and Stahl [9.1] have developed a very useful simplified fatigue

design procedure. The key to this procedure is the use of a uniform

fatigue life criterion (Eqs. 9.9, 9.10).

Based on theAPI XS-N curve (Figure 9.2, m* 4.38), adeepwater Gulf

Mexico wave height distribution (Figure 9.1), a design wave height of

feet, and a 20-year service life (T) with a factor of safety of2

(TS = 40-year design fatigue life), they developed the design fatigue

of

70

stress range curves shown in Figure g.9 as a function of the stress-wave

height exponent, Q (Eq. 9.11). For details and structures in which as

1.2, the low-cycle fatigue stresses developed by hurricanes has an

insignificant effect. However, forus 1.2, the low cycle hurricane

stresses can have a major influence on damage.
.

As an alternative to a design stress range, Wirsching and Chen [9.6] have

formulated the fatigue design as a design damage ratio (Eq. 9.5), d.:

AD =
yz (9.37)

13mexp(@Dalhr)

The safety check on the computed damage Do is:

(9.38)

where

T,f2
Do=—

K

(9.39)
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Using reasonable fatigue reference data for calculation ofdo as a

function ofp,, Wirsching and Chen developed Figure 9.10. Then, 8,’s

were chosen depending upon the levels of importance, inspectability, and

repairability of the design details.

It should be realized that

design reliability (Safety

been targeted to a service

in the foregoing design applications, the

Index, Prior probability of failure, PfD ) has

life, Ts. For the lognormal formulation (Eq.

9.17), the safety index, P,, for any exposure period, (t) can be

expressed in terms of the design safety index, PD for a service life as:

In(t/T.)
B, = flD- ~,nT

(9.40)

For t c Ts, the safety index is much larger than B, (Figure 9.11). This

explains why there is a very low probability of finding fatigue failures

early in the life of a structure (if all has gone well).

This equation also points out how inspections and repairs might be

utilized to maintain the safety index above some value (Figure 9.12).

Inspections can be used to reduce the uncertainties that contribute to

a,,,(Eq. 9.17), and thus increase ~,. Repairs (if effective and well

done) can increase B, by erasing all or a large portion of the cyclic

damage.

The optimum inspection and repair strategy will be a function of the

element’s (detail’s) importance to the capacity and serviceability of the

system, inspectability, repairability, and costs. The reader is referred

to reference [910] for additional details on the roles of quality

assurance and inspections in maintaining fatigue reliability.
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9.5 FATIGUE RELIABILITY - SYST~

Fatigue failure of a detail in a “fail-safe” engineered structure does

not constitute failure of the system (recalling the Introduction to this

Section). Thus, in addition to design of details for fatigue,

consideration must be given to fatigue reliability of the structural

system. The reader is referred to Section VIII for a discussion of

system reliability.

For a system of N identical and independent elements in series (a chain

system), the probability of failure of the system, Pfs, is related to the

element probability of failure, Pfe as:

P fs = [l-(l-Pf,)~]

or approximately,

(9.41)

(9.42)

If because of materials, construction, design, or loading, there is a

very high degree of correlation of the strengths of the elements, then

for perfectly correlated (dependent) elements:

P fs = Pf, (9.43)
...

Thus in a series system,’correlationin element strengths has the effect

of reducing the probability of-failure.
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Correlation expresses the degree of dependence (or independence) between

random variables (refer to Section II for a discussion of correlation).

Zero correlation implies independence. Unity correlation implies perfect

dependence.

Correlation is generally expressed by a correlation coefficient, dJV:

Cov(u,v) (9.44)
puv =

Uu,uv

where U and V are two random variables and the o’s are the standard

deviations of these variables. The covariance ofU and V, COV(U, V), is:

Cov(u,v)=q(u-pu)(v’-pv)]

where the p’s are the expected values, E[F],of the variables. The two

random variables are said to be uncorrelated if P = O (independent), and

to be perfectly correlated ifp = tl (dependent).

Cornell [9.11] has suggested a useful approximation for the correlation

coefficient between the probabilities of failure of the system’s

components as:

v: (9.45)
P =

v: + v:

where VS2 and VR2 are the squared coefficients of variation of the

load(s) and resistance (R), respectively.

If the resistance is the dominant uncertainty, then P tends toward unity

(dependence).
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Figure 9.13 [9.12] shows the Safety Indices for series systems, P,, as a

function of the correlation coefficient, the number of elements (N), and

the element safety indexp, (assuming normal distributed strengths and

equally correlated elements). For the high reliability elements

(B.= 3), the system safety index is approximately equal to the value

based on zero correlation (Eqs. 9.41 and 9.42) forP< 0.8. For high

degrees of correlation (P > 0.8), there is a small correction to the

element safety index to determine the system safety index.

For the fatigue reliability of a series system, the design probability of

failure of the N elements which compose the system (pfeD) can be

reasonably and realistically related to the system design probability of

failure (PfsD) as:

PfsD
P,,~ = ~

(9.46)

Such an approach has been used in developing fatigue design criteria for

the connector elements of a tendon system for a Tension

(TLP) [9.13].

In the case of a parallel member system, the problem is

complex. Martingale and Wirsching [9.14] and Stahl and

studied the progressive fatigue characteristics of such

results for a

(2 joints per

32 percent is

Leg Platform

much more

Geyer [9.15] have

systems. Typical

system comprising parallel brittle members (B. = 3.0)

member) and a correlation in element fatigue lives of

shown in Figure 9.14. The three curves are for:
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a. First member failure

b. 50 percent member failure (50 percent loss in capacity)

c. 100 percent member failure (100 percent loss in capacity).

Only in the case of >50 percent member failure is there a beneficial

influence from adding parallel elements.

The effect of adding joints to the parallel elements for the condition of

100 percent member failure is sunnnarizedin Figure ~.15 (based on results

from [9.15]). The ratio of system to element safety indices (B,iB.) is

for correlations of 30 to 60 percent, 1 to 4 parallel elements, and 2 to

16 joints per parallel members. Adding joints to the parallel members

swamps out much of the beneficial effects of redundancy, and the system

behaves much more 1ike a series system (Figure 9.15). For example, for

an element correlation of 50 percent, Figure 9.15 indicates that for a

system of 10 elements (joints) in series, the B,tp. ratio is 0.5 and 0.75

forgo = 2 and 3, respectively. Referring to Figure9.13 for the same

number of joints per member, BS/F, = 0.5 to 0.6 and 0.75 to 0.80 for

B, = 2 and 3, respectively.

Given a target reliability for design of the system (B,.),Figures S.13

and ‘3.15could be used to define the target reliability for the

individual elements (E.D).

Reliability based methods for analyses of complex structural systems are

being developed [9.11, 9.16], and these methods are being extended to

considerations of inspections and repairs [9.16, 9.17, 9.18]. The reader

is referred to the cited references for these research developments.
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19. APPLICATIONS TO SHIPS AND MARINE STRUCTURES

10.1 Long- and Short-Term Procedures:

Two types of analyses may be used for assessing a vessel

strength under extreme load; short-term and long-term analyses. At

the design stage, if one knows the route of the ship and and if that

route is more or less permanent, then the probability of failure can

be predicted using long-term analysis. If on the other hand the

route of the ship is not defined, then the short-term analysis can be

used to obtain the probability of failure under one or more

conditions that are- considered to be the severest the ship may

encounter during its lifetime. An example of this situation are the
design conditions checked in the ASR catamaran by Lankford [10.1]:

(a)

(b)

(c)

“One year of continuous service in average North Atlantic

weather. ”

“Six months at a position in the North Atlantic where the
worst weather for this period of time

expected. ”

“Two months on station in the worst

season in’ the North Atlantic.”
,

A more simple short-term analysis criterion

would normally be

area and the worst

is to consider the” - “
single most severe sea condition (or a sea condition with a specified

return period) and subject the vessel to this condition for a specified

period of time.

These two methods, short- and

naturally produce different “final results
long-term analyses,

for the safety margins

therefore care must be taken when comparing safety margins

different ships, i.e., the method and criterion used in predicting
loads acting on the ship will have a considerable impact on

resulting safety index.

will

and

of

the

the
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To further amplify on this

the wave loads acting on a ship

expected route of the ship during

statistics along that route, the

point, the long-term distribution of

may be determined by tracing the

its lifetime. Based on ocean wave

long-term wave load probability

distribution (usually taken as Weibull or exponential distribution) for

the entire history may be determined. Any lack or deficiency of data

on wave statistics over a period of time covering the ship life should

be corrected for. In the short-term analysis, a distribution of the

extreme load is predicted on the basis of criteria such as one

occumence in a lifetime, one extreme sea storm of a spectilc duration

or a short-term operation in a specific location under severe sea

conditions. For that purpose, one of the extreme wave load

distributions discussed under “Prediction of Extreme Wave Loads” in

Chapter II is used.

It should be noted that there

between computed results based on

short-term

conditional

load per a

determining

analysis, the computed

is a fundamental difference

these two avenues. In the

probabilities of failure are

probabilities given the occurrence of an extreme wave

selected criterion, Care must be taken in this case in

the response of the ship to this extreme load since non-

linearities may play an important role. In the long-term analysis,

however, the resulting probabilities of failure are associated with the

entire history of the expected load acting on a ship during its

lifetime.

A. Procedure for long-term analysis

The following procedure

probability of failure during the

1. Define the mission

estimates of

a. ship route

b. expected total

may be used for calculating the

ship’s operational lifetime.

profile for the ship that includes

years of service
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c* Number of days per year the ship is expected to be

at port and underway

d. Nominal cruising speed and maximum speed and

the corresponding fraction of time during operation.

2. From the ship route and available wave statistics such as

in reference ~Q2], obtain the frequency of occurrence of

different sea conditions the ship will encounter in each of the

geographic areasl 1.

3. From step 2 above and the mission profile of the ship

(more specifically from expected number of days in each

geographic area), determine the total frequency of
encountering different sea conditions.

4. Determine the root-mean-square value K (rms) of the
wave bending moment in each sea condition. First, the

response amplitude operator, RAO, has to be determined either

from available strip-theory (seakeeping) program or from

model experiment. The rms values can then be obtained using

the determined RAO in conjunction with existing sea spectra

such as Pierson-Moskowitz ~0.3]. These programs usually give

the value of the stillwater bending moment also.

5.’ From the total frequency of encountering different sea

conditions (step 3) and the rms values of the wave bending

moment in each sea condition, determine the average wave
bending moment l,.

11 In almost all the main” areas where ships operate, statistical data
concerning wave heights and periods have been observed and
tabulated. The surface of the earth is divided into a grid of ten-
degree squares known as Marsden squares. These squares are
arranged into geographic areas over which wave conditions are fairly
uniform. The areas are given a code numbe~ see, for example
reference ~0,2].
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6. Estimate the strength parameters (mean ~ and standard

deviation u or the coefficient of variation) including the

objective and subjective uncertainties. Each failure mode will
have its corresponding y and 6.

7. Calculate the probabilities of failure in the different

modes 12 (that is, yielding or buckling at different locations) in

sagging

failure.

A block

and in hogging. Combine to get the total probability of

diagram of the foregoing procedure is given in Figure 9.1.

B. Procedure for short-term analysis

The following procedure

analysis.

1. From the assumed

statistics, calculate the frequency of operation in different sea

conditions.

may be applied in the short-term

design criteria artd ocean wave

2. Calculate the rms value of the wave bending moment in

each sea condition using either strip-theory approach @4, 10 .7]

or towing tank experiment results in conjunction with available

sea spectra. Calculate also the stillwater bendirig moment.

3. Estimate the strength parameters (IL and 6) for each

failure mode.

12 The probability of failure in the different modes can be calculated
using equation (4.35) if the stillwater bending moment is considered
deterministic or from equation (4.38 or 4.41), if it is considered as a
random variable. In the former case, if desired, different values of
the stillwater bending moment could be used with an estimate of the
corresponding fraction of time.
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4.

i.e.,

5.

Calculate the probabilities of failure

P [ R ~ lfith sea condition ]

in each sea condition,

The total probability of failure is thus

p* ❑

z
P [ R 5 1 / ~th sea condition ] p(l)

i

where p(i) = probability of operation in the ith sea condition as

determined from step 1.

A block diagram of the above

If only one storm condition

procedure is given in Figure IQ2.

(with a certain return period) is

specified in the short-term analysis, then only the probability of

failure in that condition needs to be calculated. This probability is
thus a conditional probability given that the vessel encounters the

specified sea condition, and, is expected to be larger than the long-

tenn

and

or life probability of failure.

In general, long-term analysis

computational effort than the

requires much more information

short-term analysis. Long-term
analysis is, however, necessary if fatigue failure is considered since

the entire history of loading should be included. On the other hand,
failure under an extreme load can be more easily estimated using

short-term analysis.

10.2 Application Examples:

10.2. I, Short-term analysis - Level 3 Reliability

In this example, we will evaluate the probability of exceeding

any limit state of a ship during a specified storm condition. The limit

state can be an initial yield limit state, an initial buckling limit

the ultimate strength limit state, or any other condition desired

state,

to be
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evaluated. The duration of the presence of the ship in the storm is

limited by the stationarity condition to a short period of time.

Consider now a tanker of length = 763 ft, breadth =125 ft, and

depth = 54.5 ft. We will evaluate the probabilities of exceeding the
wa4Am●..t1b(ww
d4y*Wd9m.y, ●irramant 904 -~,im,

U aOErm,WAq
mAMl om, — lrwnw d UWr9a I.-“lm .X) - mrawu *ZM

/

J
)

wti~e
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Figure 10.1. Long-Term Procedure
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Figure 10.2. Short-Term Procedure.
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initial yield limit state and the ultimate strength limit state in a

storm condition specified by a significant wave height of 29.0 ft and

an average wave period of 10.1 sec. The storm is assumed to be

stationary under these conditions for a period of one hour. The
following parameters were computed for the tanker using a typical

ship motion program:

Stillwater moment (full load) ms = 669,037 ft-ton

(considered deterministic)
Rms of the wave moment m. =

r
216,450 ft-ton

Average wave moment period = 12.1 Sec
Bandwidth parameter of wave moment spectral density e = 0.337

Number of moment peaks (in one hour) N = ~ = 297.5
12.1

The mean and standard deviation of the initial yield limit state
were computed to be P.r = 2,420,488 ft-ton ~d ~r = 314,663 ft-ton,

respectively. The corresponding values for the ultimate limit state
were computed to be ~r = 2,804,760 ft-ton and ~r = 392,666 ft-ton.

The mean of the initial yield limit state was simply computed as the

minimum section modulus of the hull amidship multiplied by the

average yield stress. The mean of the ultimate strength was

computed using “USAS, ” an elaborate nonlinear finite-element

program (see 605]).

Using order statistics and the determined values of r mo, E, and

N, the expected maximum wave bending moment in N peaks is

computed from equation (2.57), to be 763,859 ft-ton. If one assumes
an ideal narrow-band case, such as e = O instead of 0.337, one

obtains, using equation (2;57) again, the slightly more conservative
value of 767,543 ft-ton. That is, the

= O is less than 0.5 percent.

Equation (2.58) may be used
bending moment with probability of

error due to the assumption of G

to compute the extreme wave
exceedence a. For example, the



value of the extreme wave moment with a probability of exceedence

a = 0.0001 in the given storm condition is computed to be 1,086,685

ft-ton.

A semiprobabilistic factor of safety may be defined as the

resistance mean ~r divided by the sum of the stillwater bending

moment and the maximum expected wave bending moment as given

by (2.57). The computed values of this factor of safety in the given

storm condition are 1.69 and 1.96 with respect to the initial yield

and ultimate strength, respectively.

Finally, the probability of, exceeding a limit state pf, which

combines all the given information on the ship and the storm

condition, is computed using the basic reliability equation for a

normally distributed strength (see equation (4.5)).

m

pf=l.
I

“. k -“Fz~(z) e
-+[2; ”12 dz@,, .

where FZN (z) is the extreme total bending moment (stillwater plus

extreme wave bending moment). Several distributions can be used
for FZN as discussed earlier in the section entitled “Prediction of

Extreme Wave Load” in Chapter II. We will use FZ ~ (z) as predicted

from order statistics given by equation (2.54) with Rice distribution

given by equation (2.38) as the initial distribution. In the latter

equation, ms , the stillwater moment is added . Substitution of these

equations in (10.1) and carrying out the integration

obtain the following values for the initial yield and
limit states:

pf (initial yield) = 1.19 x 10-3

pf (ultimate strength) = 3.13 x 10-4

In order to examine the effect of the sea

probabilities, a storm

height of 38.75 ft. and

numerically we

ultimate strength

state on these

condition characterized by significant wave

average wave period of 11.5 sec is considered

266



next. The ship motion program computed values for the rms wave

moment ~ , the bandwidth parameter e, and the average period of
5the wave moment are, respectively, 2.863 X 10 ft-tons, 0.364, and

13.0 sec. It should be noted that the rms value of the moment is on

the conservative side because of the linearity assumption. The

number of wave moment peaks in cme hour is thus 276.9. Based on

these values and the resistance parameters given previously, the

following probabilities of exceeding the limit states where

determined:

pf (initial yield) = 1.23 X 10-2

Pf (ultimate strength) = 2.73 X 10-3

It is

case was

asymptotic

interesting to note that when pf for the ultimate strength

recomputed using equation (2.60), which is based on

distribution instead of order statistics distribution, a
value of pf = 3.14 X 10-3 was determined (compared with 2.73 X
~()”3 based on order statistics distribution), As expected, equation
(2.60) gives an upper bound

as N+Q.

It should be noted

example are conditional

a specified storm for

fundamentally different

that

on pf and its accuracy should increase

the computed probabilities given in this

probabilities given that the ship encounters

a specified length of time. They are

from those calculated by constructing the

long-term distribution of the wave moment along the ship route

during its lifetime (see LQ6]). The elaborate procedure in this latter

case produced unconditional lifetime probabilities of failure.

The main advantage, however, of the presented storm-based

procedure is its simplicity and consistency. From the environmental

data along the ship route (or

condition can be postulated and

be immediately determined

previously.

structure location), a design storm

the probabilities of exceedence can

from the simple results given
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The procedure can be used to determine the average

probability of failure (or exceedence of a limit state) during the

entire duration of a storm rather than just the severest one-hour

period of the storm. In this case, a simulation of the storm condition

during successive short intervals of time (say one hour each) is

necessary. During each interval, the waves are assumed to be

stationary and may be represented by a pair of significant wave
heights and average wave periods. The rms values @ of the wave

bending moment can be calculated for each pair and the
corresponding probabilities pf are determined from (lQl). The

average probability of exceeding a limit state during the entire storm

duration is then

pf = 5P~Wfi;~fi=l
i=l i=l

where fi is the frequency of occurrence of the ith pair of significant

wave heights and average wave periods, and n is the number of

stationary short intervals during’ the storm.

The important high-frequency moments which

the bandwidth parameter are due to either springing

may increase

or slamming.
It is unlikely that springing moment is of any appreciable value in

high sea states where wave periods are typically large. Therefore
any increase in the wave moment rms value ~ will be negligibly

small. Slamming, however, may have some effect on the rms value

of the wave moment for small ships. It may be combined with the
wave moment to obtain a total rms value using, for example, a

procedure developed in ~0.8]. It should be noted, however, that the
‘underlying combined process of the wave and slamming moments is

not ‘ngeneral Gaussian except in one limiting case when slamming

decay rates are negligible in comparison with the mean slamming

rate.
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Equation (IO.1) which gives the probability of failure has been

plotted as a function of non-dimensional variables for the case of

FZ ~ (z) estimated from order statistics with Raleigh distribution as the

initial distribution (i.e., Rice distribution with & = O). This

approximation leads to conservative estimates of the probability of

failure as discussed earlier. Figure 103,10.4,10.5,10.6 and 10.7 show the
value of pf as a function of G* = Q , N and v*= ~r - ms .

Fo —
r no

As an example of the approximation involved, the probability of

failure computed from these figures for the initial yield limit state

and the second storm condition (significant wave height 38.75 ft.) of
the above example (with e = O) is 1.40x 10-2 compared to pf = 1.23 x
1()-2 obtained earlier. These figures thus will give slightly more

conservative values for pf but eliminate the necessity of numerical

integration.

.-
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Figure10.7. Probability of Failure.

274



10.2.2. -- Level 3 Reliability Based on Four Different Extreme

Distributions.

Short-term Analysis:

The impact cm the probability of failure of the different

extreme value distributions of wave bending moment discussed

earlier in Chapter 2 will be examined in this example. The
distribution function FZ ~ (z) in equation @l) will be substituted for.

using equations (2.56) ‘ (2.60); (2.70) and (2.71) in order to9
obtain pf based on order statistics, type I asymptotic distribution,

uncrossing analysis and a two state description of the random

process. The tanker cited in example 1 is used again with bending

moment parameters (the second storm condition) given by:

ms =
{

669,037 ft-tons ; m. = 286,300 ft-tons

N= 276.9 .* q = 0.35

The uItimate limit state was considered (pr = 2,804,760 ft-tons

and ur = 392,666 ft-tons). The results of the probability of failure

are shown in figure10.$ and table 10.1. As expected the probability of

failure based on the’- asymptotic distribution is higher than the rest

and, in general, the ,agreement between the other three distributions

is very good.
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TABLE j~.~ PROBABILITY OF FAILURE ACCORDING To

FOUR DISTRIBUTIONS
Two-State

~ Order Statistics AsymptoticDist. Up-crossing Description
?ype 1 Analysis (q*.35)

10

20

30
~

50

60

70

80

90

100

110

120

130

140

150

160

170

lea

190

200

210

220

230

240

250

0.2&+183x 10”3

0.486767X 10-3

o.f555854x10”3

0.804382X 10-3

0,928461 X 10-3

0.106161 x 10-2

o.l17608x 10-2

0.128~ X 10-2

0.13&83 X 10-2

O.1481O9X 10-2

0.157291x 10-2

0.166080X 10-2

0.174522x 10-2’

0.182651x 10-2

0.190496x 10-2

0.198085X 10-2

0.205438X 10-2

o.212576x 10-2

0.219513 X 10-2

0.226264 X 10-2

0.232W x 10-2

0.239262 X 10-2

0.245529X 10-2

0.251654x 10-2

0 257646 10 2

0.711313X1O-J

0.856830X10-3

O.lolj?sx10-2

0.116312x10-2

0.129867x10-2

0.l&2424X 10-2

0.1*149X 10”2

0.165174x10-2

0.175600x 10-2

0.185508x10-2

0.194963x10-2

o.204017x10-2

0.212713x10-2

O.221O87X10-2

0.229169x10”2

0.236985x10-2

0.244558x10-2

0.251906x10-2

0.259047X10-2

0.265996x10-2

0.2Z766X 10-2

0.279369x10-2

0.285815x10-2

0.292114x10”2

0 2$k274X 10 2

0.280864x 10-3

0.4G3547X 10-3

0.652819x 10-3

0.801514X 10-3

0.935738x 1o-3
0.105901 x 10-2

0.117359X 10-2

0.128105 X 10-2

0.138252x 10-2

0.147887X 10-2

0.157075 x 10-2

0.165871 X 10”2

0.174318x 10-2

0.182452x 10-2

0.190303X 10-2

0.197897x 10-2

o.20525+x 10-2

0.212395 X 10-2

0.219336x 10-2

0.226092 x 10-2

0.232674 X 10-2

0.239096 X 10-2

0.245s66 X 10-2

0.251494 X 10-2

0 257488 10 2

0.268484X 10-3

0.463766X 10”3

0.627937X 10-3

0.772696x 10-3

0.903715x 10-3

0.1O2426X 10-2

0.113652 X 10-2

0.124191 X 10-2

O.1%1* x 10-2

0.143621 X 10-2

o.152656x 10-2”

0.161312 X 10-2

0.169629 X 10-2

o.177&t2x 10-2

0.1853W X 10-2

G.192867X 10-2

0.200124X 10-2

0.2071?0 X 10-2

0.21M21 x 10-2

0.220691 X 10-2

0.227192 X 10-2

0.233536 X 10-2

0.239731X 10-2

0.245788 X 10-2

0 251714X 10 2



10.2.3. -- comparison of Level 2 and Level 3 - ~ect of

Correlation Between Wave and Stillwater Bending

Moments.

Long-Term Analysis:

This example consists of two parts. In the first part we will

discuss a long-term procedure applied to the ship used in the

previous example. A comparison will be made between Level 3

(exact) and Level 2 (approx.) methods of reliability analysis. In the

second part of the example we will examine the effect of correlations

between the stillwater and wave bending moments on the
probability of failure using again a long-term analysis.

The ship is assumed to have the following mission profile,

a) ship life = 20 years

b) ship in port 65 days/yr. and underway 300 days/hr.

c) ship route: Marsden square numbers, 1, 2, 4, 12,

21, 23, 25, 30, 31 (see Figwe 5,3)

d) time proportions in Marsden squares: 2, 2, 1, 1, 1, 1, 1, 1, 1

The frequency of occurrence of different sea conditions

specified by the significant wave height is calculated in each

geographic area. For the ship, frequency of encountering the

different sea states during the operational lifetime is obtained using

such information in conjunction with (a), (b), (c) and (d), and is

shown in Table 10.2.

To calculate the number of wave bending moment (or, wave

peaks (N)) the ship will encounter throughout her life, at different

sea states, first we calculate the average wave period at different sea

states from wave data (Ref.l!l .2) as shown in Table 10.2. The ratio of

number of days the ship spends in a particular sea state and average

period of waves in that sea state gives the number of peaks. Such

results are also shown in the same table. ~

278

q o



The root mean square of the WBM ( ~ ) in each sea state are

calculated from standard sea-keeping program and are shown in

Table10 .3. In the same table the scale and location parameters ~Ni

and UNi of the asymptotic distribution as calculated from equations

(2.65) and (2.64) are shown (G = O).

The SWBM is assumed deterministic and all variables are

assumed independent. The complete problem reduces to calculation
of P (or, pf) for the performance function

g(~ = R- Ms-Mw

R* Normal (2420488,3 14663) ft-ton (strength)

Ms M Deterministic = 669037 ft-ton (stillwater)

Mw N Extreme Value 1 ( up~,u~~(wave)

In the exact method the probabilities of failure p; for each sea

state ‘i’ are calculated by numerical integration

+tn

I
-UN-(m-M*-uN )

P. ’l-
L i.-

L
‘,lW _@ ‘Xp(-e

of the equation:

1
T ( ‘:” )) dm

r

The results are shown in Table 10.3. Similar calculations were

done by the advanced Level 2 method and are also shown in the

same table. The lifetime probability of failure (exceedence of the

initial yield limit state) can now be calculated from,
.

pf =
z

Pi ‘i @o.2)
i

where fi is the frequency of occurrence of such sea state. In our

application example, the results are,

pf exact = 5.2268 X 10-3 (Level 3)

p f approx. = 4.7851 x 10-3 (Level 2)
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In the second part of this example the SWBM is assumed to be

non-deterministic and correlated to the WBM. Only Level 2 method
w&s used to find ~ (or, pf), where,

RN Normal (2420488,3 14663) ft-ton
Ms ~ Normal (403520,161408) ft-ton
Mw w Extreme Value 1 ( ~Ni, UNi)

The correlation matrix is:

II
1 0 1

R=o 1
’23

0 P 32 1

To show the effect of such correlation we calculated failure

Pprobabilities for ~1 = ~12 = 0.0, 0“1, 0“3, 0.5, 0.7, 0.9. The
results are presented in Table10.4 and Figure10 .9.

A comparison of results in Table 10.3 reveals that in our

example. the Level 2 method yielded lower values of failure

probabilities than those obtained from the exact method. The extent

and direction of difference in results between approximate and exact

method depends on the nature and shape of the nonlinear
transformed failure surface. As an example, let us consider the
failure surface in sea state 10 in the first part of our application
example. For the linear failure surface R-Ms - Mw = O in the original

space, one obtains, by transformation, the nonlinear failure surface in

the standard space as,

(Pr+YrUr)-M= - { U; & in in [ 1
*WW) ]} =0

N

00.3)
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where Yr and Ymw

respectively and are

Y=
mw

are standard uncomelated variables of R and Mw

expressed as,

r-p
Y=

r
r ur

- UM(mW - u,)

? “ [ exp [ -e )1

@4)

@Q5)

Substituting the appropriate values in equation (lQ3), the

failure surface is obtained as shown in Figure 10.10. The area of the

single shaded region in this figure represents exact failure

probability. On the other hand, area of the double shaded zone on

the failure side of the linearizing tangent line represents the

approximate failure probability according to Level 2.

of the double shaded zone is less than that of the
region, the approximate method is seen to give lower

Instead of being concave, if the failure surface is
linearization would have yielded higher values of pf.

Since the area

single shaded
values of p f.

convex, such

.

While it is attractive to use approximate methods for ease i n

calculations, one rlmst have an idea of the failure’ surface for t h e

problem under consideration. The extent of approximation is well ~ ~

understood by having this surface drawn. If this surface is highly

nonlinear, first order approximation analysis may yield gross error.

However, for most practical cases, the problem is not very acute and

the approximate method of level 2 would suffice. Also, if the surface

is highly nonlinear, one may use a few linearization points and

express the actual failure probability in terms of bounds.

Results in Table 10.4 and Figure 10.9 show the effect of
correlation between Mw and Ms. As expected, as the extent of

positive correlation grows, failure probability, too, increases. From

zero correlation to almost full correlation ( P = 0“9), failure
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probability increases by about 25%. Such an increase in the
probability of failure is not considered to be significant and, in fact,

in terms of ~, it would be very small. The results indicate, therefore,

that the correlation between the stillwater and wave bending

moments is not important and may be neglected in future analysis.

Sea S&g. Wave Sea State

State
(i)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
91
92
94
95

port

Height
(ft. )

7.15
7.80
9.15

10.49
11.84
13.18
14.53
15.88
17.22
18.56
19.90
21.24
22.58
23.93
25.27
26.61
27.95
29.29
30.63
31.98
36.00
38.68
44.05
46.73

Frequency

0.0737246
0.1019174
0.1808501
0.1592058
0.0970026
0.0710068
0.0449062
0.0318023
0.0196168
0.0182419
0.0032569
0.0035286
0.0050191
0.0040398
0.0017686
0.0019604
0.0020007
0.0008293
0.0008039
0.0015291
0.0000232
0.0000389
0.0000059
0.0000149
0.1780822

Number of Avg. Wave Number
days

537.40
743.00

1318.40
1160.60
707.20
517.60
327.40
231.80
143.00
133.00
23.80
25.80
36.60
29.40
12.80
14.20
14.60
6.00
5.80

11.20
1.65
0.29
0.05
0.11

1300.00

Period
(Sees. )

5.721
5.897
6.031
6.555
6.987
7.253
7.484
7.641
7.783
7.847
7.831
7.951
8.067
8.069
8.023
8.102
8.239
8.453
8.287
8.481
8.771
8.609
7.420
8.273

of Peaks
(N)

8115952
10886078
18887375
15289703
8745109
6165813
3779711
2621060
1587459
1464407
262587
280357
391997
314883
137847
151429
153106
61125
60471
114100
16254
2910
582

1149

Table 10.2. Estimation of Number of Wave Peaks the Ship Faces at

each Sea State, During Operational Lifetime.
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Sea
State

(i)

au
01
02
03
04
05
06
07
08
09
10
11
12
13

::
16
17
18
19
91
92
94
95

~ ~ifi

R.M.S. of Scale
— .

Exact Failure -

HBl?( m )
(ft-ton)

21650
26700
40415
55570
76500

100315
129905
155885
180420
19918S
221560
241045
262695
278570
294450
308880
324040
338470
350740
363730
398370
418580
453940
469100

Parameter
(qj J

2.6055e-04
2.1321e-04
1.4323e-04
1.0351e-04
7.3909e-05
5.5743e-05
4.2367e-05
3.4877e-05
2.9618e-05
2.6752e-05
2.2548e-05
2.0779e-05
1.9320e-05
1.8063e-05
1.6522e-05
1.5813e-05
1.5C80e-05
1.3811e-05
1.3379e-05
1.3268e-OS
1.1054e-OS
9.5417e-06
7.8608e-06
1.5610e-05

(rb& that eo3= 10-3)

LOcatlon
Parameter

( UN;)

1.2212e05
1.5199e05
2.3395e05
3.1964e05
4.3253e05
5.6095e05
7.1495e05
8.4751e05
9.6411e05
1.0614e06
1.1068e06
1.2073e06
1.3332et16
1.4017eE!6
1.4325e06
1.5086eB6
1.5834e06
1.5891e06
1.6459e06
1.7553e06
1.7543e06
1.6718e06
1.6198e06
3.4350e06

Probability

‘pi&xact

3.2187e-06
3.2187e-06
3.2187e-06
3.5167e-06
1.6212e-05
9.2506e-05
6.1077e-04
2.5651e-03
7.8703e-03
1.7956e-02
2.6627e-02
5.3888e-02
1.1368e-01
1.6216e-01
1.9008e-01
2.9189e-01
3.4412e-01
3.5483e-01
4.2291e-01
5.5559e-01
5.6263e-01
4.7341e-01
4.27,87e-01
8.9814e-01

5.2268e-03

Approx.
Failure
Probability

‘p-~lpprox

1.1515e-g7
1.9185e-07
7.4390e-07
2.8659e-06
1.5214e-05
8.7141e-05
5.7095e-04
2.3866e-03
7.3035e-03
1.6695e-02
2.4546e-02
4.9997e-02
1.0663e-01
1.5281e-01
1.7899e-01
2.4856e-01
3.2866e-01
3.3817e-01
4.0512e-01
4.6154e-01
4.5673e-01
4.5091e-01
4.0343e-~1
8.6712e-01

4.7851e-03

Table~O.3. Comparison of Exact and Approximate Failure
Probabilities. ~



Sea
State
(i)

00
01
02
03
04
05
06
07
08
09
10

:;
13
14
15
16
17
18
19
91
92
94
95

~ P~*fi
L

. for pi for

j==o. o f~=o.1

4.31e-08
6.89e-08
2.41e-07
8.46e-07
4.07e-06
2.15e-05
1.34e-04
5.55e-04
1.74e-03
4.13e-03
6.25e-03
1.36e-02
3.21e-02
4.92e-02
5.98e-02
9.00e-02
1.30e-01
1.35e-01
1.73e-01
2.61e-01
2.67e-01
2.07e-01
1.82e-01
4.13e-01

4.39e-08
7.05e-08
2.49e-07
8.80e-07
4.27e-06
2.27e-L!5
1.42e-04
5.88e-04
1.84e-03
4.34e-03
6.60e-03
1.42e-02
3.33e-02
5.08e-02
6.17e-02
9.23e-02
1.32e-01
1.38e-01
1.76e-01
2.63e-L!l
2.70e-01
2.lle-01
1.87e-01
4.14e-01

1.78e-03 1.83e-03

(NXe thateo3= 10-31

pi far

~j ‘0.3

4.58e-08
7.42e-08
2.67e-07
9.61e-07
4.75e-06
2.56e-05
1.61e-04
6.64e-04
2.06e-03
4.82e-03
7.37e-03
1.57e-02
3.58e-02
5.40e-02
6.55e-02
9.68e-02
1.37e-Dl
1.43e-01
1.81e-01
2.68e-91
2.75e-01
2.18e-01
1.95e-01
4.17e-01

1.91e-03

pi for

~j=0.5

4.83e-08
7.88e-08
2.89e-07
1.06e-06
5.38e-06
2.93e-05
1.84e-04
7.57e-04
2.33e-03
5.37e-03
8.25e-03
1.72e-02
3.84e-02
5.74e-02
6.94e-02
1.01+-01
1.42e-01
1.49e-01
1.87e-01
2.72e-01
2.80e-01
2.24e-01
2.03e-01
4.20e-01

2.02e-03

pi for

Rj=o.7

“5.14e-08
8.48e-08
3.19e-07
1.20e-06
6.19e-06
3.41e-05
2.14e-04
8.70e-04
2.64e-03
5.99e-03
9.23&03
1.89e-02
4.lle-02
6.08e-02
7.34e-02
1.06e-01
1.47e-fll
1.54e-01
1.92e-01
2.76e-01
2.85e-01
2.3t!e-01
2.10e-01
4.24e-01

2.12e-03

i for

;;=0.9

5.52e-H8
9.24e-08
3.57e-ti7
1.37e-Ci6
7.25e-06
4.02e-d5
2.51e-04
1.00e-03
2.99e-fJ3
6.68e-03
1.03e-02
2.06e-132
4.39e-02
6.43e-L!2
7.74e-02
l.10e-01
1.52e-01
1.59e-01
1.97e-01
2.80e-01
2.89e-01
2.36e-01
2.17e-01
4.29e-01

2.22e-03

Table 10.4. Comparison of Failure Probabilities for Different
Correlation Co-efficients ( ~i: ) between Ms and Mw.
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Figure 10.9. Effect of Correlation ( ~i; ) between Ms and Mw on

Lifetime Failure Probability (pf).
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(for Sea State 10 in Application Example 3).
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10.2.4. -- Application to Eighteen Ships Using Level 3. M.V.F.O.S.~

and the Improved First Order Methods:

The same eighteen vessels of the example application given in

Chapter 5 are used here to perform a comparison between Level 3,

M.V.F.0.S.M. and the improved method. The characteristics of the

ships are shown in Table 5.1 (Chapter 5 ). In Chapter 5 the
M.V.F.O.S.M. method has been applied to the eighteen vessels and

their safety indices have been determined on that basis. In this
example Level 3 and the improved first order (Hasofer/Lind and

transformation to normal variables) methods are also applied to the

eighteen ships. In Level 3, the following equation was used to

calculate the probability of failure (see equation 4.35):

Pf=[l-l[+]]+l[+-%l

● e[-[+]+ $x
@.6)

where v r and o r we the mean and standard deviation of the

resistance, k is long-term mean value of the wave bending moment

(also equal to its standard deviation) and m. is the maximum

stillwater bending moment (considered deterministic). @ (,) is the -

standard normal distribution function.

In the improved first order method the Hasofer~ind Safety

index discussed in Chapter 5 was used (see equations (5. 15) to

(5.17). This procedure, however, yields identical results to the

M. V.F. O.S.M. method since the performance function is linear
(Mr - Ms -Mw = O). What results in a difference between the

M. V.F. O.S.M. and the improved method is the inclusion of the

distribution information as discussed in Chapter 5 (see equations

(5. 25) and (5.29)).
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The mean value of the wave bending moment “k” was

determined by a long term procedure described in the application

example of Chapter 5. Similarly, an initial yield limit

to determine the resistance parameters as described

application example.

Table lQ5 shows a summary of the comparisons

state was used

in the same

of the safety

indices as calculated using the M.V.F.O.S.M. method and the improved

method. The safety indices were then converted to probabilities of

failure and the results are compared with the direct integration

method (Level 3) as shown in Table 10.6. Figure 10,11 shows the
absolute value of log I () pf for the eighteen ships and Figure 10.12

shows the probabilities of failure. III both cases the results are

platted versus ship length. Table10.7 shows the partial safety factors
Ar and At of

as calculated

Figures

method gives

the resistance and total bending moment, respectively,

from Chapter 6 .

10.11 and 10.12 show that, in general, the improved

results closer to the direct integration method than the

M. V.F, O.S.M. method. This is solely because of fitting normal

distributions to the non-normal variables. However, the spread can

be quite large for some ships.

For these eighteen ships, both the improved method as well as

the M. V.F.O .S .M. method overestimate the safety of the vessel as

compared to the direct integration method, i.e., they err on the

nonconservative side.

The degree of approximation resulting from applying t h e

M. V.F. O.S.M. and the improved methods with respect to the direct

integration method varies “considerably from one vessel to another

(see, for example, vessels no. 1 and 11 in Figures10 .11 or 10.12).

Inspection of Tables 1~5 and 10.6 reveals that the spread or “errors” in

these two methods as compared with the direct integration method

are strongly correlated to the total coefficient of variation of the load;

increasing with its increase.
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The lack of consistency in the degree of approximation when

using the M.V.F. O.S.M. or the improved method and the fact that they

lead to optimistic values of ship safety are matters of concern.

ship t

1

2

3

4

s

6

7

8

9

10

11

12

13

14

1s

M

il

la

Vr

.13

.13

.13

.13

.13

.13

.13
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Table 10.7. Partial Safety Factors.

10.2.5.

Bwd 011 bed on
MVFOSM Impr.wi Mcth~

Ship Ar d~ A. At

o.34a
; ::Z&l
3
4 0:407

0.349
i 0.326
7 0.330 ;::’
!4

0.370 1.13s
::2 0.267 1.391
1.352 1.596

:Z 1.156
i:% 0.366 1.116

6; 0.339 1.103
0.343 1.103

i
1.105 0.420

:%
1.166

1.117
10

0.378
0.306

1.169
1.119 0.4Z

11 0.349 1.219 0.430
0.39

1.354

1; 0.304
..099

l.lti 0.350 1.252
1.153 0.510

:: ;% 1.071 0.452 l.lti

3 1.190

!6 L(M5 o.3i7 it

L243

0.596 1.1s2 o.6&2 i16
17

-263
i.ti

18
0.287

:%!
1.671

1.164 0.350 1.302

AP=strengthreductionfatir.
At= load~nificationfactor.

Implied in ABS Rules for Ship Longitudinal Strength

In developing a new code format, one should compare it with

existing practice to insure that the new method has some basis for

calibration, One way of doing this is to examine the reliability of

existing ships as was done in the previous examples for the eighteen

ships. This provides valuable information but has some limitations.

Among them are analyzing the ship in the as-built condition rather

than the code minimums, and the fact that in any large group of

ships, one is probably comparing different codes written at different

times.

Another way to tackle this problem is to simply investigate the

reliability implicit in the minimum strengths and loadings required
by the code. To accomplish this, the safety index ~ was calculated for

ten Series 60 ships, with Cb = 0.70 and L/B = 7.0. The minimum hull

strength and loadings required by the 1982 ABS “Rules for Building
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and Classing Steel Vessels” were used to design the ships and the

following

1.

SM

E

three assumptions were made:

The mean value of the hull strength was assumed to be

I“h = SM”~

= section modulus

Rules

(107)

from Section 6.3.l.a of the ABS

= average yield stress of

To determine the ‘standard deviation,

steel (assumed to

C~V’s of both

be 31 ksi).

10 and 12

percent were used. As an example, using the 300 ft ship, the ABS

calculated section modulus is 6.243 X 103 in.2 -ft; then the hull

resistance is 8.640 X 104 ft-ton and the standard deviation is 8.640 X

I 03 ft-ton for a 10 percent COV.

2* The value of the stillwater bending moment was

calculated by Section 6.3.2.a of the ABS Rules. But this value was

considered to he an extreme value representing the 95 percent

exceedence level; that is, this value would exceeded only 5 percent of

the time. To” find the corresponding mean and standard deviation,

this extreme value was used with COV’S of 9.1 and 38.1 percent to

cover the range of’ possibilities suggested by ~0.9] and PQ10]. As an

example, consider the 300 ft ship for which ABS gives Msw = 2.662 “

X 104 ft-ton. Then the problem is to find Msw and 6SW such that

0.95 = FSW (2$62X 104) (lQ8)

and Oswjpsw = 0.091 or 0.381 where Fsw (.) is the cumulative

distribution function of the normal distribution. Using the standard

normal variate
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it is easy to find from

using the condition for

standard tables that t = 1.64 satisfies @8) and

the COV provides a second equation. Taking
the 300 ft ship as an example, the 9.1 percent COV gives ~s w =
2.316 X 104 ft-ton and Usw = 2.108 X 103 ft-ton.

3. The value of the wave bending moment was calculated using

Section 6.3.2.b of

an extreme value.
distribution where

to determine what
the AB S Rules.

the ABS Rules but again this was considered to be

The wave bending is known to fit the exponential

M= c, that is, COV = 100 percent. It remains now

exceedence level to assign the value derived from
This uniquely determines 1 for the exponential

distribution. From references ~0.9] and ~Ql 1], values of the expected
or average value of the wave bending moment h, based on rational

analysis, were obtained and then were compared with the wave

bending moment calculated from the 1982 ABS Rules. For example,
using the data from reference [lQ9] on the Mariner, k = 29 000 ft-ton

and Mw = 2.297 X 105 ft-ton from ABS Rules, one obtains from the

exponential distribution

P [ X ~ 2.297 X 105 ] = FX(X) = 1. e-(x/i)

= 1. e-(2.297 X 105/2.9 ~ 104 ) = 0.9996

so the exceedence level is about 0.1 percent. Similar results were

obtained from other examples and the exceedence level was set

somewhat arbitrarily at 1 percent, which is slightly conservative.
Following through on the 300 ft ship example

ft-ton from the Rules, then

FX (3.569 % 104) = 0.99 = 1- e-3.569 X

or L

with Mw = 3.569 X 104

104 /k

= 7750 ft-ton

Now the safety index ~ can be calculated using

P = ‘a-pH-?,(d + & + Ulu)/2
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Equation (LQ9) is the equation for ~ using both the mean-value

first-order second-moment (MVFOSM) as well as the Hasofer/Lind

Method (without fitting a normal distribution), since the limit state

function is linear. Using the values of the parameters for the 300 ft
ship and noticing the pw = Cw = ~, then

P = 4.70 &QIO)

The partial safety factors can be directly computed using

equation (6.5). This results in the following values

As = strength reduction safety factor = 0.66

Asw = stillwater BM magnification safety factor = 1S08

Aw = wave BM magntilcation safety factor = 4.10 QQll)

It should be noted that these results depend on the validity of

the three assumptions discussed previously. Although the values do
not change much with large changes in the coefficient of variation of

the stillwater bending moment, they are rather sensitive to the wave

bending moment exceedence probability (Assumption 2.) If an

exceedence probability, of 0.1 percent is used instead of 1 percent,

the following values result

~ = 5.44, AS = .0.56, Asw = 1.10, Aw = 3.94

instead of the values given by equations QO.1O) and (10.11). It is
therefore important to regard the values generated in this example

for the safety indices and partial safety factors as relative values of

the reliability implied in the ABS Rules rather than absolute values.

With this in mind, Table 10.8, columns 1 to 4 give the computed safety

indices according to the described

and 12 percent, and for stillwater

38.1 percent.

procedure for strength COV of 10

bending moment COV of 9.1 and
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Before calculating all the partial safety factors, one more

refinement was possible. This refinement is fitting a normal

distribution to the exponential wave load variate at the most likely

failure point. This is relevant since the calculation of the safety

index implicitly assumes that each variable involved has a normal

distribution and thus the safety index can be easily related to a

probability of failure.

The equation for

bending moment in the

(5.18) as

the most likely failure point of the wave

original space is determined from equation

(1012)

The fitted normal distribution parameters can be now

determined using equation (1Q12) and equations (530) and (531 ) as

discussed previously. This leads to modified values -of the safety

indices according to the advanced Level 2 procedure. The results are

given in Table 10.8, columns 5 and 6, for stillwater moment COV’s of

9.1 and 38.1 percent, respectively. Figure 10.13 shows plots of all the

results given in Table 10.8.

Finally, the partial safety factors using the “equivalent” normal

wave bending moment distribution were calculated. The

computation is straightforward according to the procedure described

earlier except for the partial safety factor associated with the mean

of the wave bending moment as obtained from the normal

distribution. This partial safety factor must be used in conjunction

with the fictitious normal distribution mean. Since the normal

distribution arises only as a part of the distribution adjustment

process, it is more relevant to determine the true partial safety

factor associated with the actual mean of the wave bending moment

(that is, the mean of the exponential distribution). This is done by

stipulating that the true partial safety factor, when multiplied by the

mean value of the wave bending moment, gives the same margin in

the checking equation as that of the normal mean multiplied by its
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partial safety factor; that is, both lead to the same safety index

values.

Table 10.9 provides a sumrhary of these results and the target

safety indices from which the partial safety factors where computed.

It should be emphasized that these results are meant to examine

trends and relative magnitudes rather than to be used in the

absolute sense.

In general, this analysis of the implicit safety in the ABS Rules
is somewhat surprising in two ways. First, the safety index ~, is very

consistent within each method over the range of ships lengths.

Second, the ~ factor decreases slightly with length while previous

results show it increasing. One possible explanation is that the

method of calculating the wave moment was not the same. Also,

since the previous analyses were done on as built ships, they would

reflect more factors changing than just the length. These would

include varying degrees of safety margin added by the designer to

the code-required minimum as well as different codes from different

years and classification societies.
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Table 10,8. Safety Indices of the Series 60 Ships

lap (j) (2) (3) (;) (5) (6)
Ship P P PP

300 4.705 4.726 4.231 4.335 3..0 3.648
; 4ca 4.650 4.@7 4.191 4.303 3.593
3 4.595 4.W4 4.160 4.269 3.311 3s30
4 z 4.M2 4,110 4.234 3.26s 3.487
5 4.489 :E 4.M6 4.196 3.227 3.438
6 z 4.4s 4.506 4.025 4.154 3.198 3.415

m 4.414 4.460 4.134 3.179 3.403
: 4.3MI 4.456 :&! 4.114 3.170

:E 4.367 4.433 3S3 ::L’!& 3.160 :%
1: 12WI 4.346 4.411 3.944 3.149 3.373

(1)COVrmiatincelH COV mtillwabxbending9.1%
(2) COv raiatmce 10% COV mtillwamrbending 36.1%
(3) COV rmiatice C& COVatillwater bending9.1%
(4) COV rmia-~ 12% COV stiilwshm bxling 36.1%
(5) COV rAaM.nce lfi COV stiliwabr kding 9.1% ●djusted wave &nding
(6) COV resistance 10% COV atillwstar tmding 38.1%adjusted wave binding

P O STILLWATER C.O.V. = 38.1 %
A STILLWATER C.O.V. *9.1%

5.0 MVFOSM METHOD

STRENGTH C.O-V. ~ IO %

$

45

40
ADvANCED METHOD

b
STRENGTH C OV. ● IO% MVFOSM METHOO

STRENGTH C.O.V * 12 %
-

3.5

3.0

t

2.51 I I 1 I I 1 1 I I
300 400 500 600 700 800 900 I000 1100 I200

L. B.F! (FT)

Figure 10.13. Safety Index (ABS) versus length between

perpendiculars of Ships
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TabIe10 .9. Partial Safety Factors and Safety Index of Series 60 Ships

w 0.s605 1.031 6.515 3.420
; 400 0.6662 1.029 6.434 3.364
3 0.8710 1.026 6.34a 3.311
4 : 0.8750 1.027 6.261 3.265
5 700 0.E7M 1.027 6.165 3.227
6 600 0.6763 1.027 6.117 3.196
7 WO 0.M07 1.027 6.06$ 3.179

0.6606 1.027 6.046 3.170
: i% 1.027 6.018 3.160

10 12(KI :E l-on 5.9e$ 3.149

All factom hod on mength COV - 10%ud stillwater moment
Cov - 9.1%.

(1) Equiv4fent partisl mefetyfmtm, ●x
Ftidwa’emOmenL(2)Tsrgetsafety indicmfromwhichd putmlmfetyfactorse.re

derivd
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11. CONCUOXNG RIMRKS AND RKCM!ENDATIONS

The powerful tools of the theory

excellent means for assessing the safety of

of probability provide

marine structures under
certain conditions of uncertainty. Probabilistic methods have been

developed and used in practice for describing the random loads

acting on a marine structure and the uncertainties associated with its

true strength. The safety margin between an extreme loading

combination and the strength of a structure is then assessed through

reliability indices and probabilities of failure. Such reliability

analysis is only a small but important part of the total probabilistic

approach for designing or checking a marine structure. Partial safety

factors and safety formats suitable for use in design and for

implementation in Codes and Rules have been advanced and used by

practitioners as well as Classification Societies and Code Developers.

Fatigue analysis has been developed in several reliability formats

which allow for the estimation of the probability of failure from the

load history and the fatigue strength of the material. Complex

redundant structures and

mechanisms have been

which are being rapidly

structures with multiple failure modes or

treated using system reliability concepts

developed at the present time. In short,

powerful and sophisticated probabilistic tools are currently available

for use by the marine industry. There are, however, several

shortcomings that’ plevent a wider use of the probabilistic and

reliability methods in the design process. These include:
. .

1. Use of reliability analysis

requires more information on

properties and characteristics

in checking and

the environment,

of the structure

deterministic analysis. Often such information is

design processes

loads and the

than a typical

not available or

may require considerable time and effort to collect -~. Time and

schedule restrictions on the design

use of such sophisticated methods.

2. Application of probabilistic

require some familiarity of basic

.

are usually limiting factors on the

and reliability methods usually

concepts in probability, reliability

302



and statistics. Practitioners and designers are gaining such

familiarity through seminars, symposia and special courses.

Educational institutions are also requiring more probability and

statistics courses to be taken by students at the graduate and

undergraduate levels. This, however, is a slow process that will take

at least one generation in order to produce the necessary “infra-

structure” for a routine use of reliability and probabilistic methods in

design.

3. The two shortcomings stated above are not severe drawbacks

in connection with development of Codes and Rules based on

reliability analysis since such a development requires a “one time” or

a more consolidated effort to collect the necessary information. In

addition, the “one time” code format and development can be done

by experts in the field. But here the “inertia of tradition” comes into

play which makes any new approach, reliability or otherwise,

difficult to incorporate. This, however, has been changing and more

Classification Societies and Code organizations have taken an active

interest in the probabilistic methods and developed Rules and Codes

based, at least partially, on reliability.

4. On a more technical aspect, the reliability analysis did not

deliver what it initially promised, that is, a true measure of the

reliability of a structure by a “true and actual” probability of failure.

Instead what it delivered is “notional probabilities” of failure and

safety indices which are good only as comparative measures. Only

notional values are delivered because of the many assumptions and

approximations made in the analysis producing such probabilities

and indices. These approximations, deficiencies and assumptions,

however are made , not only in the reliability aspects, but also in

other aspects and disciplines used in the design. Such aspects

include determination of loads using hydrodynamics theOry and

approximations made in the structural analysis and response to the

applied loads. When all such assumptions and deficiencies are

removed from the design analysis, the resulting probabilities of

failure will approach the “true” probabilities.
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In spite of the shortcomings stated above, use of reliability

analysis in design provides advantages and unique features. These

include:

1.

2*

3.

4.

5.

6.

7*

8.

9.

Explicit consideration and evaluation

with the design variables.

Inclusion of all available relevant
process.

Provides a framework of sensitivity

of uncertainties associated

information in the design

measures.

Provides
strue ture
individual

means for decomposition of
into partial safety factors
design variables.

global safety of a
associated with the

Provides means for achieving uniformity of safety within a
given class of structures (or specified nonuniformity).

Minimum ambiguity when updating design criteria.

Provides means to weigh variables in terms of their
significance.

Rational guidance for data gathering.

Guidance in novel designs.

The advantages seem to outweigh the drawbacks and it is
almost inevitable that the probabilistic and reliability aspects will be
used in designs where randomness of the variables is an important
consideration. Based on these conclusions, the following
recommendations am made:

1. The major effort currently progressing in the development and
application of reliability methods to marine structure should be
continued and expanded. Such efforts will not be wasted since,
most likely, some of the developed procedures will, sooner or
later, be used in design.
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2. In the calculations of the reliability indices and probabilities of
failure, the resulting values depend considerably on the
methods used in determining the loads acting on the strut ture
(e.g. extreme versus long-term waves loads) and on the method
of combining these loads. A need exists for “standardizing”
such procedures for use in design.

3. A study of target reliability based on existing ships or
minimum Rule requirements for the primary strength should
be undertaken based on such a “standardized” load procedure.

4. Studies and additional development of reliability methods are
needed for the secondary (stiffened panels) and tertiary (plates
between stiffeners) aspects of ship design.

5. There is currently a strong tendency to neglect level 3
reliability analysis in favor of level 2 because of the difficulties
stated in Chapters 4 and 5 of the report. Certain
simplifications can be made however within level 3 framework
which would make it possible for application to marine
structures. Such simplifications and further developments of
level 3 are worth persuing. Similarly, application of simulation
techniques should be further studied.

6. System reliability is an essential aspects of reliability analysis
of highly redundant structures such as offshore platforms.
Additional work is needed in this area particularly in regard to
simplifying and reducing the number of permutations of
possible failure paths and the corresponding c~mputations.
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APPENDIX 1
HELPFUL INFORMATION

In this appendix some useful infomuation on several aspects of reliability of
marine stmmtures are described. They relate to topics which appeared in various
chapters in this report where reference is made to this Appendix.

AiA~AqWeibull Tl”stributi 1
. ..

The probability density fmction (p.d.f.) and cumulative distribution
fiction (c.d.f.) of the Weibull Distribution are given by

()x q-l
p.d.f. = &(x) = (V@ ~ e-(X/k)~

c.d.f. = Fx(x) = 1 . ~-(x/k)<

(1)

(2)

where k and ~are parameters to be determined from data, e.g., data of wave

amplitude or wave-bending moment amplitude. .

The first two moments (mean and variance) of the Weibull distribution are

given by:

Mean

Variance

where Ht) is the

= E(x) = kr(p+l) (3)

= Var(x) = kz ( r (2..i-i+ 1) - (r&l + 1))2) (4)

Gamma function defined as

The Gamma function is tabulated in many Handbooks,

Chemistry and Physics.

Some properties of the Gamma function are described as

e.g., Handbook of

follows:
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r(t) =

r (t+l) =

r(l) =

r (n+l) =
1

()‘z
=

()rn+~ .

w r m

t r (t) = t (t-1) . . . (t-r) 17(br)

i.e., generalization of the factorial function.
1

n! for any n = integer

T x

1X3X5 . . . (2n-1)
2n T z; n = integer

()rn+~ s

lx3X5... (1)l) ~ . n=evenhtig~r
211/2 r $

The Weibull distribution reduces to two important special cases as follows:

9. Exponential Distribution

When != 1 and k = 1, the Weibull distribution reduces to the exponential

distribution with parameter L From equations (1) and (2), the resulting p.d.f. and

c.d.f. are

(5)

Fx(x) = 1 - e-fi X>o (6)

From equations (3) and (4), the mean and variance of the exponential

distribution are given by

E&) = Ir(l+l) R ~r(2) = L (7)

Var &) = ~2 (r(z+l) . r(2)2) = ~2 (24) = ~2
(8)

~~~b

Whenl=2andk. ~E

distribution. Notice that, if

the Weibull distribution reduces to the Rayleigh

the Rayleigh distribution is resulting from a

stationary Gaussian process as the distribution of the peaks, then “E” as defined
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here is the mean square value of the process, i.e., the area under the spectral

density of the process. From equations (1) and (2), the Rayleigh distribution is

given by

p.d.f.: $x(x) = :
e-~2121? X>o

c.d.f.: Fx(x) = 1 - e-X2fi X>o

and, horn equations (3) and (4), its mean and variance are given by

()
E(_Xti=~r#+l=~&&= ~&E

VaI’(XR) = 2E(r(2) - (r(++l)~)= ~ (1-$)

Ei “nfhi “ri”~~

(9)

(lo)

(11)

o-z)

Several methods can be used to estimate the Weibull distribution

pa~ameters from a set of data. Since the exponential and the Raylei~h

distributions are special cases, similar methods can be used to estimate their

parameters. The ‘methods include the method of moments, Weibull probability

paper, the maximum likelihood method and a method based on order statistics.

Only the moment method and the Weibull probability paper are discussed here.

The advantage of the probability paper over the moment method is that it provides “

a mean for checking if the Weibull distribution actually fits the data or not as will

be discussed later.

a Method of Mometi

The mean and standard deviation of a data sample can be determined from

the usual equations:
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(L i~l (q-Rp *ax = Sample slandard deviation = ~
= )

The resulting values for ~ and ax can be used in conjunction with equations

(3) and (4) to determine the values of k and !, or more conveniently from the ratio:

(13)

which is a function off only. Thus ~can be estimated from (13) and then inserted

in equation (3) or (4) to determine k.

b. Weibull Probab ilitv PaneK

The Weibull distribution function is given by:

Fx (X) = 1. ~ -(xik)’:

therefore,

log log ( 1- Fx (X)) = -! log (A)

or,

1oglOg(1-M=~’ogx “’ogk
Insert

w = log log
(~) ; v “ogx

the linear relation results

(14)
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So if (l-FX(X))-l or (l-FX(x)) is plotted against x on log log versus log paper a

straight line is obtained (if the data fits the Weibull distribution closely). The slope

of the straight line is ~or -1, respectively, and the intercept with the axis is -1log K.

Thus k and ~ can be determined.

Notice that, in addition to providing a mean for estimating the parameters

k and 1, the WeibuIl paper is usefid in examining visually the quality of the fit.

Goodness-of-fit tests such as Chi-square, W-statistics and Kolmogorov-Smirnov

tests may also be used to examine more ‘accurately the quality of the fit and to

determine which of several candidate probability distributions fits the data best.

kB 4.=1

1= 1,W

Figure AL Weibull Plot of SL -7 Five Year Data
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More detailed information on these tests and examples of their use in conjunction

with wave bending moment data fkom SL-7 containerships are given in reference

[Al]. A sample of Weibull probability paper which shows the fit of 12319 data

points from SL-7 containerships is shown in Figure Al obtained from reference

[Al].

A1.2. The Safetv of Index Versus Probab ilitv of Failure for Normal and Othe~

Distributions;

In Chapter 4 and 5 it was shown that, for the simple margin “M (or limit

state function) given by

M=g(xl, xz) = S-Z (15)

the probability of failure pf is given by (see equations 4.4 and 5.5)

w = ~FS(z), fz(z)dz
.

(16)
o

= FG (-~) (17)

where FG (.) is the cumulative distribution function of the standardized Margin
“G” (see equation 5.4) and ~ is the safety index defined as the margin mean

divided by its standard deviation. If S and Z are both normal, then the margin M
defined by (15) is also normal and FG (.) becomes the standard normal cumulative

distribution function tabulated in many handbooks. Thus the relation between pf

and ~ can be easily computed.

Figure A.2 obtained from reference [A.2] shows the relation between pf and

~ for some other distributions of S and Z and spetied values of their coefficients of

variation ( VS= 0.13 and VZ = 0.10). The plot shows that pfis sensitive to the type of

distributions of S and Z in the higher values of ~ (range of low probabilities of

failure). “
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Figure A.2. Probability of Failure Versus the Safety Index
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Appendix 2: Computer Program “CALREL” for Performing Reliability

Analysis

A Brief Description of CALREL - A Computer Pronam for

Component Reliability Analysis:

CALREL is a batch processed computer program in FORTRAN

language suitable for execution in both mainframe and
microcomputers. Given a probabilistic characterization of the basic
random variables, and an analytic performance function (limit state

equation), the program calculates the Hasofer-Lind reliability index,

13HL, in the standard space of uncorrelated variables (U space). The
program calculates the probability of component failure if

probability distribution (level III method) of basic physical variables

are provided. The output includes sensitivity measures of the

reliability index and probability of failure with respect to basic

variables, deterministic parameters in the performance function and

the distribution parameters. Following is a brief description of

special options and features of CALREL. The attached ‘User’s Guide to

CALREL’ is a self explanatory document of all the other options and

features. “ .-

Input Description: ‘ .

The input to CALREL consists of two parts: i) input data and ii) user

provided subroutines. The data input defines basic physical random
variables, i.e., their mean standard deviation, correlation, etc. and, or

parameters of the optional distribution functions. For level-II

methods only second moment characterization of random variables

are necessary. Both mean value first order second m o m e n t

(MVFOSM) and Hasofer-Lind first order second moment (FOSM)

reliability index can be calculated. For level 111 characterization of

the random variables two options are available: i) first order

marginal distribution method [FOMD, ref .A.1] or ii) first order full

distribution method [FOFD] using Rosenblatt transformation.
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If the basic random variables are independent they can be specified

completely by their respective marginal distributions. For
dependent variables if only marginal distributions and pair wise

correlation among them is known then, a (non-unique) joint

distribution model is implicitly assumed that is consistent with the

specified marginal distributions and correlation structure [FOMD,

ref. All. The marginal distribution function can either be chosen from

the program library or can be specified in an analytical form through

a user specified subroutine called ‘df, The correlation structure for

dependent variables is specified in the input data section.

For full distribution method [FOFD] using Rosenblatt transformation

the following conditional distribution functions are analytically

specified through a user defined subroutine called ‘hfun’. [See

Example 3 in User’s Manual.]

Hi(xi IXl, .... xi.1) = p(xi~ xi I Xl = xl, .... xi-l = xi.1) (Al)

If f~~ and F~(~,

distribution function

Hi(xi I Xl, .... xi-l) =

respectively, represent the joint density and joint

of & we have:

Xi

J‘Xilll ,.....l(xilxl~xl~c“”, xi-l) dxi

ai-1

= axl .....~Xi-l Fxl, ....Xi(xl ....xi)

‘Xl, .....li.l (Xl,..., Xi-1)
(A.2)

The program ‘then implicitly uses the following transformations

between the basic variables space and the standard normal

uncorrelated space :
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U1 = @-l[Hl(Xl)] = @-l~xl (Xl)]

U3 = @-1[H3(X3&X2)] (A.3)

.

●

✎

Un = @-l[Hn(XnlXl, .... Xn.1)]

In addition to the above specifications in the subroutine ‘hfun’ the

standard deviation of the basic variables are required as input data

for calculating iteration steps in the optimization scheme to find the
~ -point. The user can also specify parameters of the above

conditional distributions (h-functions) through input data.

Performance function: The performance function (limit state

equation) in CALREL is specified analytically through a function

subprogram ‘g’. The subprogram returns a value of the performance
function for each call from the main program specifying a value of

the basic variable & The parameters for the analytic performance
function can be passed from the main program, if defined, through

the input data.

The main program uses a finite difference scheme to calculate the

gradient vector of the limit state surface at the iteration point.

Hence, if an analytic performance function is not available the

subprogram ‘g’ can be made to call other programs (e.g., finite

element, dynamic analysis program, ctc.) to return a value of the

performance function. Since finite difference scheme is used to
calculate the gradient vector at the ~ - point, a number of

performance function values may be required involving great

computational efforts. It is desirable to be able to input the gradient



vector directly when available (either analytically or through
numerical values returned by other programs such as finite element

etc.). This is beyond the capability of the present version of CALREL

but can easily be achieved through minor modification of a

subroutine in the main program. The user provided subroutines are

provided in a file called ‘user.for’ which is compiled and linked to the

main body of CALREL, each time a new problem is solved.

Output Description

The output of CALREL consists of reliability indices, probability of

failure for level-111 analyses and various other sensitivity measures.

In level-III analyses probability of failure results can be obtained

based on both first order (tangential hyperplane) and second order

(quadratic hypersurface) approximation of the limit state surface.
Two different second order approximations to the actual limit state

surface are available, based on point fitting and cuwature matching

procedures. For an approximated quadratic hypersurface the

probability content is calculated by four different approximating

formulas. The different sensitivity measures calculated by the

program can be described as follows:

(A.4)

where Q* is the design point (or ~-point).

& is a sensitivity measure of ~HL with respect to the standard
variates (UI, U2, .... etc.).

2. Measures of sensitivity with respect to basic variables ~ at a point

* in Q space) is given byx * (corresponding to Q

vp(&*)=~r D-1
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where ~ = diagonal matrix of standard deviation

and, 1 = L-1, R = ~ ~T and ~ = correlation matrix.

To make variations ~xi*; i = 1, .... n; equally likely V ~(x*) is scaled by

the corresponding standard deviations, i.e.,

A unit sensitivity vector is now defined as:

(A.6)

Gamma (y) is a relative measure of importance among basic random

variables.

The program also calculates ‘delta’ and ‘eta’ normalized (each
variation equally likely as in ~ and y) sensitivity vectors with respect

to the mean and standard deviation of the basic physical variables.

If desired the program also calculates sensitivity measures of

reliability index and probability of failure with respect to other

distribution parameters and deterministic parameters of the analytic

performance function.
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. .
User’% Guide to

h+ “ C6LREL - .
- . A First and Secfind-ctrder Structural Reliability &nalysis Pragram:..-.- G

INPUT DATA

1. Title --- Format fA80)
CCI1umn

1-00

2. Cclntral
1- 5

6-ICI

11-15

16-20

1- 5
6-10

26-30

31-3!5

Variable Descripticm
TITLE ‘- -

Data ---
1FQ

Iso

ITG

ISv

IRS

NX
w

NU
NS

NCORR

INIT

I F’R

Alphanumeric deseriptian CIT zne praDlam

Format (515/71!5/315,4d10.0)
Type c,f technique used

IFO=l tlVFOSM
IFO=2 FOSM

d

IFO=3 FOMD
IFO=4 FOFD {Rclsenblatt transfarmatien)

Type af =ecc~nd-erder apprclximation
1S0=0 Fir~t-6rder analysis anly
1S0=1 Point fitting m~thod
1S0=2 Curvature fitting methed
1S0=3 Bc{th Paint and Curvature fitting=

Type of integration schemes used in sec~nd
order appr~ximaticm

ITG.eq.O Breitung formula, Tvedt 3-term
farmula and Tvedt single integral

ITG.ne.O All abave three schemes plus

Type Of
ISV=Q
ISV= 1
ISV=2
ISV=3

restart

Tvedt dcmble integral
sensitivity analysis required

Na sensitivity analysis
distribution parameters
performance functicln parameters
distribution and performance
-functian parameters

code
IRS.ne.O restart analyzing ● n old,

uncanverged prciblem

IES.eq.6 analyze a new prcsblem
Number ctf basic variable=
Number @f deterministic parameters in
the performance function
Number of user-pravided distributions
Number @f parameters in user-defined full
di6trib~ti~~S (Gppllcable when IFO=4)
Flag for cfirrelati~n matrix &
(fipplicable when IFO.ne.4) ;

t’JCCRR.@qzC) Unesrrelated vqriable~
NCDRR.ne.O Correlated variables

Flag far initialization
INIT.=q.O Start frem mean paint
INIT.ne.O Start point specified by user

Output cede
IPR.eq.O Output all iteratian steps
It%?.ne.O Output at every ipr %tep~

?lq ?1(



1- 5

6-10

10PT Type of optimizati~m scheme used
IOPT=l HL-RF methbd
XOPT=2 Modified HL-RF method
IOF’T=3 Gradiemt %ojectien method

NIT1 Maximum number of iteratian cycles
Default=100~ Maximum=100 -.

NIT2 Maximum steps in line search:
Default=4

TOL Convergence talerance
Default=O.OOIY Minimum=O.001

OPT1 Step size reductien factor in line s=arch

IOPT=lZ t)efault=l.O
IOPT=2 ar 3- Default=O.5

0FT2 Optimization parameter
IOP1=2 Parameter c in descent functic~n

Default=10
IOPT=3 Ccinvergence tolerance fc~r line

search; Default=TOL
0PT3 Optimization parameter

IOpT=3 Maximum step Size in line search

Default=4.O

3. Usm-d~fined Distribution --- Format (13!A20)
~~ip this sectinn if NU=O.
Fclr each u~~r-defined distributl~n input:

1- 5 N13 I SU Type number c!f ue.er-defined distribution
NDISU > 20

6-25 UNMIE Name of user-defined distributicin.

Hasic Randc#m Variables
Skip this- sectign if IFO=4. “ .
Fctr each basic .variable with NDIS < 21: (213,5D1CI.0)

1- 5 W “ Variable number
5-10 ND h “ Nnxs = abs(ND) : Distributi~n type.

NDIS=i Normal
NDIS=2 , Lclgnarmal
ND1S=3 Gamma
NDIS=4 Shifted Expc~nential
NDIS=!5 Shifted Rayleigh
ND1S=6 Uniform
NDIS=7 B=ta
NDIS=ll Type-I Largest Value
N91S=12 Type-I Smallest Value

- NDIS=13 Type-II Largest Value
NDIS=14 Weibull

11-~cl Pi Distributicm parameter 1
ND>O P1 : mean value -
ND<O P1 : a= defined i; Table 1

21-30 P2 I)i%tributien parameter 2 -
ND>.0 Pa : Standard dev~:ation
ND<O P= z as defined in Table 1

31.-4<1 P3 Di!atributi~n parameter 3
4 i-!50 P4 Distribution parameter 4

Presently~ P3 and P4 are applicable
only when NDIS=7.

51-66 XINIT Initial value of x; Only needed when INIT=O



●

Far each basis variable with NDIS > 20: (215~5DlC).O/15,2D10.0)
i- 5 NV Variable No.
6-10 NDIS Distribution type
11-20 Pi Distributicln param~ter 1 :“
21-30 F’2 Distribution param@ter 2

e 31-40 P3 Distributicln parameter 3 ~’
Ll>.. 41-50 P4 Distribution parameter 4,= ‘*-

51-60 XINIT Initial value of x; must be defined‘.-.

1- 5
even if INIT=O

IB Flag ffir beunds
IB=O NCI bounds
lB= 1 Has lewer baund
IB=2 Has upper bcund
IB=3 Has lc,wer and up~er b~und%

6-15 END 1 Lawer bc,und of the basic variable
Applicable when IE=1,3

14-2!5 END= Upper bound uf the basic variable
Applicable when IB=2,3

~. Basic Rar,dam Variable- --- Farmat (15,2D10.Q, 13,2D10.C~)
Ship this secticin if IFO=l, 2* or 3.
Fcir ~ach basic variable input:

1- 5 NV Variable NQ.
6-15 SIG Standard deviatian

.

1&-25 XINIT Initial value clf x
24-30 IB Flag far bounds

IE=o Na bcwnds
IE=l Has lawer bcwnd
IB=2 Has upper bound
IE=3 Ha= lciwer and upper bounds

31-40 13ND1 Lower beund af the basic variable
Applicable when IB=2,3

41 -!5CI BND2 Upper bound of the basic variable
Applicable when IB=2,3

6. Correlaticln Matrix --- Format (*D6.0)
Skip this section if NCORR=O.
1-1o RO L6wer triangle Of the correlation matrix
1-10,11-20 excluding the diagonals. Read it raw-wise
... and in triangular shape.

7. Parameters in Full Distributim Functicm --- Fclrmat (8D1O.C})
Skip this sectian if NS=O.
l-lCI~... DS Values Of the parameters in the full

cumulative distribution funtti~n-,--..
~8. Parameters in Performance Functi@n --- Farmat (6I31O.6I
g Skip this section if NP=O. p

l-lC}~... DP Values @f the deterministic parameters in
the performance functian “’*:
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9. Contrcll Flag fer Prclgram Executictn --- Fc4i-mat(15)
1- 5 NEXT Cantrc,l flag fclr program executian

NEXT=O stctp execution .
NEXT=l Restart a brand new analysis

E
Gll th~ afclrementiclned data

~Lg shc~uld be input After this line.
y NEXT=2 Re-analyze the oIU problem
‘.*. with a different set of parameters

in the performance function.
Only the values clf the parameters
in the perfcirmance function shcluld
be input after this line.

(1) If the nearest puin~ is not fctund in NIT1 steps- the final
status of the analysis will be stored in an unfc~rmatted
rile ‘calrel.sav’. This file mu~t remain unaltered if the
analysis is to be continued in an ensuing run.

(2) In a restart prablem? the pragran reads cmly the title and
the contrcll data frclm the input. file. The initial status
c,f the prctbl~m are read from ‘ealrel.Sav*.

In ctrder te be ccmsistent, IFO, NX, NP, NU) N~? and NCORR
must be the same as the previ~us run.

(3) la averride the r==trictian~ NITI<1OO and TOLt.C~.001y input

negative NIT1 and TOL. Their ab=cllute value= will be used
in the analysis r~gardless af the limits.
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functlcin g(xsdp)
c
c..~..functicm subroutine te c~mpute the limit-state functian

C...*.X = vectar of basic variabl~s
C.i...dp = vectc~r of deterministic parameter%

c
implicit r~al@ (a-hla-~)
dimensictn x(l)~dp(l) .

. .●

.

9 E“-”
:.
;

re**rn
en~

+“

.

=ubtioutine df(par?x~nd,cdf?pdf)
c
c . . . ..Subrcmt~ne tn cclrnpute pdf
c.....par = vectar ctf parameter
C.....x = value of variable
c.....nd = distribution number

c.....cdf = computed cdf value
c.....pdf = camputed pdf value
c

implicit realw8 (a-h$a-z)
dimensien par(41

and cdf of user-defined distributions
distributions

(>20)

g= to (10?20,.. .) nd-20
10 calf= ...

pdf= ...
return

20 cdf = . . .
pdf= ...

return
.
.
return
end

subrclutine ,hfun(x~ih?ds~hi)
c
c.....Subreutine to compute conditional CDF’S far Rasenblatt transformatic!n
c.....>: = v~ctcjr clf basic variables
c.....ih = rc,w number in Ra5Enblatt ~ransfarmaticsn

c.-...ds = v~ctclr cif deterministic distribution parameters
c.....hi = value of ith conditional cdf
c

implicit real+8(a-hsa-z)
dimension x(l),ds(l)

go to (10~20~...) ih
10 hi = ...

return
20 hi% ...

re*rn
*~. =

.
return
end
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k41e Usef*+Qr
.

furtctian g(x!dp)
implicit real*8 (a-h to-~)

● dimensicm x(l), alp(l)

9 = dp(2)*x (2)** 2-alp(l)*>:(l)
return
end

subrc~utine dftpar?):?nd?cdf!pdf)
implicit real*S (a-hSo-z)
di~n~icm par(4)

-. re.mrn
en’d::

●
.

=ubroutin~ hfun{x?ih?ds~h)
implicit real+=(a-hsa-z)
dimen~ion x(l),ds(l)
return
end

r-

example 1
331 3 c1
2 2 00001
1 20 8 -C).c)ool
1 -11 90.9992 .CM41275 0. 0.
2 2 at>. !5. (). c1•

1.0 0.!5
c1

—

0.
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. ***++*+******************4****************+*****************

* Un i ver s i t y ctf Cd 1 i for ni a *
* Department of Civil Engineering *
* Divisian of ●

* Structural Engineering and Structural Mechanics *
* *

F OS R AP
g

●

First (kder Structural Reliability Analysis Prctgra”m +

‘$ & *

“*. I)e\”elopeclBy *
* Pei-Ling Liu and Rrmen Der Kiureqhian *
* Last Revision: September 1986 *
* ●

* Extended far F~FD and SOSWP by *
* HOtJG-Z~NS LIN, March 1~=~ *

+****+***++*+**************+********************************

+*** input data -- prebl~m 1 ****

exaample 1
type clf first-clrder technique used .......ifa= 3

ifca=i ...mean-value! 1st order, 2nd moment (mvfclsm) method
ifc,=~ ...first-c,rder? seccind mc~ment (fctsm) methc~d
ifc,=3 ...first-arder. marginal distribution (fclmd) methad
ifct=4 ...first-c.rderl full dist.(flasenblatt trans) method

type af secclnd-nrder technique used .....is~= 3
isct=~ .............nci secc~nd-arder approximation

lsu=l . . . . . . . . . . . . . . . . . . . . . . peint fitting method
1sc~=2 . . . . . . . . . . . . . . . . ..curvature fitting method
i ~nz~ . . . . . ..point and curvature fitting methods

type c~f integration s.cfiemesused in seccmd-arder
analysls .............................. ● .ltg= 1

itg.eq.C~ ....Hreitung? Tvedt’s 2-term and single integral
itg.ne.tj -.-all c.f th= abclve plus Tvedtss dauble integral

ty~e of sensitivity analysis “required ...isv= 3
isv=Cl .....................net ~ensitivity analysis ‘required
lsv=l ..............senzit ivity clf distribution parameters
i5v=2 .......sensitivity cff perfclmance function parameters
isv=s . . ..dlStrlhltiCttT and perfclrmance functian parameters

number ctf randctm variables ...............nx= 2
number Clf dc~terministic parameters .......np= 2
num5er clf us~r provided distributicm .....nu= 0
mumtler Of pdramet=r= 1~ u=~r-defined full
di~tributians ............................ns= c}
ccirrelaticcn structure ..................ncc~rr= (1

nCctrr.eq.O . . . . . . . . . . . . . ..uncc!rrelated variables

ncctrr.n_e.0 . . . . . . . . . . . . . . . . . carrelat~d variablras
. .

initlall~~~tlctn flag ....................init= 6
init.eq10 ........ =.initialization at mean paint
init.me.~ ................init ialization by user

Clutput flag
.

. .* . . . . . . . . . . . . . . . . . . . . .m. . ● . ipr= 1
lpr.eq.O ..............cutput anly final results
ipr.ne.~ .....= ........autput at every ipr ~teps

.-.

326



Icop T=l . . . . . . . . . . . . . . . . . . . . . . . . . . . ..nr-flkli,~ *,iQu

,iclpt=2 ....................Mc.dified RF-HL method
iopt=3 ...............Gradient Prejecticln method

maximum number ef iteratian cycles .....nitl= 20
ma%imum steps In lzne search ...........ni t2= 4
ccfnverqence. tolerance . . . . . . . . . . . . ..tal= 1.CIOOE-C14
optimization parameter 1 ..........ctptl= 1.000E+OO
optimi=atlon parameter 2 ..........ctpt2= O*OCIOE-01
ctptimi:atlon parameter 3 . . . . . . . . ..apt3= C}.CIOOE-01

availabl~ prc~babilit~ distrib”tian%:
nc,rmal .....................ndis=l
lcognoriiial................ndis=~
gamma i...................ndis=3
exponential ..............ndis=4
ra,yleigh..................nd is=5
uniform ...................ndis=6
beta ......................ndis=7
type i largest value .....ndis=ll
type i smallest value ....ndis=12
type ii largest value ....ndis=13
Welbull..’ ...... ...........ndis=14

statistical data cif basic varibl~s:
var ndis m=an st. dev. paraml pararn2 param3 param4 init. pt

1 11 1.00E+02 2.IXE+CI1 9.lCIE+O1 6.41E-02 1.6CIE+<}2
2 2 2.00E+O1 5.00E+OCI 2.97E+O0 2.46E-01 2.OC}E+O1

draterministic par~meters in performance function:
dp t 1) = 1.00CIE+OO
dp ( 2) = !50000E-01

**** salutian phase *+ y.*

mvfclsm technique: beta = 0.9806; failure probability = 1.634E-01
---------------------------- --------------------

iteratic~n na. 1
var. lirtearisatienpctint unit normal

alpha
1 1.CIO;E+C12 1.77gE-C)l c1.lW%
2 2.OCICIE+O1 1.231E-01 -0.9817

reliability index beta = 0.2159
---------------------- --------------- --._----_-

iteraticm no. 2
var. linearization paint unit n~rmal

x
1

alpha
9.992E+01 1.731E-01 c1.3046

2 1.!557E+01 -8.93QE-01 -cl.9s25
reliability index beta = 0.9097
----------------------- ---------------,---.,-- ---..
iteraticlmna. 3
var. #ineari=atian point unit normal

. alpha
1 1.04;E+02 3.78;E-Q1 0. 3&97
2 1.449E+01 -1.1S5E+O0 -0.9292

reliability index beta = 1.2437-+.---- ----- —. —-.,-—..

.
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iteratic,n nc~. 4

var. lineari2atic1n paint unit narmal
x Y alpha

L 1.038E+02 4.636E-01 c1.3777
2 1.4E&E+01 -1.17CJE+C10 -CI.9239

reliability index beta = 1.259!5
------------------------- -------------------- --

iteratictn no. 5

var. linearization paint unit nurmal ..

Y alpha
~~.c)A;E+02 4.7SSE-01 0.3781

.

: &4S6E+01 -1.166E+O0 -CI.9258
reliabil~~ index beta =

+
1.2S89

----------------------- ------------------------- -------------------------- ---

iteratic~n no. &
var design puint unit sensitivity vectsrs nearest pt unit ficmmal

X* gamma delta eta y* alpha
1 lo040E+02 0.3702 -i~.271s -().C)841 4.761E-01 0.3782
2 1.4S&E+01 -cl.9257 c).9624 -0. ?965 -1.165E+CJCl -cl.9257

----------------------- ---------------------- -------------------------- ------

reliability index beta = 1.23g9
failu~’e probability = 1.04CIE-01

***************+*****************+********************
* ●

☛ Sensitivity Analysis ●

* *
***************+*****************+********************

● +* Sensitivity Analysis an Distrik,uticm

d(beta)/d(parameter) :
var mean ~td dev par 1 par 2
1 -1.773E-C12 -5.349E-03 -1.773E-02 4.157E+CM3
2 2.514E-01 -2.536E-01 3.7SJE+CKI -4.3S2E+CKI

d(pfl)fd (parameter) :
var mean !atd dev par 1 par ~
1 3.2C12E-03 9.661E-04 3.202E-CJ3 -7.5C17E-01
2 -4.54CIE-02 4.58CIE-02 -6.791E-01 7.914E-CI1

Parameters ● **

par 3 par 4

par 3 par 4

w++ sensitivity Analysis an Deterministic Farameter6 W+W

par d(beta)ld(parameter) d(pfl)id(parameter )
1 -1.880E+O0 3.393E-01
2 3.760E+Ci0 -h.?91E-01

-.
&
:Y*

.— . . ..— — *-—--
— .

.
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********+*********************************************
* *
* Second Order Structural Reliability Analysis *
* *
● Point Fitting lleth~d ●

* *
******************************************************

. .

:.+
++ coordinates and ave. main curvature= cif fitting pctints im ratated space +*+-1?— +
Y’ 1 = ‘;.259944 y’z= 1.216377
Y*1= -1.250944 y’2= 1.e1750b
a 1 =-c}.2&47&lSE-01
------------------------- -.-_---&------------- -----_--_---------

*** s.ecand-arder appraximatian ***

failure generalized
probability reliability index

Breitung a=ymptcltic fc~rmula 1.077E-01 1.2390
Tvedt tbre~ term fclrmula 1.091E-01 1.2315
Iwedt single integral formula l.CW.IE-01 1.2316
Tvedt dcmble int~gral formula 1.090E-01 1.2316

**********+***************+ ***************************
* ●

☛ Secand Order Structural Reliability Gnalysis *
* #
* Curvature Fitting Method *
● *
*****+*******+**+*************************************

+** curvature matrix at dte~lgn pc,int in rc.tat~d space **+

1

1 -2.7WE-02

● ☛☛ secclnd-arder apprnximatian ● **

failure generalized
probability reliability index

Breitung a5ymptGtic fctrmula . 1.078E-01 1.2303
Tvedt three term fc,rmula 1.092E-01 1.2306
Tve-dt single integral formula 1.C)92E-01 1.2306
Tvedt dcluble integral formula 1.092E-01 1.2306.7=

~ :b
s-- ~

a.

. . - - -.. -
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**+******+* ****************4************ ●*******************

* Un i ver s i ty a f Cd 1 i fern i a *
* Department Of Civil Engineering *
* Divisian of *
* Structural Engineering and Structural Mechanic=. *
* *
*. F OSR A P *
* First Order Structural Reliability Analysis PrQgr~m ●
-.* *
i. Devel~ped By *
● Pei-Ling Liu and Armen Der Kiureghian *
● Last Revision: September 1986 *
* *
* Extend=d for FOFD and SOSRAP by *
* HONG-ZONG LIN, March 1986 *
**+******************************************** *************

**** input data -- prclblem 1 ****

examplE ~
type af first-order technique used .......ifo= 3

iffi=l ...rnean-valueq 1st carder, 2nd mcunent (mvfosm) methctd
ifc,=z .~.firgt-c{rder, secc,nd mament (fosm) method
ifo=3 ...first-cjrder~ marginal distribution (fomd) method
ifc,=4 . ..fir~t-order$ full dist. (Rc,senblatt trans) methed

type clf ~ecc~nd-order technique used .....iso= 3
i%a=(} .............no second-arder appreximatien
isci=l .....=................paint fitting methed
iso=2 ....- .............curvature fitting methed
ise=3 .......paint and curvature fitting m=thed~

type c,f integrdtien schemes u~~d in seccmd-firder
analysis “tg= 1.......● .● ● ● .......● ● ● ● ● .......*1

itg.eq.o ....Ereitungs Tvedt’s 3-term and single
itg.ne.Cl ..all af the atc~ve plus Tvedt’s double

type clf sensitivity analysis required ...isv= 3

integral
i~tegral

isv=CJ ....................no sensitivity analysis required
iSV= 1 ........ ● .....sensitivity of distribution parameters
isv=2 .......sensitivity c{f perfcomdnce function parameters
i~v=3 ....distributian and performance function parameters

nufiiberof randc,m variables ...............nx= 2
number c,f deterministic parameters .......np= ~

number c,f user prc,vided dl~tributlctn . . . . . mu= o

numh~r clf parameter= in user-defined full
distributions ...................”.........ns= o
cc,rr~latictn structure . . .. == =..=.. =.ncarr=rr= 1

ncclrr.~.CI . . . . . . . . . . . . . ..uncctrrelated variable=

ncc,rr.~.0 .................correlated variables
initiali~tien flag .....................inlt= 0

.-
T’

init.eq;O ..........initialixatisn at mean paint
g

init.ne.O ................initiali~ation by u=mr
r..

@utput flag
“r:

. . . . . . . . . ● . . ● . . . . . a . ● . . . . . . . ipr= . 1

lpr.~q.0 . . . . . . . . . . . . . . Output anly final results
lpr.ne.O ..............Clutput at every ipr St=ps

--- -+_-
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aptimizatic~n ~cheme used . . . . . . . . . ... . ..lCipt= 1 4

icapt=l .............................RF-HL method
ictpt=~ ....................Mcldified RF-HL mettmd

, ic,pt=3 . . . . . . . . . . . . . ..Gredient %ojecti~n method
maximum number Of iteratiun cycl~s . . . ..nitl= 20
ma>.lmurn =teps In line search ...........ni t2= 4
cctnvergsnc~ tal=rance . . . . . . . . . . . . ..tc.l= 1.000E-C)4
c~ptimizatlcm parameter 1 ..........optl= 1.000E+OO

Ciptimization parameter 2 ..........c*pt2= O.OCKIE-01
c~ptimizaticm parameter 3 ..........c.pt3= 0.000E-01

.-_:

availabl~ prabatility distributions:
,=

normal,. .... ..............ndis=l
lngnarmal ................ndis=2
gamma . . . . . . . . . . . . . . . . . . ..ndi~=q
e::panential ........ ......ndis=b
rayleigh ...... . . . . . . . . . . ..n d is=S
unlfctrm ...................ndis=6
beta ......................ndis=7
type i largest value .....ndis=ll
tfp~ i =mallest value ....ndiS=12
type ii lar~est value ....ndis=13
welbull ...................ndis=14

statistical data clf basic varibles:
var ndis m-an St . dev. paraml param2 param3 paratri4 init. pt

1 11 1.00E+C12 ~.~ctE+~l 9.ICIE+O1 6.41E-02 1.<~CjE+~2
2 2 2.C@E+Ol 5.QOE+OO 2.97E+C)0 2.4&E-C)l 2.00E+C)l

.

d~terministic parameters in performance functian:
dp ( 1) = 1.CIC)OE+OO
dp ( 2) = 5.000E-01

c~rrelaticm coefficient matrix in Original space,:
1“2

1 1 ● CKJ f3.5cl
2 0.50 1.00

.carrelaticln cc~efficient matrix in narmal space:
1

1 1.00 :.51
2 0.!51 1.C)o

. .- ~.
**** suluticm phase ****

wfc,sm technique: beta = 1.6911; failure probability = 1.376E-Cll
------------------------- ----------------, -------

iteration ,rmc. 1...-----
~ar . lineari~aticm pOint unit normal

,.:- x alpha
1 ~iCICKtE+02 1.77;E-01 -0.3470
2 ~;OCIOE+Ol 3.764E-02 --0.9379

‘eliabilt”y index beta = 0.1813
--------------------- ------------- -------------

:teratian rm. 2
far. lineari=aticin pc~int unit nermal

x
1

●lpha
9.C~78E+Cl -3.51[E-01 -0.2407

z 1.519E+C~l -9.489E-01 -0. 9b54
“~liabilty index beta = 1.0117

.,,.~-. . . .
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pa+ d(beta)/d(pararrt~ter ) d(”pfl)/d(parameter )

it -2.32SE+OC) 2.7azE-cll
2 4.6ZAE+CK) -S.E&3E-C11

*********~+**+**+*******++*****+4****+****************

~~1= 1.552342 Y’2= 1.4&3146
y?l= -1 .!552B42 Y’2= 1.43.5239
a i =--lJ.3d4sga3E-cll
------------------ ________ ______ ___ ______ _______ ______ ___

.-

+** curv~~ure matrix at design p~int in rotated ●.pace **+

1

1 -2.27~E-C)2
..
.,:--.=.
~ ;-.
_
., *** secclnd-order apprc{ximatian *** ::

.

fai lure generalized
prcibability reliability j.ndex

Ereltlmg asymptc,tic fc,rmula &.3E&E-02 1.5257
lvedt three term fclrmula &.446E-C12 1.51s4

T~~dt ~ingle int~gral fclrmula 6.44EIE-C@ 1.5195
Tvedt dcubl~ integral fc!rmula 6.445E-C12 1.5184
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function g(x~dp)
implicit real*S (a-hqa-~)

1 dimensicln x(l) !dp(l)

9 = alp(l) - dp(2)*x(l) - dp(3)*x(2)
return

end

subrciutine df(par~x!nd~cdf?pdf)
implicit real*8 (a-hza-z)
difi~nsiun par(4)
rekrn
end,

~ = 5-x, -xz

subrcmtin~ hfun(x,ih?d~th)
implicit real+S(a-h9e-z)
dimensien x(l),ds(l)

ga to (10!2C1) ih
10h= l-dexp(-x(l))

r~turn
2~h= l-( l+ds(l)+x (s))+de:~p(-x (2)-d~( l)*~(l)*::(2))

return
end

.

:
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+****+*******+***+*****+**s.**********+*******+**+***********
+ Un i v~r s i t y c,f Ca 1 i for n i a *
* Department clf Eivll Engineering *
* Division clf ●

+ Structural Engineering and Structural Mechanics *
● *
* CALREL ●

* First and Second ~rder Reliability Analysis Prc~gram *“
*- *
* Develc.p~d By,.> *
*

.
Pei-Ling Liu and Armen Der Kiureghian *

*. Last Revision: September 1986 *
* *
* Extended fcrr F!3FD and SOSRAP by *
* HONG-ZDNG LIh!r I’larch 19S6 *
**+**+*******+* ***+***************+*+***+*****++***+**++****

example 3
type cIf first-order tschnique used .......ifo= 4

i%”c=l ...cIeari-value~ Ist cir-derz 2nd mclment (mvfclsm) m~tticid
ifc=2 . . .fir~t-c!rd~r$ s=cc~nd Mcim=nt (fosal) ,methctd
if~=3 ...fir~t-c~:-der~ marginal distributic!n (fc~ma) methctd
i~c~=b . . .flrst-cli-der> fuil dist. (Rcts~rhlatt tran=) methctd

type Cif SFcct”.-lti-c,i-d~r tgchnique used .....isc= 3
isc~=O .............nc! secclnd-or~sr aFprciximatlan
ism=l .. . . . . . . . . . . . . . . . . . . ..paint fitting methctd
iscl=~ . . . . . . . . . . . . . . . . ..curvatur= fitting method
i=cl=~ . . . . . ..pc~lnt and curvature fitting metheds

type of ir,tegratic:n schemes used in secc!nd-~rder
dnalysls . ....*.. .....................-.ltg= 1

]tg.r.q.(} .. ..H.-eitL~rlgsTvedtss 3-term and slnqle integral

i,tg.rl-.0 . . ●ll clf the abcrve plus Tv~dt’~ C!clubleintegral
type Clf %Snsitivit y ana.ly~i~.req~.;ired ...isv= 3

i~.V,=<).. ● ......... ● .......nci serlsitivity analysis r~quirec!
ls’~=l ..............sensl tivity ctf di~tributicln parametei-s
i~v=a .’.. . . . .s~n~itlvity of perf:imance functimn parameter~

i~v=s ....di%trihutic~n and perfc,rmance functic{n parameters
numbsr clf rahdcim variables ...............nx= 2
number cif deterministic parameters .......np= 3
number clf q==~< prcivided distributicsn .....nu= Q
nl.ltttl~i- CI+ psr;meter~ in user-defined full
diiGtrlbLltiC!l15 . . . . . . ..’ . . . . . . . . . . . . . .......ns= 1
cctrrelaticliastructure .................ncorr= 1

ncfirr.~q.C~ ...............unc~rrelat~d variables
rtcorr.ne.~) .................correlated variable%

li-latl~l,i:-atlc,nflag .. . . . . . . . . . . . ........in]t= 1
ir,it.eq+;t} ...... ● ....i.nitializaticm at mean pc~int
. , .. . .

,lnxt.n~ ~~ ................init]ali=atic~n by user
Output flag ....... ● -,......... ● ..........ipr= 1

ipr.,eq.(1 ..............c,utput only final results
ipr.r,e.Ci . . . . . .. i . . . ..’.cutput at every ipr steps
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ic,pt=l .............................RF-HL methcld
ic,pt=2 ....................flc,dified RF-HL methc,d

sc!pt=3 ...............(%adient Prajecticin method
q!imum number c[f iters,ticln cycles .....nitl= 20
rna::imum steps in lirle search --.*... ....ni t2= 4
cc’nvergemce tcrler=nce . ● . . . . . . . . . . . . tc,l= 1.00CIE-134

.
c+ptlml:atlc~n parameter 1 . . . . . . . . . . c~ptl= 1. [:@t:~E+C)~)

ctptimizaticln p~ram=t~r 2 . . . . . . . . . . clpt~= fJ.~c~~)E-01

c,ptirr,izatic,n param~ter 3 . . . . . . . . ..r~pt3= O.OW)E-01

------------------------- ----------------------

iteraticln no. 1
var . linei~rizatictn paint unit nc~rmal

>: alpha
1 1.82SE-C)$ -9.&E-CJl -0.42!54
2 4.R19E+CK~ z.t)b4E+~cI c1.9135CI

r~liahjlty index keta = 2. 27s8

it~raticln rlcl. 2
var. linearizatic,n pc,int unit nc,rmal

.~ Y
1

alpha
1.S17’E-01 -9.6°5E-Cll

2
-(2.4246

4.S18E+OC1 2.{}A2E+O(} Cl.9254
r~liabi.lty ind~x beta = 2. 2?E@
--------------------- ------------------------ --

iteraticin nci. 3
var. linearizaticin pctint unit nclr.mal

.A
Y alpha

1 1.823E-01 -9.475E-<11 -0. 42!52
2 4.G15E+O0 Z.(:163E+C)0 CI.9CE1

reliability index bcita = 2. Z78E!

iteraticlr m. 4
Var . linearizaticlri pclint unit normal

X Y alpha
i 1.SISE-01 -9.690E-c}I -CJ.4247
E 4.3:SE+O0 ~.(:)L.zE+{:)<i 0.’?0!53

reliabzlty index beta = 2 ●27a8
------------------------- ----------------------

iteraticln ncl. 5
var . linearization pclint unit nurmal

:.: Y alpha
1 1.S%2E-01 -9.679E-111 -CI.42Eil
2 4.91BE+CKI 2.cI&3E+C)CI 0.9<)51

reliability inde:: b@*a = 2.2700
---------------------- -------------------------

iteratictn nc,. &
var. lirlearlzaticln pclint unit nc!r.mal

--
Y

1
alpha

ti;91;E-1:)1 -9.68?E-01 -0.424S
2 4.81BE+OCI 2.C)63E+CM3 ().9()53

r~liabilty inde:: beta = 2. 27S8
-------=- --------------------- -----------------

itfars.tic~n m,. 7
var . llrl~arizatinn pciint unit nclrmal

X Y
1

alpha
1.E)21E-01 -9.A91E-(:J1 -{1.42Z0

2 4.PISE+CWJ 2.C16SE+C}0 0. 90S2
reliability index beta = 2.2708
---- - . ----------- -------

--?

.
* .
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var. L1l-1e-1 liaLAL*Il p~.~i,+ -. .-.,.+ ,. -----

4 x

1

alpha
1. 82 C)E-O 1 -9 ●68[E-01 -0.4249

re~i abi 1~~=;%~~0beta2” C)S3E+**
0.9052

Z .2708
--------------------- ------- ------- ------- .

iteraticln no. 9
var. linear izaticln pctint unit nc~rmal

X alpha

1 1 .S21E-CI1 -9. 43;E-C)l -Cl● 4250
2 4.HlSE+@3 2.063E+OC) 0.9C152

reliabilfy index beta = 2.2708
..--

------- -e---- ------------------------ ---------
iteration.no. 10
var. lin~arizatictn point unit normal

x Y alpha
1 1.82C1E-01 -9.h85E-01 -0.4249
2 4.81SE+C@ 2.C163E+C@ 0.9Cl!52

reliability index beta = 2. 27%0
--------------------- --------------- _______ ----

it~ratic,n nc~. 11
var. lirt~arizatic,n pc,int unit nclrmal

x Y alpha
1 1.S21E-C~l -9.&S3E-01 -0.4250
2 4.SISE+CK1 2.CM3E+C@ 0.9052

reliability index beta = 2. 273G
-------------------------- ------ _____

iteratican no. 12
var. lineari:aticm pctint unit normal

x alpha
1 1.~2c}E-~1 -%68:E-01 -0.42’49
2 4.=18E+WI 2.063E+C)0 0.9052

reliability index beta = 2.2700
---------------------- --------- ______

reliability index beta = 2- 278e
failure prctbability = 1.134E-C)2

i-

******************+*************************+*********
* *
* Sensitivity Analysis *
● ●

**+**************+************************+*******+***

-*** Sensitivity Gnalysis en Distributing Parameters ***

par
1

par
1
2
3

d(beta)/d(parameter) d(pfl)/d(parameter )
1.SZ5E-C}2 -S.427E-04

:...
...:=
T ● ** Sensitivity Analysis on Deterministic Parameters ***~
s i:

d(beta)/d(parameter) d(pfl)/d(parameter) .

3.76EIE-CI1 -1.l19E-02 ●.:

-6.833E-02 2.039E-03
-1.814E+C10 5.393E-C12

. . . . .
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~, j = 2.273824 ~.. ~ = 2.545[:)3<)
~s~= -Z.27W324 ~F~= 2.5%9305
s 1 = ~).’=f:JL@2&pE-~~l

------ ------ ----- ----- ------ ----- ----------- _____ ----- _____ _____

fai lure g=neraliz=cl
prc~bability - r=.liability ind~x

13!-eiturlga~ymF?,cttic farmula 9.5’:2E-03 2.343?
T\vedt, three ~~i”m fc,rmula 9,295E_~:)3 2.3541
Tv@fit =irqle integral farmula 9.2?IE-<13 2 ● 3530
Tve5t cic,uttleinteqral fcrmula 9.5+’SE-(113 2.353B
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Ta run ChLREL, da the following:

(1)

(2)

g
,>

‘- (3)
.

(4)

(5)

(6)

(7)

(9)

..-.— .
(10)
-....
,...*..=
C

~-

(1$)

[12)

Turn cin the pawer of IBtlPC and VCR terminal.

Create a temparary directary in.drive C and make it yaur
working directory. b.

tC:\l> MD CE249
CC:\l> CD CE249 .. ;

s
+“

Copy all files in D:\CE249 to drive C.
CC:\CE2491> COPY l):\CE24q\*.* .

Reset the search path.
tC:\CE2491> START

Edit the three subrcwtines in u==r.far SUCh that they work
in the same manner as indicated in the cla=s handaut.
Tcc edit the subroutines, key in:

CC:\CE2493> FE USER.FOR
TO display the help file in PEJ press <Fl> key.

Cctmpile user.f~r ●nd link the prc~gram.
CC:JCE2491> CUSER

If there are errors, use *TYPE ERR’ ta examine theml and
cclrrect the errors in user.fer. Then compile user.far again.
Once a c~rrect user.far is ctimpiled~ link the pragram.

tC:\CE2491> LREL

Create am input data file.
tC:\CEZ491> PE IN

Ta exit the editnr, type ‘<F3>
is skippedl same spaces in the

IN NOTAEIS <RETURN>’. If ‘NOTAiis’
input file will be replaced

by tab’s”. ThatG,mes&es up the input file.

Run pregram C~LREL.
CC:\CE2493> CALREL < IN (Output an screen)

tC:,\CE249J> CALREL < IN > OUT (cwtput te file ‘OUT’)
Make sure you leave spaces between file names and the SYmbc,l.s .

“ and >.\

Read c,utput file (if the output iS raut~d &a a file)
KC:\CE2491} TYPE OUT (read the file ‘OUT’ on screen)
tC:\CE2491> NETFRINT OUT (get a hardeapy of the output file)

Befclre the print queue is mbmitted~ make sure that the line
printer is enline.

,— .. ....... . .

Stare yaur files in a flctppy disk and delete ●ll files in
the working direet~ry.

[C:\CE249J> COPY (yaur file) A: G
EC:\CE2491> ERASE *.* ~

&
Delete the temporary directery.

A
*

CC:\CE2493> CD \
tC:\J> RD CE249

la shut dawn the machine, take yaur disk~tt~ Gut and turn

off the power.
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