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EXECUTIVE SUMMARY 
 
When a ship is damaged, the operators need to decide the immediate repair actions by evaluating 
the effects of the damage on the safety of the ship using residual strength assessment procedure.  
The objective of this project is to develop a procedure and tools for operators and decision 
makers to assess the residual ultimate hull girder strength of damaged ships for a given damage 
scenario.  This study is a continuation of NICOP project (Lee, et al 2006), in which an 
assessment procedure was developed.  In order for the readers to understand the significance of 
the current project, the assessment procedure is briefly described here.  This procedure consists 
of four steps: (1) Identify the location and size of the openings; (2) Calculate the still water 
bending moment and wave-induced loadings including vertical bending moment, horizontal 
bending moment and torsion; (3) Calculate the ultimate hull girder strength of the damaged 
cross-section considering the interaction of vertical bending moment, horizontal bending 
moment and torsion; (4) Assess the structural integrity by deterministic and probabilistic 
approaches.  In Step 1, once a ship is damaged, the location and size in terms of length, height 
and depth of the penetration of the opening should be determined, so the degree of water ingress 
could be predicted.  In Step 2, the floating conditions of the ship need to be calculated.  The 
stillwater bending moment and wave-induced loads are then estimated.  Because it is desirable to 
install the developed tools on board of ships for a quick and reliable assessment, computational 
time is a very important factor in choosing a particular method for both loading calculations and 
strength assessment.  In Step 3, the ultimate hull girder strength of the damaged cross-section 
needs to be assessed.  The interaction of vertical bending moment, horizontal bending moment 
and torsion should be considered.  In addition, the strength of other cross-sections (not the 
damaged one), where the total load including stillwater bending moment and wave-induced loads 
under the damage conditions exceed that in intact condition, should also be assessed.  In Step 4, 
reliability of the damaged ship is calculated so a well-informed decision could be made based on 
this information. 
 
In the current project, some tools for predicting wave-induced loads and assessing ultimate hull 
girder strength have been further developed.   In particular, a 2-D linear and a nonlinear method 
have been applied to the ship model to calculate the wave-induced loads in regular waves at the 
cut where the force gauge is installed to measure the loads in the experimental tests.  The 
numerical results have been compared with the experimental results.  
 
The 2-D linear method was shown to predict accurately wave-induced vertical bending moments 
in head seas and stern quartering seas, but the accuracy deteriorates with increases in wave 
amplitude.  The accuracy in predicting horizontal bending moment is not as good as that for 
vertical bending moment, but is acceptable in most cases.  However, the predictions of torsion 
moment are not satisfactory, although the magnitude of the torsion moments were low and did 
not affect the results of the study.   
 
The experimental results have revealed that majority of the response RAOs show a nonlinear 
trend in which the non-dimensional responses are decreasing as wave amplitude increases in 
most frequency ranges, especially at the frequency where the responses achieve the maximum.  
For vertical bending moment this trend is very remarkable.  It may be said that the high 
nonlinearity is an inherent feature of the sample vessel with a very fine hull form.   
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Because the damage on the ship is unsymmetrical transversely, it is expected that the wave-
induced loads might be different when the wave is approaching the ship model from different 
sides due to the dynamic behaviour of the flooded water in the damaged compartment.  The test 
results have shown that the vertical bending moment at 45° wave heading at most of frequencies 
was slightly larger than that at 315° wave heading.  There was no clear trend for horizontal 
bending moment at 45° and 315° wave headings.  However, the horizontal bending moment in 
beam seas at 90° wave headings is slightly larger than that at 270° wave headings.  The torsion 
moment at 315° wave headings is larger than that in 45° wave headings. 
 
The 2-D nonlinear method does not produce satisfactory results for vertical bending moment, 
horizontal bending moment and torsion moment in regular waves.  Although this conclusion was 
largely based on the analysis of the results in 2-metre wave height, it was equally applicable to 
the results in 2.5-metre wave height.  Again the predictions of torsion moment are the worst 
among the three components of the wave-induced loads, while the predictions of vertical bending 
moment have similar level of accuracy to those of horizontal bending moment.  The nonlinear 
method tends to produce better results at the resonant frequencies than at the other frequencies.  
However it should be pointed out that the measured wave heights were not equal to 2.0 metres, 
which was used in the numerical calculations, at most frequencies. 
 
Model uncertainties of both 2-D linear and nonlinear methods have been calculated.  For the 2-D 
linear method, it is observed that the accuracy, which is measured by the mean and COV of the 
model uncertainty factor, of vertical bending moment is generally better than that of horizontal 
bending moment and torsion moment, and the accuracy for loads in head seas is much better than 
those in stern quartering seas and beam seas.  This could be mainly caused by the underwater 
hull form of the ship model with a small Cb compared with conventional ships.  The COV of 
horizontal bending moment is almost as twice as that of vertical bending moment.  The COV of 
torsion moment is the largest of the three.  Because of the large difference in COV for different 
force components it is more rational to consider the model uncertainties for vertical bending 
moment, horizontal bending moment and torsion moment separately in reliability analysis rather 
than using one combined model uncertainty for all the components.  It can be seen that the 2-D 
linear method has better mean and COV of Xm in the predictions of vertical bending moment and 
horizontal bending moment in both intact condition and damage scenario 2 than the 2-D 
nonlinear method, and both 2-D linear and nonlinear methods have produced unsatisfactory 
results in torsion moment.  Based on the current results, it may be said that the 2-D linear method 
is more accurate than the nonlinear method.  However the nonlinear method can distinguish the 
difference between the positive and negative responses, but linear methods can’t.  This 
advantage of the nonlinear method is especially important for ships with small block coefficient, 
such as frigates, etc.  For a frigate the ratio of sagging bending moment to hogging bending 
moment could be as large as 1.78 (Clarke, 1986).  In addition, hull girder strength in hogging is 
normally different from that in sagging.  Therefore the nonlinear method is preferred.  This slight 
preference of the nonlinear method was also based on another fact that the nonlinear method 
tends to produce better results in the resonant region than at other frequencies.  Based on the 
current method for combining different load components, the accuracy in resonant region is more 
important than that at other frequencies. 
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Extreme design loads in irregular waves based on the RAOs from the 2-D linear method, 2-D 
nonlinear method and experiment have been calculated for the ship model at the cut in the intact 
condition and damage scenario 2.  The formulae recommended in the Lloyds Register’s rule for 
naval vessels (Lloyds Register of Shipping, 2002) have also been used to calculate the wave-
induced extreme design loads.  The results have demonstrated that the difference of extreme 
design loads (both hogging and sagging) between 2 m and 2.5 m wave height was increasing 
with the increase of sea roughness, but always less than 6.62% in intact condition and 6.60% in 
damage scenario 2.  For the hogging bending moment, the extreme design value based on the 2 
m wave height is greater than that based on the 2.5m wave height, but it was opposite for sagging 
bending moment.  Hence the effects of wave amplitude on the prediction of extreme design loads 
are modest.   
 
Both 2-D linear and nonlinear methods overestimate extreme design loads.  The results are 
slightly in favour of the 2-D linear method in the intact condition, while the accuracy of the 2-D 
linear method is almost as good as that of the 2-D nonlinear method in damage scenario 2.  Both 
hogging and sagging bending moments predicted by the 2-D nonlinear method agree well with 
those of LR Rules’ formulae.  However hogging bending moment of the 2-D linear method 
agrees well with that of LR Rules’ formulae, but agreement in sagging bending moment is not as 
good as in hogging bending moment because in the 2-D linear method the sagging bending 
moment is the same as hogging bending moment.  It should be noted that the extreme design 
value predicted by LR Rules is the maximum value for the ship model.  In other words, the 
extreme design value at the cut is the same as that of the sections at amidships because the cut is 
not far away from amidships.  However the extreme design value predicted by the 2-D nonlinear 
method at the cut could potentially be quite different from that of the sections at amidships, 
where the maximum vertical bending moment would occur.  This might at least partly explain 
why LR Rules produces the largest extreme design hogging and sagging moments in the intact 
condition. 
 
The ratio of sagging bending moment to hogging bending moment of the 2-D nonlinear method 
is in good agreement with that of the experimental tests.  This is an advantage of the 2-D 
nonlinear method over the 2-D linear method.  It should be pointed out that the reason for using 
the RAOs of the 2-D linear method rather than 2-D nonlinear method in strength assessment in 
this project is that the 2-D nonlinear results were not available when the strength calculations 
were being performed.   
 
The 2-D linear method has also been applied to the original ship (not the model) in order to 
predict the extreme design loads for the strength assessment.  The extreme design loads in sea 
states 3 - 7 have been calculated using short-term prediction.  An ‘equivalent wave system’ has 
been used to combine vertical bending moment, horizontal bending moment and torsion moment.   
 
The ultimate hull girder strength was calculated using MARS (Bureau Veritas software for 
structural calculation) and ANSYS (FE analysis software).  Calculations were made for both 
intact and damaged structure.  The MARS software provides different failure mode algorithms 
for calculation of ultimate strength that include Elastic Ideally Plastic (EIP) failure mode and 
Beam-Column (BC) failure mode, apart from the others.  The ultimate bending moment capacity 
for the combination of vertical and horizontal moments for the elastic-plastic failure mode and 
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for the beam-column method were found and interaction formulae were derived based on that.  It 
may be observed that for the hogging condition when the bending curvature ratio (ratio of 
horizontal to vertical moments) is small and, consequently, predominant curvature is in the 
vertical direction depicting a predominant vertical bending moment, the difference between 
ultimate moments for damaged and intact conditions is small. 
 
The finite element analysis was carried out using ANSYS, since no FE based design assessment 
of the intact ship was available to compare the results with that of the damaged ship.  The FE 
analysis for ultimate strength of the hull girder was carried out for both intact and damaged 
conditions.  Two types of moment interaction functions were developed, one set of two 
combinations of moments such as interaction of vertical and horizontal moments, and one set for 
interaction of all the moments viz. vertical, horizontal and torsion moment.  The vertical and 
horizontal moment interaction function obtained from FE analysis was compared with that of the 
MARS beam-column and elastic-plastic interaction diagram.  The ultimate moment estimates 
obtained using beam-column method is higher than that from the two-frame finite element 
analysis.  The difference between the two results diminishes as the Mv/Mh moment ratio 
increases. 
 
The reliability analysis was carried out using CALREL software, the First Order Reliability 
Method (FORM) and Monte Carlo Simulation (MCS).  The results from the finite element 
analysis were used for deriving the limit state function.  The reliability-based assessment of hull 
structure was made for both intact and damaged condition.  The reliability assessment for intact 
condition is made for the worse case scenario, Sea State 7 and for lesser sea states.  Three 
combinations of loads identified from the ship loading analysis were included in the calculations.   
 
 



1. INTRODUCTION 

1.1 Background 

A large number of ship accidents continue to occur despite advances in navigation systems.  
These accidents have caused the loss of cargos, pollution of the environment, and loss of human 
lives.  Based on statistical data from Lloyd’s Register of Shipping (Lloyd’s Register, 2000), a 
total of 1,336 ships were lost with 6.6 million gross tonnage cargo losses between 1995 and 
2000.  2,727 people were reported killed or missing as a result of total losses in this period.  A 
survey of the accidents of Greek ships over 100 GRT from 1993 to 2002 has revealed that about 
48 percent of the losses were caused by grounding, collision, and excessive loading (Samuelides, 
et al., 2007).  Therefore it is very important to ensure an acceptable safety level for damaged 
ships.  Unfortunately adequate structural strength in the intact condition does not necessarily 
guarantee an acceptable safety margin in damaged conditions.  In conventional design practice only 
the structural strength in the intact condition is assessed. 

Recognising the importance of the residual strength of ships, the International Maritime 
Organisation (IMO) has proposed an amendment, which states: ‘All oil tankers of 5,000 tonnes 
deadweight or more shall have prompt access to computerised, shore-based damage stability 
and residual structural strength calculation programmes.’ 

When a ship is damaged, the operators need to decide the immediate repair actions by 
evaluating the effects of the damage on the safety of the ship using a residual strength 
assessment procedure.  Various publications have investigated, as summarised in the following, the 
local and overall structural behaviour of a damaged ship.  Smith and Dow (1981) carried out 
pioneer work in assessing residual strength of damaged ships and offshore structures.  Strength 
reduction of dented stiffened panels was investigated.  The effect of this reduction on the 
ultimate strength of hull girder was further assessed. 

Qi, et al. (1999) derived a simplified method for assessing the residual strength of hull girders of 
damaged ships.  Reliability of the ship was also estimated by a first order and second 
moment method. 

Wang, et al. (2002) have tried to use the section modulus to indicate the residual strength of 
damaged ships.  Both section modulus and ultimate strength of damaged ships were calculated.  
A regression analysis was carried out to derive an empirical formula for predicting safety level of 
damaged ships. 

A few more papers (Ghoneim and Tadros, 1992, Paik, 1992, Paik, et al., 1995, Zhang, et al., 
1996, Paik, et al., 1998, Ghose, et al., 1995) have discussed the residual strength of damaged ships 
from different viewpoints. 

All the above work only studied the ultimate vertical bending moment capacity without 
considering the effect of the horizontal bending moment and torsion and the critical load case was 
not evaluated.  This means that the worst load case was assumed to be the vertical bending moment, 
and the horizontal bending moment and torsion are negligible.  This methodology was, strictly 
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speaking, only valid for ships in the intact condition. 
 
In the design of ships, structural strength is conventionally assessed only in the intact condition.  
Under this condition, the critical load case for a mono-hull ship is the vertical bending moment, 
which reaches maximum in head seas.  Both horizontal bending moments and torsion are 
considered to be insignificant.  Torsion is considered only when there are large openings on ships.  
This methodology has been successfully applied to ship design for many years.  Because of this, the 
prediction of environmental loads and assessment of structural strength were normally carried out 
separately by two groups of people.  When the ultimate strength of the hull girder is assessed, 
only vertical bending moment is considered.  Although some researchers have tried to evaluate 
the effect of horizontal bending moments and shear on the ultimate strength (Paik, et al., 1996), 
it is concluded that these effects are insignificant.  But this conclusion is only valid for the intact 
condition.  

When a ship is in a damaged condition its floating condition could be changed dramatically.  Its 
draught is increased and it may heel.  It could also have large holes in the structure.  If the 
methodology used for intact conditions is blindly applied to damaged conditions, the results 
could be misleading.  Ideally the environmental loads should be calculated together with the 
assessment of the residual strength of the ship.  In another words, a systematic approach should 
be used for a more accurate assessment of residual strength of a damaged ship.  Chan, et al., 
(2001) have shown that the most critical condition for a damaged Ro-Ro ship is in quartering 
seas.  Although the vertical bending moment in quartering seas is smaller than that in head seas, 
the horizontal bending moment is quite large.  The ratio of horizontal bending moment to 
vertical bending moment could be as large as 1.73, so the combined effect of vertical bending 
moment and horizontal bending moment is more serious.  In addition, torsion, which was not 
considered in the above study, normally reaches the maximum in quartering seas, so the effect of 
horizontal bending moment and torsion on the ultimate hull girder strength should be 
considered in the assessment of residual strength of damaged ships.   

From 2004 to 2006 the Office of Naval Research (USA) sponsored a project, NICOP, which 
shares the same title as the current project, Reliability-Based Performance Assessment of 
Damaged Ships, to address some of the important issues associated with damaged ships (Lee, et 
al., 2006).  The participants include Y.W. Lee, Y. Pu, H.S. Chan, A. Incecik and R.S. Dow in 
Newcastle University, I. Khan and P.K. Das in the University of Glasgow and Strathclyde, and 
P.E. Hess in the Naval Surface Warfare Center Carderock Division (NSWCCD) in the USA.  In 
that study, a procedure was developed to assess the structural integrity of damaged ships.  The 
procedure consists of four steps: (1) Identify the location and size of the openings; (2) Calculate 
the still water bending moment and wave-induced loadings including vertical bending moment, 
horizontal bending moment and torsion; (3) Calculate the ultimate hull girder strength of the 
damaged cross-section considering the interaction of vertical bending moment, horizontal 
bending moment and torsion; (4) Assess the structural integrity by deterministic and probabilistic 
approaches.  The state of the art of the methods for predicting environmental loads and assessing 
the structural safety was reviewed.  The developed procedure was applied to a sample vessel, 
HULL 5415, to demonstrate the applicability of the proposed procedure.   

The hydrodynamic loads in regular waves were calculated in that project using a 2-D linear 
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method.  Experimental tests on a ship model with a scale of 1/100 were also been carried out to 
predict the hydrodynamic loads in regular waves.  The results of the theoretical method 
and experimental tests were compared to validate the theoretical method and to calculate the 
modelling uncertainties of the theoretical method for probabilistic strength assessment.  The 
comparison of theoretical results with experimental results has revealed that the prediction of 
vertical bending moment of the 2-D linear method agrees reasonably well with the experimental 
results, while the prediction of horizontal bending moment is acceptable.  However the accuracy 
of the torsion moment was generally poor.  Further research is required to improve the accuracy 
in this area.   

The extreme wave-induced loads have been calculated by short-term and long-term predictions.  
For the loads in the intact condition, long-term prediction with a duration of 20 years was used, 
while for loads in damaged conditions short-term predictions were used.  The maximum values 
of the most probable extreme amplitudes of dynamic wave induced loads in damaged conditions 
are much less than those in intact condition, because the most probable extreme load in intact 
condition is based on long term prediction, while the most probable extreme load for damaged 
conditions is based on short term prediction under sea state 3 for 96 hours, as recommended by 
Lloyds Register in their rules for naval ships (Lloyds, 2002).   

An opening could change the distribution of not only the stillwater bending moment but also 
the wave-induced bending moment.  It is observed that although some cross sections are not 
structurally damaged, the total loads (including stillwater bending moment and wave-induced 
bending moment) acting on these cross sections after damage (in other locations) may be 
increased dramatically compared to the original design load in the intact condition.  In this case the 
strength of these cross sections also needs to be assessed.   

The ultimate strength of the hull 5415 was predicted using progressive analysis, the results of 
which compare well with those of another program developed by Bureau Veritas (BV).  
Although the strength assessment of all the critical cross sections should be carried out in 
practice, not all the cross sections have structural details for this hypothetical vessel.  
Therefore only those critical cross sections with structural details available were assessed to 
demonstrate the applicability of the developed methods.   

The residual strength in four different damage scenarios was compared.  In damage scenarios 1 
and 2, where the locations of the damage is near the elastic neutral axis, the residual strength 
has been about 96.6 percent and 93 percent of the ultimate strength in the hogging condition.  
Similarly the residual strength for damage scenarios 3 and 4 shows significant decrease 
compared to the ultimate strength.   

Deterministic strength assessment of the damaged ships was carried out by considering the 
interaction of vertical and horizontal bending moments for the intact condition in damage 
scenario 2.  It was found that the damaged ship is quite safe with a fairly high safety margin.  
This is due to the relatively small wave-induced loads, which were based on a short-term 
prediction, and at the same time the extent of damage was fairly moderate, and did not reduce 
the ultimate strength too much.   
The residual strength has also been assessed by a probabilistic approach.  The limit state 
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function used for reliability analysis was derived from an interaction equation including vertical 
and horizontal bending moments, which was developed in the deterministic strength 
assessment.  The reliability index for HULL 5415 in intact condition was calculated.  Overall, 
the developed procedure and the methods worked well, but the NICOP study revealed the need 
for further research in some areas.  That need is addressed in the project being reported, which 
extended the previous work in the following areas: 

• A different method of sealing the midship joint in the model was used in the testing 
programme to increase the accuracy of the results, particularly the torsion moments. 

• The hydrodynamic analysis was extended to use a nonlinear 2-D method to predict 
wave-induced loads. 

• The strength of the hull was evaluated using finite element modelling. 
• The reliability analysis was extended to include survival in higher sea states, up to 

Sea State 7. 
 

1.2 Objectives and Scope of Work 

The objective of this project is to develop a procedure and tools for operators and decision makers 
to assess the residual ultimate hull girder strength of damaged ships for a given damage scenario.  To 
achieve this objective, the following work packages were addressed: 

• Develop a method for predicting wave-induced loading on damaged ships, and 
validate the method by comparing with experimental results so that its model 
uncertainty could be determined. 

• Develop the damaged ship structural strength predictions with a focus on hull girder 
bending using numerical analysis. 

• Develop reliability-based analysis procedure for determining the recoverability 
and operability of damaged ships. 

This project is a continued effort of the NICOP project discussed above (Lee et al., 2006).  While 
these two projects share the same objectives, the current project focused on the following tasks: 
 
Task 1: Apply the 2-D linear method to predict wave-induced loads on the ship model.  In 
this task, an in-house program, which is based on a 2-D linear theory (Chan, 1992), was chosen 
to predict wave-induced loads in regular waves.  This method is capable of dealing with 
unsymmetrical floating conditions, which is a unique feature of damaged ships.  The program is 
also capable of modelling flooding in compartments.  The details of this method are described 
in Section 2.1.1, while the results are presented in Section 4.2.  
 
Task 2: Apply the 2-D nonlinear method to predict wave-induced loads on the ship model.  In 
this task, another in-house program, which is based on a 2-D nonlinear method (Chan, et al., 
2003), has been used to predict wave-induced loads in regular waves.  This method calculates 
wave-induced loads in the time domain.  Unsymmetrical floating conditions and flooding in 
compartments can also be considered in this method.  The details of the method will be 
described in Section 2.1.2, and the results will be presented in Section 4.3. 
 
Task 3: Carry out more experimental tests to validate both the 2-D linear and nonlinear methods.  
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Experiments have been carried out to investigate the structural responses of a ship model 
with a scale of 1/100.  The results revealed important phenomena at various damaged 
conditions, and were used to validate both the 2-D linear and nonlinear methods.  The 
test facilities and other details of running the tests will be shown in Section 2.1.4, and the 
results will be presented in Chapter 4. 

Task 4: Calculate model uncertainties of both 2-D linear and nonlinear methods for reliability 
analysis.  In this task, model uncertainties of both the 2-D linear and nonlinear methods were 
calculated.  These are important parameters that influence the reliability of strength assessment.  
The method is presented in Section 2.1.5 and the results are presented in Section 4.4. 

Task 5: Calculate extreme design loads in irregular waves using short-term prediction.  Extreme 
design loads in irregular waves have been calculated using short-term prediction for the original 
sample vessel at amidships.  Response Amplitude Operators (RAOs) of the 2-D linear method 
have been used.  These results are used for strength assessment in Task 7.  In addition, RAOs 
from the 2-D linear method, 2-D nonlinear method, and from the experiments have been used to 
calculate the extreme design load of the ship model at the cut where the force gauge is installed 
in order to compare the results of the different methods.  The formulae recommended by Lloyds 
Register of Shipping (Lloyds Register of Shipping, 2002) are also used to predict the extreme 
design loads.  The method is presented in Section 2.1.3, and the results are in Chapter 5. 

Task 6: Combine different load components, such as vertical bending moment, horizontal 
bending moment, and torsion, in order to assess structural integrity under combined load 
conditions.  One of the aims of this project is to investigate the effects of horizontal bending 
moments and torsion on the ultimate hull girder strength of damaged ships.  In this task, 
vertical bending moments, horizontal bending moments, and torsion are combined.  These results 
were developed by the Newcastle University research team and were then passed onto the 
research team of the University of Glasgow and Strathclyde to assess the strength of the 
sample vessel.  The method is presented in Section 2.2 and the results are in Section 5.3. 

Task 7: Develop the damaged ship structural strength predictions with a focus on hull girder 
bending using numerical analysis.  The ultimate hull girder strength of the damaged cross-
section was assessed.  This task was accomplished using ANSYS finite element analysis 
software and MARS (Bureau Veritas software for structural calculations).  The interaction of 
vertical bending moments, horizontal bending moments, and torsion were considered.  In 
addition, the strength of other cross-sections than the damaged one, where the total load 
including the stillwater bending moment and wave-induced loads under the damaged 
conditions exceed that in intact condition, was assessed.  The method and results can be found 
in Chapter 6. 

Task 8: Develop a reliability-based analysis procedure for determining the recoverability and 
operability of damaged ships.  The reliability-based assessment of hull structure was made for 
both intact and damaged conditions.  The reliability assessments for the intact and damaged 
conditions were made for the worse case scenario, Sea State 7, and for lesser sea states, and 
included three load combinations as identified from the ship loading analysis.  The reliability 
analysis was carried out using CALREL software to perform analysis using both the First 
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Order Reliability Method (FORM) and Monte Carlo Simulation (MCS).  The reliability index 
and relevant probabilities as calculated are given in table 5.6.3.6.1 for both intact and damaged 
case. 

This research has been jointly carried out by Newcastle University and the University of 
Glasgow and Strathclyde.  Tasks 1–6 were executed by Newcastle University, while the others 
were executed at the University of Glasgow and Strathclyde. 

This report consists of ten chapters.  Chapter 1 presents the background, objectives and scope of 
the project.  The state of the art of the techniques has been reviewed in the NICOP project (Lee, 
et al., 2006), so it was only briefly discussed in this report.  The details of the methods that are 
used in this project are presented in Chapter 2.  Chapter 3 shows the particulars of the sample 
vessel and its model, and describes briefly three damage scenarios used in the following 
calculations.  Chapter 4 describes the measurement and analysis of loads, and Chapter 5 presents 
the prediction of extreme design loads and load combinations.  Chapter 6 contains the analyses 
of the ultimate strength of the hull girder, and the reliability analysis of the intact and damaged 
ship in various sea states is presented in Chapter 7.  The results have been analysed and 
discussed in Chapter 8, which summarises the major findings of the current project.  Finally, 
recommendations have been made in Chapter 9.  The References are contained in Chapter 10. 



2. METHODOLOGIES 
 
2.1 Methodologies for Wave-Induced Loading 
 
To predict the motion and load responses of a vessel to waves, either the results from 
experimental measurements or from linear frequency domain methods may be used.  However, 
the frequency domain method is not adequate for large-amplitude motion predictions because it 
assumes not only that the free surface condition is linearised but also that the ship motions are 
small relative to the ship dimensions.  Large-amplitude motions and resulting global wave loads, 
which cannot be predicted accurately by linear theory, are associated with nonlinear effects.  In 
particular, the wetted surface of a ship’s body varies significantly in large-amplitude motions and 
becomes asymmetrical during roll motion.  The variation of the wetted surface can lead to 
different absolute values of positive and negative responses.  Moreover, floodwater dynamics 
inside a damaged compartment will alter the inertia characteristics of a damaged vessel.  There is 
a need to use time-domain methods to take these effects into account.  In the present study a 
linear two-dimensional method in a frequency domain, a nonlinear two-dimensional time-
domain method and model experiments have been employed for the predictions of motion and 
global load responses of a notional US Navy destroyer, Hull 5414, in regular waves and in intact 
and various damaged conditions. 
 
2.1.1 Linear two-dimensional method 
 
Fig. 2.1-1 shows the right-hand coordinate system o-xyz with its x-axis pointing toward bow, and 
the z-axis pointing vertically upward through the centre of gravity of the intact body with the 
origin o in the plane of mean free surface. The body is assumed rigid and oscillates in six degrees 
of freedom about its mean position with complex amplitudes ηk. Here, the index k = 1, 2, 3, 4, 5, 
6 refer to surge, sway, heave, roll, pitch and yaw modes of motion respectively. 
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Figure 2.1-1: Co-ordinate system and modes of motions  
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For dynamic equilibrium the coupled linear equations of motion of the rigid body can be written 

as 

       for j = 1, 2, …6 (2.1-1) j
k
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where kη&& and kη&  are motion acceleration and velocity respectively; Mjk is the generalised mass; 
Ajk is the added mass; Bjk is the damping; Cjk is the restoring coefficients; Fj is the wave exciting 
force or moment.  The indices j and k indicate the direction of force and the mode of motion 
respectively. 
 
The generalised mass matrix [M] of a damaged ship whose centre of gravity is at (xG, yG, zG) is 
given by 
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in which M is the mass of the ship including floodwater, Ijj is the moment of inertia about the 
origin in the jth mode of motion and Ijk is the cross-product of inertia about the origin. 
 
The added mass, damping coefficients, and wave exciting forces can be calculated by integration 
of the sectional values over the ship length L, and can be expressed respectively as 
 
                                          (2.1-3) ( )∫=

L
jkjk dxxaA

 
                                          (2.1-4) ( )∫=

L
jkjk dxxbB

 
                                          (2.1-5) ( )∫=

L
jj dxxfF

 
where ajk, bjk and fj are respectively the sectional values of added mass, damping coefficient and 
wave-exciting force.  The details of calculations of ajk, bjk and fj can be found in Chan et al. 
(2002). 
 
The global wave-induced loads Pj on a particular transverse cross-section x of the ship body can 
be expressed as 
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where P1, P2 and P3 represent wave-induced longitudinal force, horizontal shear force and 
vertical shear force respectively, while P4, P5 and P6 are wave-induced torsional moment, 
vertical bending moment and horizontal bending moment respectively. mjk is generalised mass 
for the portion aft the cross-section. 
 
                                          (2.1-7) ( ) ( )∫=

x
jkjk daxA ξξ

                                          (2.1-8) ( ) ( )∫=
x

jkjk dbxB ξξ

                                          (2.1-9) ( ) ( )∫=
x

jj dfxF ξξ

The integration is performed from the aft end of the ship body to the cross-section x. 
 
 
2.1.2 Nonlinear time-domain method 
 
To describe flow fields and motions of a rigid body floating in waves in a time-domain, it is 
convenient to refer the rigid body motion to a space-fixed coordinate system O-XYZ as well as a 
body-fixed coordinate system o-xyz as shown in Figure 2.1-2.  The position and orientation of 
the body should be described with respect to the space-fixed system O-XYZ while the linear and 
angular velocities and accelerations of the body should be expressed in the body-fixed system o-
xyz.  The space-fixed system O-XYZ is the inertia system with the origin O lying on the 
undisturbed free surface and the Z-axis pointing vertically upward.  The body-fixed system o-xyz 
is a moving rectangular co-ordinate system with the origin o being coincident with the centre of 
gravity of the intact body.  The x, y and z axes are directed respectively toward the bow, the port 
side and the sky (Chan, 1998; Chan et al., 2003). 

 
 

Figure 2.1-2: Co-ordinate systems (Chan at al, 2003) 

 9



 
The position and orientation vectors of the body-fixed axes with respect to the space-fixed frame 
are defined respectively in the form 
 
 X ),,( 321 ηηη=                                (2.1-10) 

 Ω ),,( 654 ηηη=                                                                            (2.1-11) 
 
The relationship between a body-fixed position vector r and a space-fixed position vector R can 
be written as 
 
 R = X + T r (2.1-12) 
 
where T is an orthogonal transformation matrix (Chan 1998). 
 
The Euler equations of motion of a rigid body in six degrees of freedom with respect to the body-
fixed co-ordinate system are defined by Chan 1998 as 
 

(2.1-13(2.1-1( ) ( ) 4) )( )& & &m r m rG G Gv + × + + × + × + × × =ω ω ω ω ωv v r F
 

( )& & & &I r I I rω ω ω ω ω+ × + + × + × + ×m mG Gv v M=v
in which m is the body mass; I is the matrix of second moment of inertia; v and ω are linear and 
angular velocity vectors respectively; the dot stands for time derivative with respect to the body-
fixed frame; rG is a position vector of the centre of gravity of the body; F and M are the external 
force and moment vectors respectively.  The body-fixed angular velocity vector ω and the Euler 
angular velocity vector dΩ/dt can be related through a transformation matrix Γ  (Chan 1998). 
 
 dΩ/dt = Γ ω (2.1-15) 
 
Equations (2.1-13) and (2.1-14) represent a set of six second-order ordinary differential 
equations and can be solved by numerically integration over time using 4th order Runge-Kutta 
method. 
 
 

Within the framework of linear potential flow theory the components of the external force F and 
moment M can be generalised in the form 
 

( ) jj
k

jkjkjj WCBAFF −++−= ∑
=

6

1
jj vv~

& (2.1-16) 

 
where j and k indicate the direction of external force and velocity (acceleration) respectively in 
the body-fixed co-ordinate system; Fj is the wave exciting force; Ajk is the added mass; Bjk is the 
damping coefficient; Cj is the buoyancy force; Wj is the force due to gravitation.  These 
hydrodynamic forces due to radiation and wave excitation at each time step can be calculated by 
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integration of sectional values at the incident wave profile.  The sectional values of 
hydrodynamic coefficients and wave exciting forces at various ship sections can be obtained by 
means of two-dimensional source distribution technique (Kim et al., 1980).  The buoyancy force 
and moment of a submerged body are calculated by integration of the sectional area and moment 
of the submerged section.  The external force F and moment M are time dependent and become 
nonlinear.  The hydrodynamic coefficients are coupled with each other when the ship sections 
are no longer symmetrical.  For a damaged hull loss of buoyancy can be accounted for in the 
calculations of buoyancy force and moment by means of the lost buoyancy method or added 
weight method.  The linear and nonlinear loads analysis programmes that were used account for 
damage using the added weight method.  In the linear method, the added weight corresponds to 
the flooding water when the ship is in the stillwater floating position, and in the nonlinear model 
the added weight changes instantaneously with changes in wave height and ship motion.  No 
compartment permeabilities were used in these calculations. 
 
The position vector rG of an intact ship is equal to zero as the origin of the body-fixed system is 
defined at the centre of gravity of intact ship and the ship mass m and inertia matrix I is constant.  
The dynamic effects of flooding water in a damaged compartment on ship motion are taken into 
account by adding the time dependent mass of flooding water into the ship mass m.  
Consequently the mass m, inertia matrix I and the position vector rG of a damaged ship vary with 
time.  As it is difficult to simulate the free surface of flooding water, the sloshing effects are not 
considered in the present study.  For simplicity the level of flooding water is assumed to be the 
same height as that of the incident wave profile. 
 
 

Since the ship body is free to drift, she will inevitably drift away from the nominal heading angle 
β.  In order to maintain the wave-heading angle within a reasonable range, an artificial restoring 
yaw moment c6 is introduced in the equations of motion and may be expressed by 
 

c a I z z6 = − ζ ω
ο

2 (2.1-17) 
 
where a is a constant; ζ is wave amplitude and Izz is yaw moment of inertia.  In the present study 
the constant a of 0.1 is used outside roll resonant region.  In addition to potential roll damping 
B44, viscous roll damping b44 obtained from roll decay tests is used in the prediction of roll 
motion the in roll resonant region. 
 
 

Although the equations of motion are fully nonlinear, the hydrodynamic forces due to incident 
waves, radiation waves and diffraction waves are still linear and calculated up to the incident 
wave profile.  No radiation and diffraction waves are considered on the free surface.  As a 
consequence, drift motions predicted by the present numerical model may be unrealistic. 
 
 

After solving the nonlinear Euler equations of motion at each time step, the dynamic global wave 
loads can be easily calculated. They are expressed by Chan 1998 as 
 

( )
(2.1-18) 
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where the over-bar implies that the integration is carried out from one end to the particular cut. 
Fs and Ms are shear force and bending moment vectors due to still water loads. rc is the position 
vector of the point of interest at which the dynamic shear force vector P acts. 

(2.1-19)  
 
2.1.3 Responses under irregular waves 
 
The elevation of the ocean waves is irregular and has a random nature in a seaway.  In practice 
linear theory is used to simulate irregular seas and to obtain statistical estimates.  The wave 
spectrum can be estimated from wave measurements that were made during a limited time period 
in the range from ½ hour to around 10 hours.  In the literature this is often referred to as a short-
term description of the sea.  The ITTC spectrum can be used to calculate significant values and 
other characteristics of wave exciting forces and responses in short term prediction method 
(Hasselmann at al, 1973; DNV, 2000). 
 
In this study short-term prediction was used to predict extreme design loads. In this method, a 
wave spectrum is chosen to describe the irregular wave condition. The response spectrum )(ωrS  
can be expressed as: 
  
 ( ) 2)()( ωωω HSSr =    (2.1.20) 
 
Where )(ωS  is the wave spectrum,  )(ωH  is the transfer function, also called RAO (Response 
Amplitude Operator). 
 
Once the response spectrum is obtained, the extreme values of the response can be calculated by 
the following formulae. The area  of a response spectrum is given by  0m
 

 ∫
∞

=
0

2
0 )()( ωωω dHSm  (2.1-21) 

 
The second moment  of the area of the response spectrum is written as  2m
 

 ∫
∞

=
0

22
2 )()( ωωωω dHSm  (2.1-22) 

 
The mean period of the response   is  2T
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=  (2.1-23) 

 
 
Hence, the most probable extreme response amplitude value in time t (hours) can be written as 
 
 )ln(2)/3600ln(2 020max NmTtmR ==  (2.1-24)  

  
In which, N is the number of responses in t hours.  
 
          (2.1-25) 2/3600 TtN =
 
The probability of exceeding the response value  for large N values is 0.632 (Ochi, 1973). 
This probability could be considered being too high. Hence the so-called ‘design extreme 
response amplitude value’ is derived as: 

maxR

 
 )01.0/ln(2 0 NmRdesign =  (2.1-26) 
The probability of not exceeding design extreme response amplitude in N encounters is 0.99. 
 
 
2.1.4 Experimental investigation 
 
2.1.4.1 Introduction 
 
The facilities and test procedure used in this project is the same as those that were used in the 
NICOP project.  Detailed descriptions of them can be seen in the report of Lee, et al. (2006).  A 
brief description is provided here for the readers to understand the test results. 
 
The tests have been carried out at the Newcastle University towing tank, which is 37 metres 
long, 4 metres wide and 1.2 meters deep, and is equipped with a wave-maker at one end and an 
energy-absorbing beach at the other end.  In order to measure the wave-induced loads, the model 
is cut into two pieces at the cross-section, which is located 545.43 mm from the after 
perpendicular longitudinally.  The two pieces are linked together by a force gauge, which is 
bolted to two substantial bulkheads mounted in the fore and aft parts of the model and the two 
sections are made waterproof by the provision of a thin membrane across the cut.  The force 
gauge is capable of measuring five force components, namely Fy, Fz, My, Mz and Mx.  Due to the 
limitations of the project budget, the forces are measured at only one cross-section. 
 
Waves were generated by seven rolling seal hinged paddle type wave makers normally operating 
in unison and driven by a sinusoidal source at the desired period and amplitude.  The wave 
profile was monitored and recorded using two Churchill resistance probes, which were placed in 
the front of the model, and an associated monitor.   
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2.1.4.2 Test conditions and procedures 
 
In all the tests, wave-induced loads in the five directions at the cut of the model along with wave 
height and period were measured at a zero forward speed.  As shown in Figure 2.1-3, four 
mooring lines were attached to the ship model at the fore and stern ends, each of which has two 
mooring lines, in order to keep the model from drifting too far away from its original position 
and to maintain the intended orientations.  
 

 
 

Figure 2.1-3 Test arrangement 
 
The original data were processed by a filter to remove the high frequency noise and high 
frequency forces, such as slamming and green water effects under severe wave conditions, and 
then by FFT. The RAOs of each force component could then be calculated and plotted for further 
analysis.     
 
Initially a total number of 324 tests were planned as shown in Table 2.1-1.  Three floating 
conditions, namely the intact condition and damage scenarios 2 and 3 were considered.  For each 
floating condition, various wave headings, three different wave heights and nine wave 
frequencies have been chosen.  In the intact condition, four wave headings, which include head 
seas, bow quartering seas, stern quartering seas and beam seas, have been chosen.  In damage 
scenario 2, five wave headings, namely, head seas, stern-quartering seas from the port, stern 
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quartering seas from the starboard, beam seas from the port and beam seas from the starboard 
were selected.  The reason for having two stern quartering seas is due to the fact that the damage 
(opening) of the ship model is on the starboard side only, so when a wave is approaching the 
model from different sides, the dynamic responses of the model might be quite different.  For the 
same reason, two different beam seas are considered.  In damage scenario 3, only three wave 
headings, namely head seas, stern-quartering seas from the starboard and beam seas, have been 
selected due to the limited availability of time to the towing tank.  Three different wave heights, 
namely small, large and very large, are defined in Table 2.1-2.   
 
Table 2.1-1: Test Conditions for the First Batch of Wave-induced Loads Tests 
 
Floating 
conditions 

Wave heights Number of 
wave headings 

Number of 
wave 

frequencies 

Total 

Intact small 4 9 36 
large 4 9 36 

very large 4 9 36 
Damage  
scenario 2 
(DS2) 

small 5 9 45 
large 5 9 45 

very large 5 9 45 
Damage  
scenario 3 
(DS3) 

small 3 9 27 
large 3 9 27 

very large 3 9 27 
Total 324 
 
 
Table 2.1-2 Definitions of Different Categories of Wave Heights in Table 2.1-1 
 
Category of wave height For the ship model (mm) For the ship (m) 
Small 5.74 – 7.88 0.574 – 0.788 
Large 11.64 – 23.72 1.164 – 2.372 
Very large 10.44 – 47.45 1.044 – 4.745 
 
After the first batch of tests was completed and the results were analysed, it appeared that there 
was a need to carry out additional tests to investigate the nonlinearity in some frequencies.  
Therefore another 86 tests were carried out.  For a given frequency, four different wave 
amplitudes have been used in order to indicate how the wave-induced loads vary against the 
wave amplitude. 
 
 
2.1.5 Model uncertainties of numerical methods 
 
Model uncertainty is a very important source of uncertainties in the structural design process.  
The coefficient of variation (COV) of a typical strength prediction could be about 10 – 15 
percent, while a COV of wave-induced load prediction could be well above 30 percent.  This 
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means that model uncertainties of wave-induced load prediction are a major uncertainty in 
structural strength assessment. 
 
Model uncertainty of wave-induced loads is defined as the ratio of real load to the predicted load, 
which could be expressed as: 
 

       
pred

exp
0m M

M
X =                                       (2.1-30) 

 
where   is model uncertainty of the formula or numerical method for predicting wave-
induced loads.  In this project model uncertainty of the 2-D linear method for predicting wave-
induced loads will be calculated.  and  are real and predicted extreme design wave-
induced loads respectively.  In practice the real extreme design wave-induced loads are very 
difficult to obtain, so the experimental results are used as the real values if the experiment is 
properly executed.   

0mX

expM predM

 
When the model uncertainty is calculated, the number of sample data should be fairly large so 
that reliable statistical mean and standard deviations can be obtained.  However if the definition 
in Eq. (2.1-30) is directly used in a model uncertainty calculation, there would be only one set of 
data for each wave headings, so the total number of sample data would be too few to calculate 
the model uncertainty of wave-induced load prediction.  In addition, wave-induced loads for a 
given period cannot be measured in the tests.  Therefore another definition is introduced, which 
is expressed as: 
 

   
pred

exp
1m RAO

RAO
X =                                        (2.1-31) 

 
where RAO stands for Response Amplitude Operator.  Obviously  is a function of wave 
frequency.  However it is a good indicator of model uncertainty associated with wave-induced 
loads.  When  is a constant, it is equal to  if the extreme design wave-induced load is 
calculated by a short-term analysis.  This can be proved as follows: 

1mX

1mX 0mX

 
Substitute Eq. (2.1-28) into Eq. (2.1-30), so 
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                                                                                                          (2.1-33) 
Combine Equations (2.1-32) and (2.1-33) 

1m0m XX =                                                                 (2.1-34) 
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Hence in this project  is used as model uncertainty of wave-induced loads. 1mX
 
 
2.2 Methodologies for combining different loads   
 
There are various types of loads acting on ships, such as stillwater bending moment, wave-
induced loads, slamming forces, etc.  In this project, only the stillwater bending moment and 
wave-induced loads will be considered.  It is very important to properly combine all these loads 
in the strength assessment.  In the ship design rules the maximum loads for each type of load are 
simply added together (Wang and Moan, 1996).  This could introduce unnecessary conservatism 
in the design.  In the context of load combination of ship structures, there are two issues.  The 
first issue is how to combine different components of wave-induced loads.  The second issue is 
how to combine stillwater bending moment and wave-induced loads.  
 
Bearing in mind that the objectives of this project is to develop a procedure and tools for 
operators and decision makers to assess the residual ultimate hull girder strength of damaged 
ships for a given damage scenario, the loads required for strength assessment are at the given 
operational conditions.  Therefore the stillwater bending moment will be calculated at the given 
operational conditions, and be then directly added to the combined wave-induced loads.  
 
Wave-induced loads have generally six components, among which five components will be 
predicted by the 2-D methods in this project.  Of these load components, vertical and horizontal 
bending moments, torsion and vertical shear force are potentially important in the strength 
assessment of damaged ships.  Because all these load components have different phase angles, 
they reach maximum at different times.  If the maximum amplitudes of each component are 
simply added together to assess the structural strength, the results could be too conservative.  For 
this reason, an ‘equivalent wave system’ is used to combine all the load components.  The 
concept of an equivalent wave system was introduced by Reilly (1988).  It was used by Pu 
(1995) to calculate the instantaneous pressure distribution of a SWATH vessel. 
 
In this study, three load components, namely vertical bending moment (My), horizontal bending 
moment (Mz) and torsion moment (Mx), will be considered. However this concept could be 
applied to all the five load components. 
 
Before combining these load components, the following results need to be produced: 

1). RAO of all the load components; 
2). Extreme design loads for each components based on short-term prediction. 

 
There are three possible load combinations for three load components. For load combination 1 
vertical bending moment will take maximum value. The procedure to combine them is as 
follows: 
 
Step 1: read the values of the following parameters 

1ω  - the wave frequency, at which RAO of My achieves maximum;  
My
maxRAO  - the maximum RAO of My ; 
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max
yM     - extreme design value of My 

  
Step 2:  Calculate the amplitude of the equivalent wave  1eqH

 
My
max

max
y

1eq RAO
M

H =    (2.2-1) 

 
Step 3: find out the RAO values of Mz and Mx at 1ω   

Assume  - RAO value of Mz at ZM
1RAO 1ω ;  

XM
1RAO  - RAO value of Mx at 1ω  

 
Step 4: combine the load components  
 
   (2.2-2) xz M

11eq
M
11eq

max
y RAOHRAOHM1LC ×+×+=

 
Where LC1 is load combination 1. Note that it is vector addition in Eq.(2.2-2) because all the 
components have different directions. 
 
The same procedure is applied to calculate load combinations 2 and 3. For load combination 2, 
horizontal bending moment takes a maximum value. If 2ω  is the wave frequency at which RAO 
of Mz achieves maximum,  is the maximum RAO of Mz ,   is extreme design value 
of Mz , and  is the wave amplitude of the equivalent wave for load combination 2, 

zM
maxRAO max

zM

2eqH
 

 
Mz
max

max
z

2eq RAO
MH =   (2.2-3) 

 
So  
   (2.2-4) xy M

22eq
max
z

M
22eq RAOHMRAOH2LC ×++×=

 
Where LC2 is load combination 2,  and  are RAO values of My and Mx at yM

2RAO xM
2RAO 2ω  

respectively. 
 
For load combination 3, torsion moment takes a maximum value.  If 3ω  is the wave frequency at 
which the RAO of Mx achieves maximum,  is the maximum RAO of Mx ,   is the 
extreme design value of Mx , and  is the wave amplitude of the equivalent wave for load 
combination 3, 

xM
maxRAO max

xM

3eqH

 

 
Mx
max

max
x

3eq RAO
MH =   (2.2-5) 

 
So  
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   (2.2-6) max
x

M
33eq

M
33eq MRAOHRAOH3LC zy +×+×=

 
Where  
LC3 is load combination 3,  and  are RAO values of My and Mz at yM

3RAO zM
3RAO 3ω  

respectively. 
 
    
2.3 Methodologies for Assessing Ultimate Strength of the Hull Girder 
 
The response of ship structure to loads depends on a variety of influencing factors that includes 
geometric configuration, material composition and resulting physical properties, production 
related imperfections such as initial deflections and residual stresses, degradation related to in 
service issues such as corrosion and ship and environmental load characteristics.  This makes the 
ship structural system a complex problem for analysis and design.  The overall ship structure 
may be considered as a girder to determine the overall loading effects.  
 
The most common overall failures of a ship hull girder are normally buckling in the compression 
flange or plastic collapse of the girder flange in tension.  Depending on the loading, especially if 
horizontal moment or torsion loading is considerable, the failure may sometimes initiate in the 
side shell stiffened panels. 
 
There are different methods available for determination of ultimate strength of hull girder that 
may broadly be classed into two types: 

• Nonlinear Finite Element (FE) Method  
• Structural Unit Idealization Method 

 
The nonlinear FE method can be used to analyze the detailed nonlinear response of ship 
structures involving both the geometric and material nonlinearities to determine ultimate collapse 
strength of the hull girder.  This is a versatile technique but needs enormous effort and 
computing resources in FE modelling and analysis.  A number of established commercial and 
public domain FE analysis software are available to carry out nonlinear FE analysis.  The 
ANSYS commercial FE software for nonlinear structural analysis was used for this research 
work. 
 
An alternative to nonlinear FE analyses is the Structural Unit Idealization Method that was 
suggested by Ueda and Rashed (1974, 1984) to reduce the computational effort by modelling the 
ships structure using large idealized structural units instead of a fine FE mesh.  This method of 
using large idealize structural units between nodes is called Idealized Structural Unit Method 
(ISUM) that efficiently models the actual nonlinear behaviour of large structural units and 
considerably reduces the computational effort and time.  
 
Smith (1977) developed another method somewhat similar to ISUM in that the stiffened panel is 
idealized as independent beam-column made up of plate-stiffener combination.  The total 
ultimate strength of stiffened panel is estimated from cumulative ultimate strength of beam-
column units.  Load shortening curves are developed and used to idealize plate-stiffener 
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combination response as a beam-column.  This method is also computationally very efficient and 
the accuracy of results depends upon how well plate-stiffener combination behaviour is depicted 
in the load shortening curves used in determination of ultimate strength analysis.  The load 
shortening curves may be developed to count for all possible load combinations, nonlinearity in 
material as well as in spatial response, residual stress due to production related processing of 
material, imperfections in shape, etc.  This method is commonly used by the classification 
societies for determination of ultimate strength of the hull girder.  The MARS software from 
Bureau Veritas (BV) is used to calculate the ultimate hull girder strength using beam-column 
idealization as by the Smith Method.  The MARS software provides different failure mode 
algorithms for calculation of ultimate strength that include the Elastic Ideally Plastic (EIP) 
failure mode and the Beam-Column (BC) failure mode, apart from the others. 
 
For the EIP failure mode, material beyond the elastic limit is considered fully plastic both under 
tension and compression.  The Beam-Column method of MARS uses the following load-end 
shortening curves to determine ultimate bending moment capacity of ship section: 
 

 
ps

pEs
CCR tsA

tbA
10

10
11 +

+
Φ= σσ   (2.3-1) 

 
where   is the edge function, 1Φ Cσ is critical stress, AS is net sectional area, bE effective width 
of plating attached to stiffener, tP net thickness of plating and S is spacing of stiffeners.  The 
details of the methods may be found in BV Rules, Part B, Chapter 6, Appendix 1.  
 
As mentioned earlier, the structural strength of a ship is conventionally assessed only in the 
intact condition.  Under this condition, the critical load case for a mono-hull ship is the vertical 
bending moment, which reaches maximum in head seas.  For an intact ship, often the horizontal 
bending moment and torsion are insignificant.  The conventional design tools for an intact ship 
such as the Smith Method with load shortening curves depicting behaviour of beam-columns for 
dominant vertical bending moments are not likely to give accurate results for a damaged section 
where horizontal bending and torsion along with residual stress from the damage incident will be 
present to a significant level. 
 
For analysis of the residual strength of damaged ship structure, the application of ISUM or the 
Smith Method requires that the behaviour of idealized structural units or beam-column 
idealization be modelled for loading of the damaged condition.  In the context of the Smith 
Method, this simply suggests that load shortening curves may be developed for the dominant 
loading conditions for damaged structure in order to get a good estimate of the ultimate strength 
of a damaged section. 
 
For this project, in order to determine the reduction in ultimate strength of a ship due to damage, 
following approach is adopted: 

• The fully plastic moment of the intact ship section is calculated that gives the 
maximum load bearing capacity of the ship in the intact condition. 

• The ultimate hull girder strength of the intact ship is calculated using the Smith 
Method, (MARS software) 
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• The ultimate hull girder strength of the intact ship is calculated using nonlinear the FE 
method (ANSYS software) 

• The ultimate hull girder strength of the damaged ship is calculated using the Smith 
Method with the same load shortening curves as used for intact condition (MARS 
software). The hull damage is simply simulated by removing material from the 
damaged part of ship section. 

• The Explicit FE method is used to simulate an actual ship’s collision scenario in order 
to get a requisite damage condition for further ultimate strength analysis 
(ANSYS/LS-DYNA software). 

• The ultimate hull girder strength of the damaged ship section obtained from the 
explicit dynamic collision simulation is calculated using nonlinear FEM (ANSYS 
software) 

 
The results of the ultimate hull strength analysis for the intact ship using the Smith Method and 
the nonlinear FE method will enable a correlation between the Smith Method and the nonlinear 
FE analysis.  This correlation shall be helpful to deduce validity of results of Smith Method as 
described above for damaged conditions by comparing the ultimate strength of the damaged ship 
to that obtained using the FE analysis 
 
2.3.1 Reliability-based assessment of damaged ship residual strength 

The reliability analysis is essentially an evaluation of the probability of failure (Pf) of a 
component, which is defined by: 

   (2.3-2) ∫
≤

=
0)(

)(
Xg

f dXXfP

where X is the vector of random design variables for the component and f (X) is the joint 
probability density function of X. The g (X)=0 is called the limit state dividing performance of 
the component into failure state (i.e. g (X) <0) and safe state (i.e. g (X) > 0). The g (X) ≤0 
defines the failure domain over which integration of (2.3-2) is performed to determine 
probability of failure of the component. 

The probability of failure of system is similarly given by: 

   (2.3-3) ∫
≤

=
0)(

)(
XG

f dXXfP

where G (X) is the limit state function for the system given by: 

   (2.3-4) UI )()( XgXG i=

and gi (X) is the limit state of ith component of the system made up of series of parallel 
combination of components, appropriately. 
 
A number of established methods to solve (2.3-2) and (2.3-3) are available such as Monte Carlo 
Simulation (Crude or Adaptive) (MCS), First Order Reliability Method (FORM), Second Order 
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Reliability Method (SORM), etc. For details, see for example Thoft-Christensen and Murotsu 
(1986), Ditlevsen and Madsen (1996), and Melchers (1999). 
 
It is apparent that determination of probability of failure of a component or a system requires 
evaluation of the limit state g (X) or G (X).  In structural design, FE methods are commonly used 
and evaluation of g (X) [or G (X)] may be based on these methods.  There are a number of 
methods available for reliability analysis based on FE methods as discussed in the reference 
Shahid and Das (2007), which include: 

• Direct FE analysis Limit State Methods 

• Statistical Response Characterisation Methods 

• Limit State Simulation 

• Response Surface Methods 

• Artificial Neural Network Methods 

For large and complex structures needing enormous computing effort it is cost effect to use limit 
state simulation such as the Response Surface Method for reliability analysis instead of using the 
direct FE method for evaluation of limit states. 
   
The Response Surface Method was first introduced by Box et al. (1951), and is being used in 
many applications to simulate response for systems needing considerable cost and/or effort for 
real experimental test and analysis.  The response surface is fundamentally a regression fit of a 
polynomial function to the structure response data obtained through experiments or FE analysis 
as given in equation (2.3-5) below.  
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where Y  is the estimated response of the system to n number of system parameters X.  C0 is a 
constant, Ci are coefficients of first order terms, and Cij are coefficients of second order and cross 
terms in the approximating polynomial function where i and j are 1…n. 
 
The response surface approximation of a linear system is essentially a linear polynomial only 
involving first order terms in equation (2.3-5) and is straightforward to develop and use in 
system response simulation.  Unfortunately, most real systems are nonlinear in nature requiring a 
higher order polynomial to represent their response.  It is generally sufficient to use a 2nd order 
polynomial to represent the nonlinear system response.  Sometime it is also possible to use a 
suitable transformation on the response data in order to improve the regression fit. Nevertheless, 
accuracy of the response surface approximation depends on the nature of the response of the 
system that may not be easily represented by a polynomial function. 
 
The accuracy of system response simulation on one hand and minimizing the number of data 
points needed in development of appropriate response surface on the other hand is an active field 
of research since the first introduction of response surface methods.  There are a number of 
techniques available for design of experiment and response surface generation, and a detailed 
description of those may be found in the literature.  See for example Høyland and Rausand 
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(1994), Myers (1999), Das and Zheng (2000), Myers and Montgomery (2002), Zheng et al. 
(2000, 2005), etc.  
 
The schematic in Figure (2.3-1) shows how the response surface method is used for reliability 
analysis based on FE methods.  In this case, the limit state function is the response surface 
developed through regression of FE analysis response data.  Obviously, the accuracy of the 
results depends upon how well the response surface simulates the actual response of the system. 
 

 

 
 

Figure 2.3-1: Reliability analysis using FE analysis response surface 

 
The number of FE analyses required to generate a response surface depends upon the number of 
random parameters for the FE model.  The number of FE runs may considerably be reduced by a 
suitable choice of data generation techniques such as Central Composite Design with partial 
factorial points that allow sufficient samples to maintain resolution for V-design where none of 
the second order terms of the approximation function are confined with each other. 
 
The response surface methods are very efficient in term of computational efforts needed to 
simulate a system response.  However, for a highly nonlinear system the accuracy may be an 
issue which may or may not be predictable by statistical measures of goodness of fit of the 
regression polynomial, especially for higher order polynomials having oscillation between data 
points, Bucher et al. (2006). 
 
Good accuracy in fitting of the response surface function with comparatively fewer data points 
may be achieved if the type of response of structural system is known a priori.  For example, 
interaction of the ultimate hull girder bending strength for combined vertical and horizontal 
moments is characterised by the following relation (Paik and Thayamballi, 2003)  
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Where MVU and MHU are ultimate vertical and ultimate horizontal bending moment capacities of 
the ship section, and MV and MH are vertical and horizontal bending moments, respectively.   
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Figure 2.3-2: Damaged ship structure, variables relevant for reliability based assessment of 
residual structural strength.  
 
In general, the ultimate strength of a damaged ship essentially depends upon the physical 
characteristics of structural damage such as the location of damage that include distance of centre 
of damage from the appropriate ship reference axis, and the size of the damaged part of the hull 
structure that includes damaged depth, damaged height and damaged width as shown in Figure 
(2.3-2). Other factors include the variation in properties of material used in construction of the 
hull and aging effects such as corrosion and accumulation of stress during active service of the 
ship (fatigue cycles).  Accordingly, the residual ultimate strength of a damaged ship depicted by 
the ship’s ultimate moment capacity Mu may be given by the following:  
 
 ),,,,,,,,,,,( ETDDDDDFMMMfM yagevldwhsthvu σ=    (2.3-7) 
 
Where f (...) is the ultimate strength response function, which depends on the following 
parameters: 
 Mv — vertical moment load 
 Mh — horizontal moment load 
 Mt — torsion load 
 Fs — shear force load 
 Dh — height of damaged structural part 
 Dw — width of damaged structural part 
 Dd — depth of damaged structural part 
 Dl — longitudinal location of structural damage 
 Dv — vertical location of structural damage 
 Tage — aging related structural degradation 
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 σy — yield strength of material 
 E — Modulus of elasticity of the material 
 
The first four parameters pertaining to load and load combinations are essentially stochastic in 
nature because of random nature of the sea environment in which the ship operates along with 
the random operating profile of the ship experienced in service.  The parameters relevant to size 
and location of structural damage are also random in nature and depend upon the type and nature 
of the incident that caused the damage.  The aging related degradation in structural strength of 
ship might also be accounted for while making reliability-based assessment of residual strength 
of a ship having considerable time in service.  The last two parameters, yield strength and 
modulus of elasticity of material used in construction of the ship are also random in nature and 
therefore should be part of a statistical/probabilistic assessment.  
 

 
Figure 2.3-3: Number of random variables and computational effort 

 
For an objective to provide quick assessment of residual ultimate strength of a damaged ship for 

is considered an appropriate 
rmulation.  However, the ultimate objective of the current research was to develop a reliability-

enings are 
ostly asymmetric giving way to a stress field in the damaged structure that will be much 

decision support based on reliability and risk analysis to ensure her safe passage subsequent to a 
damage incident, the ultimate strength response function in (2.3-7) 
fo
based design procedure for better assessment of the survivability of damaged ships and 
accordingly the response function may be modified to reduce the number of parameters that are 
directly relevant to design development.  This also considerably reduces the computational effort 
required in development of the ultimate strength response function (see Figure 2.3-3). 
 
As far as the conventional design approach and differences in evaluation of damaged ship 
structure are concerned, the major deviation is in load combinations that arise because of large 
ship side openings subsequent to ship’s structure damage in collisions.  Such op
m
different from that of an intact ship.  Furthermore, considerable residual stress is expected to 
exist subsequent to plastic rupture and damage of structure in a collision impact.  As discussed 
earlier, the conventional design tools are developed for loading conditions that are predominantly 
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vertical, horizontal and torsion moment, 
spectively.  

 fixed size of structural damage as per the recommendation of classification society Lloyd’s 

rties for reliability analysis are taken care of, along with other factors related to 
roduction such as residual stress, through modelling uncertainties parameters in the 

for intact ships, viz. vertical bending moment and horizontal bending moment, respectively in 
order of precedence, for assessment of the ultimate strength of ships hull girders.  For a damaged 
condition, the torsional moment is also likely to be a dominant load.  In order to develop an 
ultimate strength model for a damaged ship hull girder, the following response model is adopted 
for reliability-based assessment of residual strength: 
 
  ),,( thvu MMMfM =    (2.3-8) 
 
Where Mv, Mh and Mt as mentioned earlier are 
re
 
A
Register is given in Table 2.3-1 and is considered in this study.  The random variations in 
material prope
p
performance function. 
 

Table 2.3-1: LR Rules; collision damage extent 

The extent of damage due to military threats defined as 
Military threats the minimum of the shock or blast damage that is likely 

to result from a specified weapon threat. 
    -  5 m longitudinally between 

bulkheads 
Colli e 

side shell 
sion damage to th Level A -  from the waterline up to the main 

deck 
   -  inboard for B/5 m 

 

 



3. A SAMPLE VESSEL, ITS MODEL AND DAMAGE SCENARIOS 
 
3.1 Descriptions of the Sample Vessel and Its Model 
 
A sample vessel, which is a notional US Navy destroyer, Hull 5415, was initially designed by the 
Naval Surface Warfare Center Carderock Division (NSWCCD).  The principal dimensions of the 
vessel are shown in Table 3-1.  Division of the compartments of the vessel is presented in Figure 
3-1.  The other details of Hull 5415 can be seen in Lee et al. (2006).  
 
 
Table 3-1: Main particulars of Hull 5415 and its model 
 

Particulars Ship Model (1/100) 
Length overall (Loa) in meters 151.18 1.5118 
Length between perpendiculars (Lpp) in meters 142.04 1.4204 
Breadth moulded (B) in meters 20.03 0.2003 
Depth to public spaces deck (D) in meters 12.74 0.1274 
Design draft (T) in meters 6.31 0.06124 
Maximum section area (Ax) in m2 96.7923 0.009679 
Block coefficient (CB) 0.4909 0.4909 
Prismatic coefficient (CP) 0.6409 0.6409 
Midship section coefficient (CM) 0.7658 0.7658 
KM (Height of metacentre above keel) in m 9.47 0.0947 
Height of gravity centre above keel (KG) in meters 6.283 0.06817 
Metacentric height (GM) in meters 3.187 0.02602 
Longitudinal position CoG from A.P. (LCG) in meters 71.02 0.7168 
Roll radius of gyration (kxx) in meters  0.0612 
Pitch radius of gyration (kyy) in meters  0.3250 
Yaw radius of gyration (kzz) in meters  0.3250 

 
A ship model with a scale of 1/100 has been made from fibreglass based on the offsets of Hull 
5415.  Using such a small model scale is due to the dimensions of the towing tank facility.  The 
main particulars of the model are presented in Table 3-1, while a view of the model is shown in 
Figure 3-2.  As described in Chapter 2, in order to measure the wave-induced loads, the model is 
cut into two pieces at the cross-section, which is located 545 mm from the after perpendicular 
longitudinally.  The two sections are linked together by a force gauge, which is bolted to two 
substantial bulkheads mounted in the fore and aft parts of the model and the two sections are 
made waterproof by the provision of a thin membrane across the cut. 
 
Although every effort has been made to construct a ship model with the same longitudinal 
weight distribution as the original ship, it proved to be very difficult to achieve this due to the 
general arrangement of the ship model, especially around the location of the force gauge, whose 
weight is a large percent of the total weight of the ship model.  Therefore the ship model has 
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slightly different longitudinal weight distribution from the original ship.  The longitudinal weight 
distributions of the original ship and ship model are presented in Figures 3-3 and 3-4. 
 

 
 

Figure 3-1: Division of the compartments of the vessel 
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Figure 3-2: The ship model (Lee, et al. 2006) 
 

 
Figure 3.3: Weight distribution of the intact sample vessel  

 

 

 
Figure 3-4: Weight distribution of the intact model  
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For the hull girder loading measurements the model used for motion tests was converted by 
adding internal bulkheads and decks.  In order to accomplish damaged model tests additional 
parts were built. T1 ~ T6 and D1 ~ D4 stand for transverse bulkheads and decks respectively. L1 
and L2 stand for longitudinal girders (see Figure 3-5).  No materials were placed inside the 
model to simulate permeability conditions.  The size of the openings was less than the full length 
and height of the flooded area as will be described below.  A general view of the damaged model 
for loading tests is shown in Figure 3-6. 
 
 

 

 
 
Figure 3-5: Model compartmentation for damage containment 
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Figure 3-6: General view of the model for loading tests in damaged conditions 
 
It should be pointed out that the ship model used for this project was the same as that used for the 
NICOP project except for the way that the cut was sealed.  Figures 3-7 and 3-8 show how the 
cling film was applied in both the NICOP and the current projects.  In the NICOP project the 
film was applied as a flat surface, although it was fairly loose to minimise the effects of the cling 
film on the measurement of loads.  However the cling film was still subject to loads to some 
extent.  It should be noted that the effects of the cling film were very small (may be negligible) 
when the magnitude of loads was relatively large, such as vertical bending moment in head seas, 
etc.  However the maximum torsion on the ship model was only about 0.3 N-m, and the effects 
of the cling film on torsion could be significant.  In the current study, the cling film was tucked 
into the gap, so it would not be subject to any loads (ideally).  
 

Gap Hull of the 
model 

Tape The film 

 
 

Figure 3-7: The cling film in the NICOP project 
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Figure 3-8: The cling film in the current project 

mage scenarios have been used and are shown in Figures 3-9 to 3-11.  

er 

 
3.2 Damage Scenarios 
 
In this project, three da
Detailed explanations of the reasons for using these damage scenarios can be seen in the report 
of Lee, et al. (2006).  Presented in Figure 3-9 is damage scenario 1, which has a 5-metre long by 
5.5-metre high opening in the starboard side shell in the middle of machine room 2 
longitudinally as indicated by a rectangular window with dashed line.  Because the lower edge of 
the opening is below the draught, water could enter the damaged machine room, which is 
indicated by the shaded areas.  Water ingress is symmetrical transversely, so heel angle is zero at 
this scenario.  This damage scenario simulates a possible collision at Level A, which is 
recommended in Lloyd’s Register Rules (Lloyd’s Register of Shipping, 2002).  Model tests have 
not been carried out for this damage scenario due to the limited availability of the towing tank.  
However structural strength assessment has been applied to this scenario because damage is 
limited to only one compartment so that the size of finite element model is more manageable. 
 
Figure 3-10 shows damage scenario 2, which is similar to the damage sustained by the destroy
USS Cole (http://archives.cnn.com), which suffered from a 12-metre by 12-metre hole in the 
ship’s side shell caused by a suicide attack.  Hence in this damage scenario, a 12-meter long by 
9-meter high opening in the starboard side shell is introduced as indicated by a rectangular 
window with dashed line.  The opening extends equally into machine rooms 2 and 3 
longitudinally, and penetrates into the double bottom causing water ingress in four fuel tanks on 
the starboard side.  Both experimental tests and numerical calculations have been applied to this 
damage scenario and to damage scenario 3, which is shown in Figure 3-11. Damage scenario 3 
simulates a raking damage at Levels B & C as recommended in Lloyd’s Register Rules (Lloyd’s 
Register of Shipping, 2002).  The damage is mainly in the bow and is symmetrical transversely.  
 
Table 3-2 presents the floating conditions of the sample ship in the intact and damaged 
conditions, while its intact stability is summarised in Table 3-3.  Similarly the floating conditions 
of the ship model at intact and damaged conditions are shown in Table 3-4, and the intact 
stability is presented in Table 3-5.  From those tables it can be seen that the sample vessel and its 

Hull of the 
mo

Gap 
del 

The film 
The tape 
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model have different draughts apart from their difference in longitudinal weight distribution and 
total weight at design draught.  Damage scenario 2 has led to an increase of draught by 1.121 
meters and a heel angle of 1.1 degree towards starboard.  The reason for such a small heel angle 
is that the major flooding in machine rooms 2 and 3 is transversely symmetrical.  The only 
unsymmetrical flooding is at the four small fuel tanks within the double bottom.  This is the most 
severe damage among all the 3 damage scenarios.  In damage scenario 3, the draught has 
increased the least by only 0.143 meters and the ship is not heeling.  The transverse GM of the 
sample ship is 3.126 metres, so it has adequate stability. 
 

 

 
 

Figure 3-9: Damage scenario 1 
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Figure 3-10: Damage scenario 2 
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Figure 3-11: Damage scenario 3 

 
The draught, trim and heel angles were calculated to obtain the initial hydrostatic information 
using the UNEW Hydro programme and the programme HECSALV.  For these calculations, the 
following compartment permeabilities were used.  These compartment permeabilities were not 
used in the linear and nonlinear ship motions and loads analyses.  

• Machinery spaces — 0.85 
• Fuel oil tanks — 0.99 
• Miscellaneous spaces — 0.85 
• Sonar room — 0.85 
• Forepeak tank — 0.99 
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Table 3-2: Intact and damage conditions of the design ship  
 

Intact and Damaged Conditions to be Investigated 
Case Condition Displ. 

(tonne) 
Mean 

draught (m) 
Trim 
(m) 

Heel 
(deg.) 

Heading 
angle (deg.)

1 Intact 9114 6.309 0 0 180 
2 Intact 9114 6.309 0 0 45 
3 Intact 9114 6.309 0 0 90 
4 Damage Scenario 1 9914 6.6875 0.2450F 0 180 
5 Damage Scenario 1 9914 6.6875 0.2450F 0 45 
6 Damage Scenario 1 9914 6.6875 0.2450F 0 90 
7 Damage Scenario 2 11450 7.4295 1.4570F 1.100S 180 
8 Damage Scenario 2 11450 7.4295 1.4570F 1.100S 45 
9 Damage Scenario 2 11450 7.4295 1.4570F 1.100S 90 
10 Damage Scenario 2 11450 7.4295 1.4570F 1.100S 270 
11 Damage Scenario 2 11450 7.4295 1.4570F 1.100S 315 
12 Damage Scenario 3 9336 6.4515 0.8530F 0 180 
13 Damage Scenario 3 9336 6.4515 0.8530F 0 45 
14 Damage Scenario 3 9336 6.4515 0.8530F 0 90 

 
 
Table 3-3: Intact stability and trim summary of the design ship 
 

Stability Calculation  Trim Calculation  
KMt 9.470 metres LCF Draft 6.309 metres 
VCG 6.293 metres LCB 70.113F m-AP 
GMt (Solid) 3.177 metres LCF 64.551F m-AP 
FSc 0.083 metres MT1cm 182.000 m-MT/cm 
GMt (Corrected) 3.126 metres Trim 0.000 m-F 
      List 0.000 deg 
Specific Gravity 1.025 MT/cu.m       
            
Drafts        
Draft at A.P. 6.309 metres    
Draft at M.S. 6.309 metres    
Draft at F.P. 6.309 metres       
Draft at Aft 
Marks 6.309 metres       
Draft at Mid 
Marks 6.309 metres       
Draft at Fwd 
Marks 6.309 metres       
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KMt – Transverse metacentric height above baseline  
VCG – Vertical centre of gravity 
GMt (Solid)- The metacentric height  
FSc – Free surface correction 
GMt (Corrected) – The metacentric height with correction 
MT1cm – Moment to trim 1cm 

 
 
Table 3-4: Intact and damage conditions of the ship model 
 

Intact and Damaged Conditions to be Investigated 
Case Condition Displ. 

(tonne) 
Mean 

draught (m) 
Trim (m) Heel 

(deg.) 
Heading 

angle 
(deg.) 

1 Intact 0.008503 0.06124 0 0 180 
2 Intact 0.008503 0.06124 0 0 45 
3 Intact 0.008503 0.06124 0 0 90 
7 Damage Scenario 2 0.01145 0.072085 0.013350F 1.000S 180 
8 Damage Scenario 2 0.01145 0.072085 0.013350F 1.000S 45 
9 Damage Scenario 2 0.01145 0.072085 0.013350F 1.000S 90 
10 Damage Scenario 2 0.01145 0.072085 0.013350F 1.000S 270 
11 Damage Scenario 2 0.01145 0.072085 0.013350F 1.000S 315 
12 Damage Scenario 3 0.008771 0.062635 0.007610F 0 180 
13 Damage Scenario 3 0.008771 0.062635 0.007610F 0 45 
14 Damage Scenario 3 0.008771 0.062635 0.007610F 0 90 

 
 

 37



 38

Table 3-5: Intact stability and trim summary of ship model 
 

Stability Calculation  Trim Calculation  
KMt 0.09486 metres LCF Draft 0.06128 metres 
VCG 0.06868 metres LCB 0.70336F m-AP 
GMt (Solid) 0.02618 metres LCF 0.64563F m-AP 
FSc 0 metres MT1cm 0.000174 m-MT/cm 
GMt (Corrected) 0.02618 metres Trim 0.086 m-F 
      List 0 deg 
Specific Gravity 1.000 MT/cu.m       
            
Drafts         
Draft at A.P. 0.06167 metres    
Draft at M.S. 0.06124 metres    
Draft at F.P. 0.06081 metres       
Draft at Aft Marks 0.06167 metres       
Draft at Mid Marks 0.06124 metres       
Draft at Fwd Marks 0.06081 metres       

 



4. MEASUREMENT AND ANALYSIS OF LOADS 
 
4.1 Introduction 
 
As mentioned in the introduction, this study is a continuation of the NICOP project (Lee, et al 
2006), in which an assessment procedure was developed.  In order for the readers to understand 
the significance of the current project, the assessment procedure is briefly described here.  This 
procedure consists of four steps: (1) Identify the location and size of the openings; (2) Calculate 
the still water bending moment and wave-induced loadings including vertical bending moment, 
horizontal bending moment and torsion; (3) Calculate the ultimate hull girder strength of the 
damaged cross-section considering the interaction of vertical bending moment, horizontal 
bending moment and torsion; and (4) Assess the structural integrity by deterministic and 
probabilistic approaches.  In Step 1, once a ship is damaged, the location and size in terms of 
length, height and depth of the penetration of the opening should be determined so the degree of 
water ingress could be predicted.  In Step 2, the floating conditions of the ship need to be 
calculated.  The stillwater bending moment and wave-induced loads are then estimated.  Because 
it is desirable to install the developed tools on board ships for a quick and reliable assessment, 
computational time is a very important factor in choosing a particular method for both loading 
calculations and strength assessment.  In Step 3, the ultimate hull girder strength of the damaged 
cross-section needs to be assessed.  The interaction of vertical bending moment, horizontal 
bending moment and torsion should be considered.  In addition, the strength of other cross-
sections (not the damaged one) where the total load including stillwater bending moment and 
wave-induced loads under the damage conditions exceed that in the intact condition should also 
be assessed.  In Step 4, the reliability of the damaged ship is calculated so a well-informed 
decision can be made based on this information. 
 
In the current project, some tools for predicting wave-induced loads and assessing ultimate hull 
girder strength have been further developed.  In particular, 2-D linear and nonlinear methods 
have been applied to the ship model to calculate the wave-induced loads in regular waves at the 
cut where the force gauge is installed to measure the loads in the experimental tests.  The 
numerical results have been compared with the experimental results as presented in Sections 4.2 
and 4.3.  Model uncertainties of both the 2-D linear and nonlinear method have been calculated 
in Section 4.4.  Model uncertainties of the numerical methods are needed in reliability analysis of 
the hull girder strength.  At the same time they are also important measures of accuracy of both 
numerical methods.  Through the above calculations, it is hoped that the accuracy of the 
numerical methods can be adequately addressed. 
 
Extreme design loads in irregular waves based on the RAOs from the 2-D linear method, 2-D 
nonlinear method, and experiment have been calculated for the ship model at the cut under the 
intact condition and damage scenario 2.  The formulae recommended in the Lloyds Register 
rules for naval vessels (Lloyds Register of Shipping, 2002) have also been used to calculate the 
wave-induced extreme design loads.  The results have been compared in Chapter 5.  Because the 
structural strength needs to be assessed for the original sample vessel at the cross-section where 
the damage was incurred under the intact condition and damage scenario 1, the extreme design 
loads have also been calculated using the RAOs of the 2-D linear method for those scenarios in 
Chapter 5.  These data were passed onto the research team at the University of Glasgow and 
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Strathclyde for strength assessment.  It should be pointed out that the reason for using the RAOs 
of the 2-D linear method rather than 2-D nonlinear method in strength assessment is that the 2-D 
nonlinear results were not available at that moment.  The wave-induced loads have been 
combined in Chapter 5 in order to consider the interaction of vertical bending moment, 
horizontal bending moment and torsion in both deterministic and probabilistic assessment of 
ultimate hull girder strength.    
 
The ultimate hull girder strength of the sample vessel has been predicted in Chapter 6 by a 
progressive collapse analysis method using MARS and a nonlinear finite element (FE) method 
using ANSYS in order to assess the accuracy of the chosen progressive collapse analysis 
method.  The MARS software from Bureau Veritas (BV) is used to calculate ultimate hull girder 
strength using beam-column idealization as in the Smith Method.  The MARS software provides 
different failure mode algorithms for the calculation of ultimate strength that include the Elastic 
Ideally Plastic (EIP) failure mode and the Beam-Column (BC) failure mode, apart from the 
others.  The MARS calculations are performed for both the intact and damaged conditions.  The 
ultimate bending moment capacity for the combination of vertical and horizontal moments for 
the elastic-plastic failure mode and for the beam-column method are obtained and based on 
which the vertical moment (MV) and horizontal moment (MH) interaction formulae for the intact 
and damaged conditions are derived.  The results and graphs are shown in Chapter 6. 
 
Since no FE-based design assessment of the intact ship was available to compare the results with 
that of the damaged ship, the FE analysis for ultimate strength of the hull girder is carried out for 
both the intact and damaged conditions.  Two types of moment interaction functions were 
developed: one set of two combinations of moments such as interaction of vertical and horizontal 
moments, and one set for interaction of all of the moments; vertical, horizontal and torsion 
moments.  The vertical and horizontal moment interaction function obtained from the FE 
analysis is compared with that of MARS beam-column and elastic-plastic interaction diagram.  
The results and graphs are shown in Chapter 6. 
 
The reliability analysis that follows used the results of FE analysis to derive the limit state 
function.  The analysis was carried out using CALREL.  The reliability index and relevant 
probabilities as calculated are given in Table 7-1 for both the intact and damaged cases. 
 
 
4.2 Predictions of Global Dynamic Wave-induced Loads Using 2-D Linear Method 
 
In this section, the 2-D linear method has been applied to the ship model to calculate the RAOs 
of all the force components at the cut, which is 545 mm from the AP.  The numerical results are 
compared with the experimental results.  
 
4.2.1 Effects of transverse location of gravity centre 
 

As mentioned in Chapter 2, the differences between the 2-D linear method and the 
experimental measurements of dynamic torsion moments are significant in the previous research 
(Lee, et al, 2006).  Although these phenomena could be caused by the effects of sloshing and 
slamming within the damaged compartments, which could change the global dynamic wave load 
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components, other factors, such as transverse distribution of weight, should also have effects on 
torsion.  Hence the effects of the transverse distribution of weight on the torsion moments have 
been investigated.  In the 2-D linear method these effects can be considered by using a transverse 
location of the weight centre of the whole vessel or of each section. In the current study a 
transverse location of the gravity centre (TCG) in each transverse section was used.  Three 
different TCGs, 0, 2 and 4 centimetres apart from the central plane of the ship model for each 
transverse section are assumed to calculate the torsion moments of the ship model at the cut.  The 
results are presented in Figures 4.2.1-1 to 4.2.1-5.   
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Figure 4.2.1-1: Torsion moment RAO in intact condition in stern quartering waves 
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Figure 4.2.1-2: Torsion moment RAO in intact condition in bow quartering waves 
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Figure 4.2.1-3: Torsion moment RAO in DS 2 in stern quartering waves (heading 45) 
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Figure 4.2.1-4: Torsion moment RAO in DS 2 in stern quartering waves (heading 315) 
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Figure 4.2.1-5: Torsion moment RAO in DS 3 in stern quartering waves  

 
These figures indicate that TCG has marginal effects on the torsion moments.  The maximum 
difference tends to occur around the resonant regions, while the difference in other frequencies is 
noticeably smaller.  The maximum difference at various conditions is summarised as follows:  

• In the intact condition in stern quartering seas, the maximum difference is 10 percent. 
• In the intact condition in stern quartering seas, the maximum difference is 12.9 

percent. 
• In damage scenario 2 in stern quartering seas (heading 45°), the maximum difference 

is 14.5 percent. 
• In damage scenario 2 in stern quartering seas (heading 315°), the maximum 

difference is 11 percent. 
• In damage scenario 3 in stern quartering seas, the maximum difference is 18.5 

percent. 
 
Therefore the actual TCG of each transverse section has been estimated and used in the 
following calculations.   
 
4.2.2 Results in intact condition 
 
The global dynamic wave induced loads calculated by the 2-D linear method and the 
experimental results in the intact condition in four different wave headings are presented in the 
following figures. 

• Figures 4.2.2-1 to 4.2.2-5 for the intact condition in head waves. 
• Figures 4.2.2-6 to 4.2.2-10 for the intact condition in stern quartering waves. 
• Figures 4.2.2-11 to 4.2.2-15 for the intact condition in bow quartering waves. 
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• Figures 4.2.2-16 to 4.2.2-20 for the intact condition in beam waves. 
 
In the intact condition, the most important load is the vertical bending moment in head seas, 
which is shown in Figure 4.2.2-4.  The results of the 2-D linear method agreed very well with the 
experimental results.  The test results with small wave amplitude, which were plotted by square 
dots in the figure, appear to be closer to the solid line, which represents the numerical results 
than to those with large wave amplitude, which are indicated by triangles and diamond dots.  
This means that the 2-D linear method predicts the vertical bending moment more accurately at 
small wave amplitude than at large wave amplitude.  This is understandable because the ship’s 
responses to small wave amplitudes are more likely to be in the linear range, so the results from a 
linear theory are expected to agree reasonably well with the experimental results.  Nonlinear 
responses would normally occur in large wave amplitudes.  More-detailed calculations in Section 
4.4, in which model uncertainties of the 2-D linear method were predicted, provide quantitative 
support to this observation.  As defined in Section 2.1.5, model uncertainty of a given method is 
a good measure of the accuracy of the method.  When the model uncertainty factor (Xm) is equal 
to 1.0, it means that it is a 100 percent accurate result.  The coefficient of variation (COV) of the 
model uncertainty factor measures how much dispersion there is in the calculations.  The nearer 
the mean of Xm is to 1.0 and the smaller the COV of Xm is, the more accurate the numerical 
method is.  The results in Table B-1 in Appendix B clearly support the above observations.  The 
vertical bending moment in head seas had an Xm of 0.890 at the peak response, and a mean of Xm 
of 0.890 and a COV of Xm of 19.3 percent in small wave amplitudes.  This accuracy is 
reasonably good.  However the mean and COV of Xm become 0.773 and 24.5 percent for large 
wave amplitudes, and 0.750 and 27.4 percent for very large wave amplitudes.  This demonstrates 
that the accuracy deteriorates with the increase of wave amplitude. 
 
Another interesting phenomenon shown in Figures 4.2.2-4, 4.2.2-9, and 4.2.2-14 about the 
vertical bending moment is that the measured RAOs are scattered in a large range for different 
wave amplitudes in the resonant region, where wave length is close to the ship model length.  
This may suggest that the responses have high level of nonlinearity at this condition.  Similar 
features could also be observed in the results in damage scenarios 2 and 3.  This high 
nonlinearity may well be an inherent feature of this particular hull form, which is a typical 
destroyer with a small block coefficient.  In addition, the cut, where the loads were measured, 
was close to the stern region with sharp change of water-plane width.  This is normally another 
major source of nonlinear responses.  To further verify this, a second batch of experimental tests 
has been carried out, and the results will be presented in Section 4.2.5.  
 
The numerical predictions of vertical bending moments in quartering seas are also in good 
agreement with experimental results as shown in Figures 4.2.2-9 and 4.2.2-14.  The mean and 
COV of Xm at small amplitudes are 1.01 and 31.9 percent, respectively, in stern quartering seas, 
while they are 0.86 and 24.6 percent in bow quartering seas (see Table B1).  As shown in Figure 
4.2.2-19, the differences of the vertical bending moment between the numerical and 
experimental results in beam waves are significant.  Nevertheless the magnitude of loads in beam 
waves is usually very small, so the large difference would not cause much concern in the 
strength assessment of hull girders. 
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Horizontal bending moments and torsion in quartering seas, which are shown in Figures 4.2.2-8, 
4.2.2-10, 4.2.2-13, and 4.2.2-15, are also important force components.  The curves of horizontal 
bending moment predicted by the 2-D linear method have double peaks, while the peak of the 
test data is falling in between the peaks of the numerical results (see Figures 4.2.2-10 and 4.2.2-
15).  It is this shift of peaks that causes large differences between the numerical and experimental 
results.  The mean and COV of Xm at small amplitude are 1.12 and 70.5 percent respectively in 
stern quartering seas, while they are 0.78 and 67.3 percent in bow quartering seas (see Table B1).  
Although the mean of Xm at small amplitude in stern quartering seas looks reasonably good, its 
COV is quite large.  Further scrutiny of the individual figures of Xm has revealed that five out of 
nine have more than 50 percent error, and only 2 of them have less than 20 percent error.  
Especially, the Xm around the resonant region have a value of 1.92 and 2.65, which are far away 
from 1.0.  The accuracy of the prediction around the resonant region is more important than 
those in other frequencies because the current load combination method uses the load in this area 
for strength assessment.  Similar features could be seen for Xm in bow quartering seas.  
Therefore the accuracy in predicting horizontal bending moments is not as good as that for 
vertical bending moments.    
 
The disappointing accuracy in horizontal bending moment prediction might be caused partly by 
the mooring lines in the experimental tests.  As described in Section 2.1.4, the ship model was 
moored by four mooring lines, which were attached to the ends of the model to keep the model 
from drifting too far away from its original position and orientation (see Figure 2.1-3).  It is a 
very delicate process to adjust the tensions in the mooring lines.  On one hand, the tensions 
should be as small as possible to reduce their effects on the responses to waves.  On the other 
hand, the model could not maintain its original position and direction if the tensions in the 
mooring lines were too small.  So during the test, the mooring lines were initially fixed fairly 
loosely.  A trial run was then carried out.  If the model drifted too far away, the tension would be 
increased.  However if the tension in the mooring lines were clearly interfering with the ship 
motions under waves, the tension would be reduced.  Hence a delicate compromise had to be 
achieved.  Even so, the tensions in the mooring lines were still noticeable in the resonant 
frequencies, in which responses were quite large in the recorded test runs.  The tensions in the 
mooring lines could contribute to the horizontal bending moment at the cut.  Unfortunately the 
tensions were not recorded in the tests, so it was not possible to evaluate the extent of the effects 
of the tensions on the horizontal bending moment.    
 
Figures 4.2.2-8 and 4.2.2-13 present torsion moments in quartering seas.  It can be seen that the 
numerical results were very different from the experimental results.  This large difference comes 
from two major issues, one of which is the shift of peaks in between the numerical and 
experimental results while the other is the difference in magnitude even if the peaks were 
achieved at the same frequency.  The mean and COV of Xm at small amplitude are 0.96 and 
135.9 percent, respectively, in stern quartering seas, while they are 0.56 and 60.3 percent in bow 
quartering seas (see Table B1).  Although the mean of Xm at small amplitudes in stern quartering 
seas looks very good, its COV is too large.  Further investigation into the individual figures of 
Xm has revealed that the values vary from 0.18 to 4.25, and the nearest figure to 1.0 is 0.85 at the 
highest frequency.  Similarly in bow quarter seas the mean and COV are equally bad.  Therefore 
the predictions of torsion moment were considered as being very poor.   
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One of the possible reasons for such a poor performance in torsion moment prediction might be 
the small scale of the ship model, which is 1/100.  The maximum measured torsion is only about 
0.3 N-m, so its measurement is very sensitive to any imperfections, such as the quality of 
installation of the cling film, which was used to seal the cut section of the model; calibration of 
the instruments; electrical noise in the records; etc.  The other possible reason is the inherent 
difficulty in determining the radius of gyration for roll motion (kxx) and the damping coefficient 
for roll motion, which is a very important motion component influencing the accuracy of the 
prediction of torsion moments.  
 
 
 Head waves 
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Figure 4.2.2-1: Horizontal shear force RAO in intact condition in head waves 
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Figure 4.2.2-2: Vertical shear force RAO in intact condition in head waves 
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Figure 4.2.2-3: Torsion moment RAO in intact condition in head waves 
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Figure 4.2.2-4: Vertical bending moment RAO in intact condition in head waves 
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Figure 4.2.2-5: Horizontal bending moment RAO in intact condition in head waves 
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Stern quartering waves 
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Figure 4.2.2-6: Horizontal shear force in intact condition in stern quartering waves 
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Figure 4.2.2-7: Vertical shear force RAO of intact condition in stern quartering waves 
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Figure 4.2.2-8: Torsion moment RAO in intact condition in stern quartering waves 
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Figure 4.2.2-9: Vertical bending moment RAO in intact condition in stern quartering waves 
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Figure 4.2.2-10: Horizontal bending moment RAO in intact condition in stern quartering waves 

 
 
Bow quartering waves 
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Figure 4.2.2-11: Horizontal shear force RAO in intact condition in bow quartering waves 
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Figure 4.2.2-12: Vertical shear force RAO in intact condition in bow quartering waves 
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Figure 4.2.2-13: Torsion moment RAO in intact condition in bow quartering waves 

 

 52



0.000

0.005

0.010

0.015

0.020

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7
w*sqrt(L/g)

P5
/(r

ho
*g

*z
et

a*
L^

2*
B

)

.0

Wave height = small

Wave height = large

Wave height = very large

2D linear theory w ith
estimated TCG

 
Figure 4.2.2-14: Vertical bending moment RAO in intact condition in bow quartering waves 
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Figure 4.2.2-15: Horizontal bending moment RAO in intact condition in bow quartering waves 
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Beam waves 
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Figure 4.2.2-16: Horizontal shear force RAO in intact condition in beam waves 
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Figure 4.2.2-17: Vertical shear force RAO in intact condition in beam waves 
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Figure 4.2.2-18: Torsion moment RAO in intact condition in beam waves 
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Figure 4.2.2-19: Vertical bending moment RAO in intact condition in beam waves 
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Figure 4.2.2-20: Horizontal bending moment RAO in intact condition in beam waves 

 
 
4.2.3 Results in damage scenario 2 
 
As mentioned in Chapter 3, in damage scenario 2 the ship model has an increase of draught by 
1.09 centimetres (equivalent to 1.09 metres for the ship) and a heel angle of 1.1 degree towards 
starboard.  The results in five different wave headings are presented in the following figures. 
  

• Figures 4.2.3-1 to 4.2.3-5 for head waves. 
• Figures 4.2.3-6 to 4.2.3-10 for stern quartering waves (β = 45). 
• Figures 4.2.3-11 to 4.2.3-15 for stern quartering waves (β = 315). 
• Figures 4.2.3-16 to 4.2.3-20 for beam waves (β = 90). 
• Figures 4.2.3-21 to 4.2.3-25 for beam waves (β = 270). 

 
The results for the vertical bending moment in head seas are shown in Figure 4.2.3-4.  Generally 
speaking, the numerical results are in good agreement with the experimental results.  In the 
resonant region, the numerical results agree better with the experimental results in small 
amplitude waves than in large amplitude waves.  Quantitative comparisons have been presented 
in Table B.2 in Appendix B.  It can be seen that the mean and COV of Xm are 0.789 and 27.0 
percent for small wave amplitudes, and 0.740 and 21.4 percent for large wave amplitudes, and 
0.783 and 18.3 percent for very large wave amplitudes.  
 
Because the damage is unsymmetrical transversely, it is expected that the wave-induced loads 
might be different when the wave is approaching the ship model from different sides due to the 
dynamic behaviour of the flooded water in the damaged compartment.  Therefore two wave 
headings have been chosen for stern quartering seas; one is approaching from the starboard side 
(the damaged side), the other is from the port side.  The 2-D linear method has produced 
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satisfactory results in both stern quartering seas in vertical bending moment predictions, as 
shown in Figures 4.2.3-9 and 4.2.3-14.  The mean and COV of Xm are 1.063 and 28.2 percent in 
stern quartering seas from the starboard side for small wave amplitudes, and are 0.989 and 29.9 
percent in stern quartering seas from the port side for small wave amplitudes.  Therefore 
accuracy in both stern-quartering seas is of a similar level.  To clearly demonstrate the difference 
caused by different approach angles, the vertical bending moments at 45° and 315° wave 
headings have been plotted together in Figure 4.2.3-26.  Because the 2-D linear method can’t 
consider the effects of dynamic behaviour of flooded water and the heel angle is very small, the 
numerical results were nearly identical in both stern-quartering seas.  However, the test results 
have shown that the vertical bending moment at a 45° wave heading at most of frequencies was 
slightly larger than that at a 315° wave heading.  
 
The vertical bending moment in beam seas, which are shown in Figures 4.2.3-19 and 4.2.3-24, 
was not significant, so there is no need for further discussion. 
 
Figures 4.2.3-10 and 4.2.3-15 show the results of horizontal bending moments in both stern 
quartering seas.  The agreement between the 2-D linear method and experiment were reasonably 
good, although it was not as good as that in vertical bending moment predictions.  The mean and 
COV of Xm are 1.164 and 67.2 percent in stern quartering seas from starboard for small wave 
amplitudes, and are 1.016 and 42.3 percent in stern quartering seas from port for small wave 
amplitudes.  Therefore the accuracy in stern quartering seas from the port side is slightly better 
than that from the starboard side.  It is also true for large and very large wave amplitudes (see 
Table B.2).  The horizontal bending moment at 45° and 315° wave headings has been plotted 
together in Figure 4.2.3-27 to see how much difference was caused by these different 
approaching angles.  There was no clear trend in this figure.  
 
Horizontal bending moments in both beam seas (from the starboard and port sides) is shown 
Figures 4.2.3-20 and 4.2.3-25.  The large difference between the numerical and experimental 
results mainly occurs at either very low frequencies or very high frequencies.  The mean and 
COV of Xm are 1.941 and 60.9 percent in beam seas from starboard for small wave amplitudes, 
and are 1.587 and 76.3 percent in beam seas from port for small wave amplitudes.  The mean 
values in beam seas were not as good as in quartering seas.  Similarly, the horizontal bending 
moments in beam seas at 90° and 270° wave headings has been plotted together in Figure 4.2.3-
28.  It is seen that the horizontal bending moment is slightly larger when the wave is approaching 
from the starboard side than that from the port side.   
 
Figures 4.2.3-8 and 4.2.3-13 show the results of torsion moments in both stern quartering seas.  
The agreement between the 2-D linear method and experiment were reasonably good.  The 
method’s accuracy was not as good as that in vertical bending moment predictions, but 
surprisingly, was at a similar level to that in horizontal bending moment predictions.  Unlike in 
intact conditions, the predicted frequency, where the maximum responses occur, matched 
reasonably well with measured frequency in the tests.  The mean and COV of Xm are 0.633 and 
64.1 percent in stern quartering seas from starboard for small wave amplitude, and are 0.828 and 
52.6 percent in stern quartering seas from port for small wave amplitude.  Therefore the accuracy 
in stern quartering seas from the port side is slightly better than that from the starboard side.  It is 
also true for large and very large wave amplitudes (see Table B.2).  The torsion moments at 45° 
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and 315° wave headings have been plotted together in Figure 4.2.3-29.  It is observed that the 
torsion moment at 315° wave headings is larger than that at 45° wave headings.  Again, the 
numerical results tend to agree better with the experimental results at small amplitude waves in 
most cases than those at large amplitude waves.  
  
 
Head waves 
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Figure 4.2.3-1: Horizontal shear force RAO in DS 2 in head waves 
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Figure 4.2.3-2: Vertical shear force RAO in DS 2 in head waves 
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Figure 4.2.3-3: Torsion moment RAO in DS 2 in head waves 
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Figure 4.2.3-4: Vertical bending moment RAO in DS 2 in head waves 
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Figure 4.2.3-5: Horizontal bending moment RAO in DS 2 in head waves 

 
 

Stern quartering waves from starboard side (heading 45) 
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Figure 4.2.3-6: Horizontal shear force RAO in DS 2 in stern quartering waves 
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Figure 4.2.3-7: Vertical shear force RAO in DS 2 in stern quartering waves  

 

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

w*sqrt(L/g)

P4
/(r

ho
*g

*z
et

a*
L^

2*
B

)

Wave height = small

Wave height = large

Wave height = very large

2D linear theory w ith estimated
TCG

 
Figure 4.2.3-8: Torsion moment RAO in DS 2 in stern quartering waves 
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Figure 4.2.3-9: Vertical bending moment RAO in DS 2 in stern quartering waves  
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Figure 4.2.3-10: Horizontal bending moment RAO in DS 2 in stern quartering waves  
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 Stern quartering waves from the port side (heading 315) 
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Figure 4.2.3-11: Horizontal shear force RAO in DS 2 in stern quartering waves (heading 315) 
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Figure 4.2.3-12: Vertical shear force RAO in DS 2 in stern quartering waves (heading 315) 
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Figure 4.2.3-13: Torsion moment RAO in DS 2 in stern quartering waves (heading 315) 
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Figure 4.2.3-14: Vertical bending moment RAO in DS 2  

in stern quartering waves (heading 315) 
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Figure 4.2.3-15: Horizontal bending moment RAO in DS 2  

in stern quartering waves (heading 315) 
 
 

Beam waves from the starboard side (heading 90) 
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Figure 4.2.3-16: Horizontal shear force RAO in DS 2 in beam waves (heading 90) 
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Figure 4.2.3-17: Vertical shear force RAO in DS 2 in beam waves (heading 90) 
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Figure 4.2.3-18: Torsion moment RAO in DS 2 in beam waves (heading 90) 
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Figure 4.2.3-19: Vertical bending moment RAO in DS 2 in beam waves (heading 90) 
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Figure 4.2.3-20: Horizontal bending moment RAO in DS 2 in beam waves (heading 90) 
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Beam waves from the port side (heading 270) 
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Figure 4.2.3-21: Horizontal shear force RAO in DS 2 in beam waves (heading 270) 
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Figure 4.2.3-22: Vertical shear force RAO in DS 2 in beam waves (heading 270) 
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Figure 4.2.3-23: Torsion moment RAO in DS 2 in beam waves (heading 270) 
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Figure 4.2.3-24: Vertical bending moment RAO in DS 2 in beam waves (heading 270) 
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Figure 4.2.3-25: Horizontal bending moment RAO in DS 2 in beam waves (heading 270) 
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Figure 4.2.3-26: Comparison of vertical bending moment between different wave 

angles in stern quartering seas 
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Figure 4.2.3-27: Comparison of horizontal bending moment between different 

wave angles in stern quartering seas 
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Figure 4.2.3-28: Comparison of horizontal bending moment between different 

wave angles in beam seas 
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Figure 4.2.3-29: Comparison of torsion moment between different wave angles in 

stern quartering seas 
 
 

4.2.4 Results in damage scenario 3 
 
The calculated global dynamic wave induced loads and measurements of DS 3 in three different 
wave angles are shown in the following figures. 

• Figures 4.2.4-1 to 4.2.4-5 for DS 3 in head waves. 
• Figures 4.2.4-6 to 4.2.4-10 for DS 3 in stern quartering waves. 
• Figures 4.2.4-11 to 4.2.4-15 for DS 3 in beam waves. 

 
Figures 4.2.4-4, 4.2.4-9, and 4.2.4-14 show the vertical bending moment in head seas, stern 
quartering seas and beam seas.  As in the intact condition, the numerical results agree well with 
the experimental results, especially at small wave amplitudes.  In head seas, the vertical bending 
moment had a mean of Xm of 0.762 and a COV of Xm of 31.0 percent in small wave amplitudes, 
and 0.711 and 31.7 percent for large wave amplitudes (see Table B.3 in Appendix B).  This 
accuracy is reasonably good.  However the mean and COV of Xm become 1.362 and 106.8 
percent for very large wave amplitudes.  This demonstrates that the accuracy deteriorates with 
the increase of wave amplitude.  It was observed that the accuracy in calculating vertical bending 
moments in stern quartering seas was better than in head seas with a mean of Xm of 0.945 and a 
COV of Xm of 19.5 percent in small wave amplitudes, and 0.909 and 20.1 percent for large wave 
amplitudes, and 0.850 and 18.1 percent for very large wave amplitudes.  
 
The horizontal bending moments are presented in Figures 4.2.4-6, 4.2.4-10, and 4.2.4-15.  The 
features of the horizontal bending moments in this scenario were quite similar to those in the 
intact condition.  The accuracy was slightly worse than that for the vertical bending moments.  
The mean and COV of Xm were 0.732 and 59.8 percent for small wave amplitudes, and 0.735 
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and 49.7 percent for large wave amplitudes, and 0.894 and 41.1 percent for large wave 
amplitudes. 
 
The torsion moments are shown in Figures 4.2.4-3, 4.2.4-8, and 4.2.4-13.  The torsion moments 
in head seas are insignificant, while the features of the torsion moments in stern quartering seas 
and beam seas in this scenario were quite similar to those in the intact condition.  The mean and 
COV of Xm in stern quartering seas were 1.145 and 133.0 percent for small wave amplitudes, 
and 0.925 and 130.0 percent for large wave amplitudes, and 0.790 and 110.9 percent for very 
large wave amplitudes.  The accuracy of the torsion moment prediction was poor, especially in 
the resonant region. 
 
 
Head waves 
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Figure 4.2.4-1: Horizontal shear force RAO in DS 3 in head waves 
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Figure 4.2.4-2: Vertical shear force RAO in DS 3 in head waves 
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Figure 4.2.4-3: Torsion moment RAO in DS 3 in head waves 
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Figure 4.2.4-4: Vertical bending moment RAO in DS 3 in head waves 
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Figure 4.2.4-5: Horizontal bending moment RAO in DS 3 in head waves 
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Stern quartering waves 
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Figure 4.2.4-6: Horizontal shear force RAO in DS 3 in stern quartering waves 
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Figure 4.2.4-7: Vertical shear force RAO in DS 3 in stern quartering waves 
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Figure 4.2.4-8: Torsion moment RAO in DS 3 in stern quartering waves 
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Figure 4.2.4-9: Vertical bending moment RAO in DS 3 in stern quartering waves 
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Figure 4.2.4-10: Horizontal bending moment RAO in DS 3 in stern quartering waves 

 
 
 
Beam waves 
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Figure 4.2.4-11: Horizontal shear force RAO in DS 3 in beam waves 
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Figure 4.2.4-12: Vertical shear force RAO in DS 3 in beam waves 
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Figure 4.2.4-13: Torsion moment RAO in DS 3 in beam waves 
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Figure 4.2.4-14: Vertical bending moment RAO in DS 3 in beam waves 
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Figure 4.2.4-15: Horizontal bending moment RAO in DS 3 in beam waves 
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4.2.5 Nonlinearity of the wave-induced dynamic loads 
 
As expressed in the foregoing sections, it was observed in the experimental results that the wave-
induced dynamic loads at different wave amplitudes scatter in a large range at some frequencies 
especially around resonant regions.  In some cases, the RAOs at small wave amplitudes are twice 
as large as those in large wave amplitudes.  To further investigate this nonlinear phenomenon, 
another batch of experiment has been carried out.  In this set of tests, the frequencies are mainly 
selected around resonant regions.   Four different wave amplitudes have been chosen for each 
frequency. The results are presented in Figures 4.2.5-1 to 4.2.5-27, in which the horizontal axis is 
wave amplitude in mm while the vertical axis is the non-dimensional RAOs of load components. 
 
It can be seen that majority of the response RAOs show a nonlinear trend, in which the non-
dimensional response is decreasing as wave amplitude increases in most of the frequency range, 
especially at the frequency where the response achieves the maximum.  For vertical bending 
moments this trend is very remarkable as shown in Figures 4.2.5-4, 4.2.5-9, 4.2.5-14, 4.2.5-19, 
and 4.2.5-24.  There are only a few cases in which linear responses are observed (see Figure 
4.2.5-27 at L/λ  = 1.348 and 1.044).  It may be said that the high nonlinearity is an inherent 
feature of this unique hullform.  This also supports the view that a nonlinear method should be 
used to predict the wave-induced loads of this type of vessels. 
 
 
Intact condition heading 45 
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Figure 4.2.5-1: Horizontal shear force RAO in stern quartering waves   
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Figure 4.2.5-2: Vertical shear force RAO in stern quartering waves   
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Figure 4.2.5-3: Torsion moment RAO in stern quartering waves  
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Figure 4.2.5-4: Vertical bending moment RAO in stern quartering waves 
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Figure 4.2.5-5: Horizontal bending moment RAO in stern quartering waves 
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Intact condition heading 135  
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Figure 4.2.5-6: Horizontal shear force RAO in bow quartering waves   
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Figure 4.2.5-7: Vertical shear force RAO in bow quartering waves 
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Figure 4.2.5-8: Torsion moment RAO in bow quartering waves 
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Figure 4.2.5-9: Vertical bending moment RAO in bow quartering waves 
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Figure 4.2.5-10: Horizontal bending moment RAO in bow quartering waves 

 
 
Damage scenario 2 heading 45 
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Figure 4.2.5-11: Horizontal shear force RAO in stern quartering waves (heading 45) 
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Figure 4.2.5-12: Vertical shear force RAO in stern quartering waves (heading 45) 
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Figure 4.2.5-13: Torsion RAO in stern quartering waves (heading 45) 
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Figure 4.2.5-14: Vertical bending moment RAO in stern quartering waves (heading 45) 
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Figure 4.2.5-15: Horizontal bending moment RAO in stern quartering waves (heading 45) 

 88



 
 

Damage scenario 2 heading 315 
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Figure 4.2.5-16: Horizontal shear force RAO in stern quartering waves (heading 315) 
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Figure 4.2.5-17: Vertical shear force RAO in stern quartering waves (heading 315) 
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Figure 4.2.5-18: Torsion moment RAO in stern quartering waves (heading 315) 
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Figure 4.2.5-19: Vertical bending moment RAO in stern quartering waves (heading 315) 
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Figure 4.2.5-20: Horizontal bending moment RAO in stern quartering waves (heading 315) 

 
 
Damage scenario 3 heading 45 
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Figure 4.2.5-21: Horizontal shear force RAO in stern quartering waves  
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Figure 4.2.5-22: Vertical shear force RAO in stern quartering waves 
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Figure 4.2.5-23: Torsion moment RAO in stern quartering waves 
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Figure 4.2.5-24: Vertical bending moment RAO in stern quartering waves 
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Figure 4.2.5-25: Horizontal bending moment RAO in stern quartering waves 
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Damage scenario 3 heading 180 
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Figure 4.2.5-26: Vertical shear force RAO in head waves 
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Figure 4.2.5-27: Vertical bending moment RAO in head waves 
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4.3 Prediction of dynamic global wave loads using the 2-D nonlinear theory 
 
An in-house program, which is based on the 2-D nonlinear method presented in Chapter 2, has 
been used to calculate wave-induced loads in regular waves in this section in order to validate the 
nonlinear method and compare it with the 2-D linear method presented in the previous sections.  
For a given wave profile this method can calculate the dynamic responses in the time domain.  
The time series are then filtered and the responses in the frequency domain are obtained.  Due to 
the nonlinearity in the responses, it is expected that the calculated RAOs in different wave 
amplitudes would be different, so two wave amplitudes, namely 2.0 and 2.5 metres, have been 
chosen to calculate the RAOs of wave-induced loads on the ship model at the cut.  One of the 
advantages of using a nonlinear method is its ability to distinguish the difference between 
positive and negative amplitude of the responses, while the positive and negative amplitude in a 
linear method would be the same.  For ships, for instance, the sagging bending moment is 
normally greater than the hogging bending moment, especially for destroyers.  Therefore positive 
and negative responses are presented separately to show their difference in the following figures.      
 
Figures 4.3-1 to 4.3-34 compare the 2-D nonlinear results with the experimental results in the 
intact condition and damage scenario 2.  Due to the limited capability of the wave maker, the 
waves generated in the towing tank can’t exactly match the wave amplitudes that were used in 
the theoretical calculations.  Hence the “large” wave amplitudes in the experiment have been 
used to compare with the wave amplitude of 2m in theory, and “very large” wave amplitudes in 
the experiment have been used to compare with wave amplitude of 2.5m in theory.  Only head 
seas and stern quartering seas are considered in this section because they are the critical headings 
for strength assessment.  Horizontal bending moments and torsion moments in the intact 
condition were not discussed in this comparison, as they were almost zero in the numerical 
predictions.  The sign conventions of dynamic force and moment on the transverse section of aft 
portion of the cut concerned are: 

• Horizontal shear force is positive from starboard to port. 
• Upward vertical shear force is positive. 
• Anti-clockwise torsion moment is positive. 
• Positive vertical bending moment is hogging. 
• Horizontal bending moment is positive when its vector points upward. 

  
Figure 4.3-3 shows the results for vertical bending moments in the intact condition in head waves 
with a wave height of 2 metres in the numerical calculations.  Also presented in this figure are 
the results of the 2-D linear method so the relative accuracy of both linear and nonlinear methods 
can be observed.  More details of the quantitative comparison of the 2-D nonlinear method with 
the experimental results can be seen in Table C.1 in Appendix C, in which the model 
uncertainties of the nonlinear method are presented.  Close attention will be paid to the results at 
the frequencies of 2.37, 2.74, and 2.97 because the wave height in the tests at those frequencies 
was very near to 2.0 metres.  The 2-D nonlinear results of the vertical bending moment agree 
reasonably well with the experimental results at some cases, such as positive amplitude at 
frequency 2.97 and negative amplitude at frequency 2.37.   The values of Xm in those cases were 
0.779 and 0.791 respectively. However the agreement was poor in some other cases, such as 
positive amplitude at frequency 2.37.  The value of Xm in that case was 0.598.  The mean and 
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COV of Xm were 0.910 and 63.3 percent for positive amplitude, and 1.280 and 102.6 percent for 
negative amplitude.  Further investigation into the constituents of Xm has shown that there is a 
large value of 2.342 for positive amplitude and 4.771 for negative amplitude at low frequencies.  
This large value could distort the mean and COV especially when the total number of data points 
is only 9.  In addition, the wave height in the test at this frequency was less than 0.7 metres, 
which was far away from 2.0 metres used in the numerical calculation.  Hence caution needs to 
be applied if the model uncertainty factor is to be used.   
 
The results of the 2-D linear method fall in between the positive and negative amplitudes 
predicted by the 2-D nonlinear method in the resonant region, so the linear and nonlinear 
methods correlate fairly well in this condition.  Overall, the performance of the 2-D nonlinear 
method was not satisfactory in this case. 
 
Figure 4.3-4 shows the results for vertical bending moments in the intact condition in head waves 
with a wave height of 2.5 metres in the numerical calculations.  The features of this figure were 
quite similar to those of Figure 4.3-3.  It should be pointed out that the majority of the 
experimental wave heights were not near the corresponding numerical wave height in this case.  
The mean and COV of Xm were 1.038 and 100.4 percent for positive amplitude and 0.671 and 
30.1 percent for negative amplitude.  Again the agreement between the 2-D nonlinear method 
and the tests was not desirable.  
 
Figure 4.3-9 shows the results for vertical bending moments in the intact condition in stern 
quartering seas with a wave height of 2.0 metres in the numerical calculations.  Again, more 
attention will be paid to the results at the frequencies of 2.37, 2.74, and 2.97.  Generally the 2-D 
nonlinear results of the vertical bending moment do not agree well with the experimental results 
except for one case, which was the negative amplitude at frequency 2.97 with a value of Xm of 
0.862.  The values of Xm in the two bad cases were 0.497 and 0.509 respectively.  The mean and 
COV of Xm were 0.941 and 95.6 percent for positive amplitude, and 0.737 and 40.3 percent for 
negative amplitude.  
 
Figure 4.3-19 shows the results for vertical bending moments in damage scenario 2 in head 
waves with a wave height of 2 metres in the numerical calculations.  For the same reason more 
attention will be paid to the results at the frequencies of 2.37, 2.74, and 2.97.  The 2-D nonlinear 
results for the vertical bending moments agree reasonably well with the experimental results in 
some cases, such as positive amplitude at frequency 2.74 and negative amplitude at frequency 
2.37.  The values of Xm in those cases were 0.832 and 0.838 respectively as shown in Table C.2 
in Appendix C.  However the agreement was not satisfactory in some other cases, such as 
negative amplitude at frequencies 2.74 and 2.97, and positive amplitude at frequency 2.37.  The 
values of Xm in those three cases were 0.599, 0.606 and 0.620 respectively.  The mean and COV 
of Xm were 1.084 and 75.4 percent for positive amplitude, and 0.596 and 43.9 percent for 
negative amplitude.  Further investigation into the constituents of Xm has shown that there is a 
very large value of 22.107 for positive amplitude and 17.572 for negative amplitude at a very 
low frequency of 1.435.  This large value could distort the mean and COV especially when the 
total number of data points is only 9.  In addition the wave height in the test was 1.148 metres, 
which was far away from 2.0 metres used in the numerical calculation at this low frequency.  
Hence caution needs to be applied if the model uncertainty factor is to be used. 
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The results for vertical bending moments in damage scenario 2 in stern quartering seas with a 
wave height of 2 metres in the numerical calculations are presented in Figure 4.3-29 and Table 
C.2 in Appendix C.  As before the results at the frequencies of 2.37, 2.74, and 2.97 were under 
close scrutiny.  The 2-D nonlinear results of the vertical bending moment agree reasonably well 
with the experimental results at some cases, such as positive amplitude at frequencies 2.37 and 
2.97 and negative amplitude at frequency 2.97.  The values of Xm in those cases were 0.862 and 
0.914 respectively as shown in Table C.2 in Appendix C.  However the agreement was poor in 
some other cases, such as negative amplitude at frequencies 2.37, and positive amplitude at 
frequency 2.74.  The values of Xm in those two cases were 0.606 and 0.668 respectively.  The 
mean and COV of Xm were 0.719 and 43.9 percent for positive amplitude, and 0.866 and 41.1 
percent for negative amplitude.  This is the best performance for vertical bending moment 
prediction. 
 
The horizontal bending moments in the intact condition in stern quartering seas with a wave 
height of 2 metres in the numerical calculations is presented in Figure 4.3-11 and Table C.1 in 
Appendix C.  As before the results at the frequencies of 2.37, 2.74, and 2.97 were the main 
focus.  The 2-D nonlinear results of the horizontal bending moment do not agree well with the 
experimental results at these frequencies.  The values of Xm in those cases vary in a large range 
from 0.227 to 2.906 as shown in Table C.1 in Appendix C.  The mean and COV of Xm were 
1.357 and 110 percent for positive amplitude, and 0.528 and 60.9 percent for negative amplitude.  
It is interesting to note that both linear and nonlinear methods produce two peaks, but the 
predicted peaks did not match the peak that was measured in the tests.  This seems the main 
reason for such a bad performance in the numerical predictions.  
 
Figure 4.3-31 shows the results for horizontal bending moments in damage scenario 2 in stern 
quartering seas with a wave height of 2 metres in the numerical calculations.  For the same 
reason the results at the frequencies of 2.37, 2.74, and 2.97 were the focus.  The 2-D nonlinear 
results of the horizontal bending moment agree reasonably well with the experimental results in 
some cases, such as positive amplitude at frequency 2.37 and 2.74.  The values of Xm in those 
cases were 0.842 and 1.147 respectively as shown in Table C.2 in Appendix C.  However the 
agreement was not satisfactory in some other cases, such as negative amplitude at all 
frequencies, and positive amplitude at frequency 2.97.  The values of Xm in those four cases were 
0.208, 0.342, 0.428 and 1.897, respectively.  The mean and COV of Xm were 1.109 and 60.3 
percent for positive amplitude, and 0.602 and 91.9 percent for negative amplitude.  
 
The torsion moments in the intact condition in stern quartering seas with a wave height of 2 
metres in the numerical calculations is presented in Figure 4.3-13 and Table C.1 in Appendix C.  
As before the results at the frequencies of 2.37, 2.74, and 2.97 were the main focus.  The 2-D 
nonlinear results of the torsion moment agree well with the experimental results at some 
frequencies but not the others.  The mean and COV of Xm were 0.4955 and 105.5 percent for 
positive amplitude, and 0.489 and 47.2 percent for negative amplitude.  It is interesting to note 
that the nonlinear method correctly predicted the peak responses, but the agreement at other 
frequencies were so bad so that the mean and COV of Xm are quite unsatisfactory.  
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Figure 4.3-33 shows the results for the torsion moments in damage scenario 2 in stern quartering 
seas with a wave height of 2 metres in the numerical calculations.  The 2-D nonlinear results for 
the torsion moment do not agree well with the experimental results at almost all the frequencies.  
As shown in Table C.2 in Appendix C the mean and COV of Xm were 0.130 and 85.1 percent for 
positive amplitude, and 0.343 and 82.8 percent for negative amplitude.  Basically, the 
experimental results were much smaller than the predicted responses.  
 
In summary, the 2-D nonlinear method does not produce satisfactory results for vertical bending 
moments, horizontal bending moments and torsion moments.  Although this conclusion is largely 
based on the analysis of the results from 2 metres wave height, it was equally applicable to the 
results of 2.5 metres wave height as shown in the corresponding figures and Table C.1 and C.2 in 
Appendix C.  Again, the predictions of torsion moments are the worst among the three 
components of the wave-induced loads, while the predictions of vertical bending moments have 
a similar level of accuracy to those of horizontal bending moments.  The nonlinear method tends 
to produce better results at the resonant frequencies than at the other frequencies.  However, it 
should be pointed out that the measured wave heights were not equal to 2.0 metres, which was 
used in the numerical calculations at most frequencies so that caution has to be applied when the 
mean and COV of Xm are used to judge the accuracy of the method.  
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Figure 4.3-1: Dynamic vertical shear force RAO  

in head seas (heading 180), theory ζ = 2m 
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Figure 4.3-2: Dynamic vertical shear force RAO  

in head seas (heading 180), theory ζ = 2.5m 
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Figure 4.3-3: Dynamic vertical bending moment RAO  

in head seas (heading 180), theory ζ = 2m 
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Figure 4.3-4: Dynamic vertical bending moment RAO  

in head seas (heading 180), theory ζ = 2.5m 
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Figure 4.3-5: Dynamic horizontal shear force RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-6: Dynamic horizontal shear force RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
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Figure 4.3-7: Dynamic vertical shear force RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-8: Dynamic vertical shear force RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
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Figure 4.3-9: Dynamic vertical bending moment RAO  
in stern quartering seas (heading 45), theory ζ = 2m 

 

 102



 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
w*sqrt(L/g)

P5
/(r

ho
*g

*z
et

a*
L^

2*
B

)

2D linear theory w ith estimated TCG

Exp. very large w ave amp positive

Exp. very  large w ave amp negative

Non-linear theory 2.5m positive

Non-linear theory 2.5m negative

 
Figure 4.3-10: Dynamic vertical bending moment RAO  
in stern quartering seas (heading 45), theory ζ = 2.5m 

 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

w*sqrt(L/g)

P6
/(r

ho
*g

*z
et

a*
L^

2*
B

)

2D linear theory w ith estimated TCG
Exp. large w ave amp positive
Exp. large w ave amp negative
Non-linear theory 2m positive
Non-linear theory 2m negative

 
Figure 4.3-11: Dynamic horizontal bending moment RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-12: Dynamic horizontal bending moment RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
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Figure 4.3-13: Dynamic torsion moment RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-14: Dynamic torsion moment RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
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Figure 4.3-15: Dynamic horizontal shear force RAO  

in head seas (heading 180), theory ζ = 2m 
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Figure 4.3-16: Dynamic horizontal shear force RAO  

in head seas (heading 180), theory ζ = 2.5m 
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Figure 4.3-17: Dynamic vertical shear force RAO  

in head seas (heading 180), theory ζ = 2m 
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Figure 4.3-18: Dynamic vertical shear force RAO  

in head seas (heading 180), theory ζ = 2.5m 
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Figure 4.3-19: Dynamic vertical bending moment RAO  

in head seas (heading 180), theory ζ = 2m 
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Figure 4.3-20: Dynamic vertical bending moment RAO  

in head seas (heading 180), theory ζ = 2.5m 
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Figure 4.3-21: Dynamic horizontal bending moment RAO  

in head seas (heading 180), theory ζ = 2m 
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Figure 4.3-22: Dynamic horizontal bending moment RAO  

in head seas (heading 180), theory ζ = 2.5m 
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Figure 4.3-23: Dynamic torsion moment RAO  

in head seas (heading 180), theory ζ = 2m 
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Figure 4.3-24: Dynamic torsion moment RAO  
in head seas (heading 180), theory ζ = 2.5m 
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Figure 4.3-25: Dynamic horizontal shear force RAO  
in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-26: Dynamic horizontal shear force RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
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Figure 4.3-27: Dynamic vertical shear force RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-28: Dynamic vertical shear force RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
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Figure 4.3-29: Dynamic vertical bending moment RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-30: Dynamic vertical bending moment RAO  
in stern quartering seas (heading 45), theory ζ = 2.5m 
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Figure 4.3-31: Dynamic horizontal bending moment RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-32: Dynamic horizontal bending moment RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
 

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.

w*sqrt(L/g)

P4
/(r

ho
*g

*z
et

a*
L^

2*
B

)

0

2D linear theory w ith estimated TCG
Exp. large w ave amp positive
Exp. large w ave amp negative
Non-linear theory 2m positive
Non-linear theory 2m negative

 
Figure 4.3-33: Dynamic torsion moment RAO  

in stern quartering seas (heading 45), theory ζ = 2m 
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Figure 4.3-34: Dynamic torsion moment RAO  

in stern quartering seas (heading 45), theory ζ = 2.5m 
 

 
4.4 Model Uncertainties of the 2-D Linear and Nonlinear Method 
 
As mentioned in Section 2.1.5 model uncertainty is a very important source of uncertainty in the 
structural design process.  Since a coefficient of variation (COV) of a typical strength prediction 
could be about 10 to 15 percent while a COV of wave-induced load prediction could be well 
above 30 percent, model uncertainty of wave-induced load prediction is a major uncertainty in 
structural strength assessment.  
 
Hence the model uncertainties of the 2-D linear method and 2-D nonlinear method were 
calculated by using Equation (2.1-34) in that section.  Based on the observations in the previous 
sections, the accuracies of both linear and nonlinear methods are different for different load 
components.  It would be interesting to quantitatively demonstrate this difference, so the model 
uncertainties are calculated separately for different load components.  Conventional model 
uncertainties were only predicted for the intact condition, so it would be interesting to see how 
different the accuracy could be between the intact condition and the damaged conditions.  A 
summary of model uncertainties  of the 2-D linear method and nonlinear method for vertical 
bending moment, horizontal bending moment as well as torsion moment are shown in Tables 
4.4-1 and 4.4-2, while the details of the model uncertainty calculations are presented in 
Appendices B and C.  

)X( 1m
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Table 4.4-1: Model uncertainties of the 2-D linear method )X( 1m

 
Design 

Condition 
Load Heading Mean (S) COV (S) Mean (L) COV (L) Mean (V) COV (V)

    180 0.8879  0.1926  0.7729  0.2446  0.7503  0.2743  
  VBM 45 1.0108  0.3194  0.9062  0.3760  0.9230  0.3374  

    135 0.8647  0.2462  0.8443  0.2714  0.8053  0.6931  
   180 small values ≈ 0 small values ≈ 0 small values ≈ 0 

Intact HBM 45 1.1190  0.7045  1.0192  0.6962  1.0379  0.4842  
    135 0.7812  0.6730  0.9129  0.7361  0.9249  0.7063  
    180 small values ≈ 0 small values ≈ 0 small values ≈ 0 
  TM 45 0.9638  1.3586  0.8660  1.4997  1.0264  1.2835  
    135 0.5590  0.6027  0.9187  1.4778  1.0481  1.6661  
    180 0.7894  0.2698  0.7393  0.2145  0.7832  0.1834  
  VBM 45 1.0633  0.2818  0.9744  0.1884  1.0101  0.2284  
    315 0.9792  0.2991  1.0049  0.5182  0.9488  0.3998  
    180 small values ≈ 0 small values ≈ 0 small values ≈ 0 

DS 2 HBM 45 1.1644  0.6721  0.9192  0.5960  0.8479  0.5020  
    315 1.0160  0.4230  1.1236  0.4450  1.1247  0.3217  
    180 small values ≈ 0 small values ≈ 0 small values ≈ 0 
  TM 45 0.6329  0.6414  0.4888  0.6754  0.5067  0.6093  
    315 0.8277  0.5260  0.8734  0.4568  0.9341  0.4567  
  VBM 180 0.7616  0.3104  0.7117  0.3173  1.3621  1.0684  

DS 3   45 0.9452  0.1946  0.9094  0.2009  0.8502  0.1812  
  HBM 180 small values ≈ 0 small values ≈ 0 small values ≈ 0 
    45 0.7320  0.5978  0.7347  0.4969  0.8942  0.4106  
  TM 180 small values ≈ 0 small values ≈ 0 small values ≈ 0 
    45 1.1452  1.3305  0.9247  1.2999  0.7901  1.1095  

 
 
In Table 4.4-1 Mean (S) and COV (S) stand for mean and COV for each load component in 
small wave amplitudes; Mean (L) and COV (L) stand for mean and COV for each load 
component in large wave amplitudes; Mean (V) and COV (V) stand for mean and COV for each 
load component in very large wave amplitudes; VBM is vertical bending moment; HBM is 
horizontal bending moment; TM is torsion moment.  
 
From Table 4.4-1 it is observed that the accuracy of the vertical bending moments is generally 
better than that of horizontal bending moments and torsion moments, and the accuracy for loads 
in head seas is much better than for those in stern quartering seas and beam seas.  This could be 
mainly caused by the underwater hullform of the ship model with a small Cb compared with 
conventional ships.  The COV of the horizontal bending moments is almost as twice as large as 
that of the vertical bending moments.  The COV of the torsion moments is the largest of the three.  
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Because of the large difference in COV for different force components it is more rational to 
consider the model uncertainties for vertical bending moments, horizontal bending moments, and 
torsion moments separately in reliability analysis rather than using one combined model 
uncertainty for all the components.  
 
When the model uncertainties were calculated, the experimental results were assumed as the 
‘real response’.  However there were also uncertainties in the tests, but unfortunately it was very 
difficult to quantify them although much effort has been made to reduce these uncertainties.  One 
of the uncertainties in the current experiment was the way to measure the wave profile in terms 
of wave height and wave period.  Two wave probes were placed in the front of the ship model to 
measure the wave profile.  Due to the effects of deflection of incident wave and radiation of the 
model’s motion, the recorded wave in the second wave probe, which was nearer to the model, 
was subject to the interference, so could not be used.  Therefore the wave profile measured by 
the first wave probe, which was further away from the model, was used to calculate the RAOs.  
It is possible that the wave profile at the first wave probe was slightly different from the wave 
profile at the ship model.  Due to the limited availability of the towing tank, it was not possible 
to correlate fully the wave profile at these two locations so that this difference could be 
considered in the calculations. 
 
The second uncertainty is caused by the mooring lines, which were attached to the fore and stern 
ends of the model, as mentioned in the previous sections.  The mooring line could affect the 
model’s motion, although more on the low frequency motions and less on the wave frequency 
motions, and then wave-induced loads, especially the horizontal bending moments.  However the 
forces in the mooring lines were not measured so that it was not possible to quantify the 
influence of the mooring lines on the horizontal bending moment.  
 
The third uncertainty was the measurement of the radius of gyration about the x-axis (i.e. for roll 
motion).  The roll radius of gyration of the model was measured by the method presented in 
Bhattacharyya (1978).  In this method, a bar with circular cross-section was attached to the deck 
panel in the longitudinal direction (i.e. along the x-axis).  Although the deck was strong enough 
to seal the model and to keep the model waterproof during the tests in the towing tank, it was not 
stiff enough so that it deformed noticeably when the whole model was hanging beneath the 
attached bar during the swing test.  Therefore the accuracy in the measured roll radius of 
gyration may not be very good.  This may cause the inaccuracy in the calculations of the natural 
frequency of roll and torsion moments.  The large COV in the torsion moments might be partly 
caused by this uncertainty. 
 
Table 4.4-2 presents the model uncertainties of the 2-D nonlinear method.  In this table 

• ‘mean (2m)+’ is the mean value of model uncertainty under 2m wave weight from the 
positive responses;  

• ‘mean (2m)-’ is the mean value of model uncertainty under 2m wave weight from the 
negative responses;  

• ‘COV (2m)+’ is the coefficient of variation of model uncertainty under 2m wave 
weight from the positive responses;  

• ‘COV (2m)-’ is the coefficient of variation of model uncertainty under 2m wave 
weight from the negative responses;  
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• ‘mean (2.5m)+’ is the mean value of model uncertainty under 2.5m wave weight from 
the positive responses;  

• ‘mean (2.5m)-’ is the mean value of model uncertainty under 2.5m wave weight from 
the negative responses;  

• ‘COV (2.5m)+’ is the coefficient of variation of model uncertainty under 2.5m wave 
weight from the positive responses;  

• ‘COV (2.5m)-’ is the coefficient of variation of model uncertainty under 2.5m wave 
weight from the negative responses; 

• ‘mean +’ is mean value of the model uncertainty under both 2m and 2.5m wave 
weight from the positive responses;  

• ‘mean -’ is the mean value of model uncertainty under both 2m and 2.5m wave 
weight from the negative responses; 

• ‘COV +’ is the coefficient of variation of model uncertainty under both 2m and 2.5m 
wave weight from the positive responses; and 

• ‘COV -’ is the coefficient of variation of model uncertainty under both 2m and 2.5m-
wave weight from the negative responses. 

 
Comparing the results in Tables 4.4-1 and 4.4-2, it can be seen that the 2-D linear method has a 
better mean and COV of Xm in the predictions of vertical bending moments and horizontal 
bending moments in both the intact condition and damage scenario 2 than the 2-D nonlinear 
method, and both 2-D the linear and nonlinear methods have produced unsatisfactory results in 
torsion moments.  Based on the current results, it may be said that the 2-D linear method is more 
accurate than the nonlinear method.  However the nonlinear method can distinguish the 
difference between the positive and negative responses, but linear methods can’t.  This 
advantage of the nonlinear method is especially important for ships with small block coefficient, 
such as frigates etc.  For a frigate the ratio of sagging bending moment to hogging bending 
moment could be as large as 1.78 (Clarke, 1986).  In addition, hull girder strength in hogging is 
normally different from that in sagging.  Therefore the nonlinear method is preferred.  This slight 
preference of the nonlinear method was also based on another fact that the nonlinear method 
tends to produce better results in the resonant region than at other frequencies.  Based on the 
current method for combining different load components, the accuracy in the resonant region is 
more important than that at other frequencies.    



Table 4.4-2: Model uncertainties of the 2-D nonlinear method )X( 1m

 
Design 

condition 
Load Headin

g 
mean 
(2m)  

+ 

mean 
(2m) 

 - 

COV 
(2m)  

+ 

COV 
(2m) 

 - 

mean 
(2.5m) 

+ 

mean 
(2.5m)  

- 

COV 
(2.5m) 

 + 

COV 
(2.5m) 

- 

mean 
+ 

mean 
- 

COV  
+ 

COV 
 - 

 VBM 180 0.9104 1.2802 0.6332 1.0255 1.0382 0.6711 1.0040 0.3009 0.9743 0.9757 0.8413 0.9876
Intact  45 0.9416 0.7365 0.9562 0.4032 0.6408 0.7926 0.4354 0.5354 0.7912 0.7646 0.8404 0.4662

 HBM 45 1.3567 0.5282 1.0998 0.6088 1.2072 0.5960 0.6585 0.7275 1.2820 0.5621 0.9067 0.6617
 TM 45 0.4955 0.4893 1.0548 0.4721 0.6664 0.4748 0.7152 0.5393 0.5810 0.4821 0.8488 0.4910
 VBM 180 1.0838 0.5955 0.7537 0.4385 1.0307 0.6507 0.5186 0.3490 1.0557 0.6247 0.6251 0.3802

DS 2  45 0.7186 0.8661 0.4387 0.4113 0.7765 0.8083 0.3288 0.4025 0.7475 0.8372 0.3744 0.3969
 HBM 45 1.1085 0.6020 0.6034 0.9186 1.1479 0.5114 0.6758 0.8428 1.1282 0.5567 0.6231 0.8680
 TM 45 0.1295 0.3429 0.8507 0.8275 0.1706 0.4445 0.6280 0.5335 0.1500 0.3937 0.7165 0.6579

 119



5. PREDICTION OF EXTREME DESIGN LOADS AND LOAD COMBINATIONS  
 
5.1 Prediction of extreme design loads using the results from the 2-D linear method 
 
The extreme design loads in irregular waves have been calculated by short term prediction, 
which was presented in Chapter 3, for the sample vessel at amidships, which is 70.5 m from the 
AP, in the intact condition and in three damage scenarios.  The 2-D linear method has been used 
to predict RAOs of wave-induced dynamic loads in regular waves.  For clarity, only the extreme 
design loads, which will be used to assess the structural strength, are included here, while RAOs 
are presented in Appendix A.   
 
Sea Condition 
 
In order to predict the extreme design loads, environmental conditions need to be specified.  It is 
assumed that this vessel is to be operated in North Atlantic Ocean.  Sea state specifications of the 
North Atlantic are presented in Table 5.1-1 
 
Table 5.1-1 Annual sea state occurrences in the North Atlantic and North Pacific 

(Lee et al., 1985) 
 
Sea 
State 
No. 

Significant Wave 
Height (m) 

Sustained Wind 
Speed (knots) 

North Atlantic North Pacific 
Prob-
ability 
of Sea 
State 
(%) 

Modal Wave 
Period (s) 

Prob-
ability 
of Sea 
State 
(%) 

Modal Wave 
Period (s) 

Range Mean Range Mean Range Most 
Prob-
able 

Range Most 
Prob-
able 

0–1 0–0.1 0.05 0–6 3.0 0.70 - - 1.30 - - 
2 0.1–0.5 0.30 7–10 8.5 6.80 3.3–12.8 7.5 6.40 5.1–14.9 6.3 
3 0.5–1.25 0.88 11–16 13.5 23.70 5.0–14.8 7.5 15.50 5.3–16.1 7.5 
4 1.25–2.5 1.88 17–21 19.0 27.80 6.1–15.2 8.8 31.60 6.1–17.2 8.8 
5 2.5–4 3.25 22–27 24.5 20.64 8.3–15.5 9.7 20.94 7.7–17.8 9.7 
6 4–6 5.00 28–47 37.5 13.15 9.8–16.2 12.4 15.03 10.0–18.7 12.4 
7 6–9 7.50 48–55 51.5 6.05 11.8–18.5 15.0 7.00 11.7–19.8 15.0 
8 9–14 11.50 56–63 59.5 1.11 14.2–18.6 16.4 1.56 14.5–21.5 16.4 
>8 >14 >14 >63 >63 0.05 18.0–23.7 20.0 0.07 16.4–22.5 20.0 
 
 
As the purpose of this task is to evaluate a vessel’s survivability in damaged conditions, the most 
severe sea condition has been chosen.  Comparisons have been made among several sea areas 
provided by BMT global wave statistics data.  Sea Area 16 as illustrated in Figure 5.1-1 is the 
most severe sea condition in the North Atlantic.  Table 5.1-2 shows the wave scatter diagram of 
Sea Area 16 under 12 months with 100,000 observations. 
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Figure 5.1-1 Location of Sea Area 16 (source: BMT) 
 
Table 5.1-2 Wave scatter diagram of Sea Area 16 in the North Atlantic (BMT) 
 

 
 
Based on the information above, the significant wave height in each sea state and its 
corresponding zero crossing period in Sea Area 16 can be obtained as follows: 
 

 Hs (m) 
Zero crossing 

period (s) 
Sea State 3 1.25 7.5 
Sea State 4 2.5 8 
Sea State 5 4 8.5 
Sea State 6 6 9 
Sea State 7 9 10 
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ITTC Spectrum 
 
The ITTC spectrum has been chosen for the extreme design load calculation, and can be 
expressed as  

⎥
⎦

⎤
⎢
⎣

⎡
−=

−
−

2

42
52 4exp)(

sH
ggS ωαωαω  [7.1-1] 

 

Where, 4

0081.0
k

=α  [7.1-2] 

 

and, 
z

g
k

ω
σ

54.3
/

=  [7.1-3] 

 
in which 4/0 sHm ==σ , the standard deviation (r.m.a. value) of the water surface elevation. 
 
Tables 5.1-3 to 5.1-16 present the wave induced vertical, horizontal bending moment and torsion 
moment at sea states 3 – 7 for a duration of 96 hours.  In those tables ‘R_Max’ is the most 
probable extreme design load, and ‘R_design’ is the extreme design load with a probability of 
exceedance of 0.01 in N encounters. Mwv is the vertical wave-induced bending moment, Mwh is 
the horizontal wave-induced bending moment, TM is the torsion moment, and MS is the 
stillwater bending moment.  
 
 
Intact Condition 
 
Table 5.1-3: Extreme design loads in stern quartering waves (heading 45)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3      

R_Max 7.21E+07 3.61E+07 1.02E+07   
R_Design 8.63E+07 4.32E+07 1.22E+07 

Sea State 4   
R_Max 1.36E+08 6.79E+07 1.92E+07 1.65E+08 
R_Design 1.63E+08 8.12E+07 2.29E+07 

Sea State 5      
R_Max 2.05E+08 1.01E+08 2.85E+07   
R_Design 2.45E+08 1.21E+08 3.42E+07 

Sea State 6      
R_Max 2.87E+08 1.41E+08 3.97E+07   
R_Design 3.44E+08 1.69E+08 4.75E+07 

Sea State 7      
R_Max 3.75E+08 1.82E+08 5.08E+07   
R_Design 4.49E+08 2.18E+08 6.09E+07 
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Table 5.1-4: Extreme design loads in head waves (heading 180)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3      

R_Max 8.92E+07 1.13E+02 4.18E+00   
R_Design 1.07E+08 1.35E+02 5.02E+00 

Sea State 4      
R_Max 1.74E+08 2.22E+02 8.21E+00 1.65E+08 
R_Design 2.09E+08 2.66E+02 9.85E+00 

Sea State 5      
R_Max 2.69E+08 3.44E+02 1.28E+01   
R_Design 3.23E+08 4.13E+02 1.54E+01 

Sea State 6      
R_Max 3.86E+08 4.97E+02 1.87E+01   
R_Design 4.63E+08 5.96E+02 2.24E+01 

Sea State 7      
R_Max 5.22E+08 6.76E+02 2.65E+01   
R_Design 6.26E+08 8.12E+02 3.18E+01 

 
 
Table 5.1-5: Extreme design loads in beam waves (heading 90)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3      

R_Max 1.01E+07 2.41E+07 1.52E+07   
R_Design 1.20E+07 2.88E+07 1.82E+07 

Sea State 4      
R_Max 1.90E+07 4.45E+07 2.81E+07 1.65E+08 
R_Design 2.27E+07 5.32E+07 3.36E+07 

Sea State 5      
R_Max 2.86E+07 6.57E+07 4.14E+07   
R_Design 3.42E+07 7.85E+07 4.95E+07 

Sea State 6      
R_Max 4.05E+07 9.07E+07 5.69E+07   
R_Design 4.84E+07 1.08E+08 6.81E+07 

Sea State 7      
R_Max 5.39E+07 1.16E+08 7.18E+07   
R_Design 6.44E+07 1.38E+08 8.59E+07 
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Damage Scenario 1 
 
Table 5.1-6: Extreme design loads in stern quartering waves (heading 45)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 7.48E+07 3.82E+07 8.14E+06  
R_Design 8.95E+07 4.57E+07 9.74E+06 

Sea State 4     
R_Max 1.42E+08 7.12E+07 1.53E+07 5.51E+07 
R_Design 1.70E+08 8.52E+07 1.83E+07 

Sea State 5      
R_Max 2.14E+08 1.06E+08 2.28E+07   
R_Design 2.57E+08 1.27E+08 2.72E+07 

Sea State 6      
R_Max 3.02E+08 1.47E+08 3.17E+07   
R_Design 3.62E+08 1.76E+08 3.79E+07 

Sea State 7      
R_Max 3.97E+08 1.88E+08 4.06E+07   
R_Design 4.75E+08 2.25E+08 4.87E+07 

 
 
Table 5.1-7: Extreme design loads in head waves (heading 180)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 9.26E+07 1.07E+02 1.05E+01  
R_Design 1.11E+08 1.28E+02 1.25E+01 

Sea State 4     
R_Max 1.82E+08 2.12E+02 2.08E+01 5.51E+07 
R_Design 2.18E+08 2.54E+02 2.49E+01 

Sea State 5     
R_Max 2.82E+08 3.30E+02 3.30E+01  
R_Design 3.38E+08 3.95E+02 3.96E+01 

Sea State 6     
R_Max 4.06E+08 4.77E+02 4.91E+01  
R_Design 4.87E+08 5.72E+02 5.90E+01 

Sea State 7     
R_Max 5.51E+08 6.51E+02 7.22E+01  
R_Design 6.61E+08 7.82E+02 8.68E+01 
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Table 5.1-8: Extreme design loads in beam waves  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 9.09E+06 2.14E+07 1.39E+07  
R_Design 1.08E+07 2.56E+07 1.66E+07 

Sea State 4     
R_Max 1.62E+07 3.88E+07 2.54E+07 5.51E+07 
R_Design 1.92E+07 4.63E+07 3.03E+07  

Sea State 5     
R_Max 2.32E+07 5.62E+07 3.70E+07  
R_Design 2.75E+07 6.71E+07 4.42E+07 

Sea State 6     
R_Max 3.13E+07 7.65E+07 5.06E+07  
R_Design 3.72E+07 9.13E+07 6.05E+07 

Sea State 7     
R_Max 3.87E+07 9.52E+07 6.33E+07  
R_Design 4.59E+07 1.14E+08 7.57E+07 

 
 
Damage Scenario 2 
 
Table 5.1-9: Extreme design loads in stern quartering waves (heading 45)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 7.71E+07 3.59E+07 1.01E+07  
R_Design 9.23E+07 4.29E+07 1.21E+07 

Sea State 4     
R_Max 1.47E+08 6.65E+07 1.94E+07 3.75E+07 
R_Design 1.76E+08 7.95E+07 2.32E+07 

Sea State 5     
R_Max 2.24E+08 9.82E+07 2.95E+07  
R_Design 2.68E+08 1.17E+08 3.53E+07 

Sea State 6     
R_Max 3.17E+08 1.36E+08 4.18E+07  
R_Design 3.79E+08 1.62E+08 5.01E+07 

Sea State 7     
R_Max 4.20E+08 1.72E+08 5.55E+07  
R_Design 5.03E+08 2.06E+08 6.65E+07 
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Table 5.1-10: Extreme design loads in head waves  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 9.79E+07 6.79E+05 1.85E+05  
R_Design 1.17E+08 8.12E+05 2.21E+05 

Sea State 4     
R_Max 1.93E+08 1.27E+06 3.56E+05 3.75E+07 
R_Design 2.31E+08 1.52E+06 4.27E+05 

Sea State 5     
R_Max 3.00E+08 1.89E+06 5.45E+05  
R_Design 3.60E+08 2.25E+06 6.53E+05 

Sea State 6     
R_Max 4.33E+08 2.62E+06 7.78E+05  
R_Design 5.19E+08 3.14E+06 9.32E+05 

Sea State 7     
R_Max 5.90E+08 3.37E+06 1.04E+06  
R_Design 7.09E+08 4.03E+06 1.25E+06 

 
 
Table 5.1-11: Extreme design loads in beam waves (heading 90) 
 
 Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 2.53E+07 1.98E+07 1.64E+06  
R_Design 3.01E+07 2.35E+07 1.94E+06 

Sea State 4     
R_Max 4.54E+07 3.55E+07 2.90E+06 3.75E+07 
R_Design 5.41E+07 4.23E+07 3.44E+06 

Sea State 5     
R_Max 6.56E+07 5.11E+07 4.13E+06  
R_Design 7.81E+07 6.09E+07 4.90E+06 

Sea State 6     
R_Max 8.91E+07 6.93E+07 5.55E+06  
R_Design 1.06E+08 8.26E+07 6.58E+06 

Sea State 7     
R_Max 1.11E+08 8.58E+07 6.78E+06  
R_Design 1.32E+08 1.02E+08 8.05E+06 
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Table 5.1-12: Extreme design loads ion beam waves (heading 270)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 

Sea State 3     
R_Max 2.58E+07 1.91E+07 1.64E+06  
R_Design 3.07E+07 2.28E+07 1.94E+06 

Sea State 4     
R_Max 4.63E+07 3.44E+07 2.90E+06 3.75E+07 
R_Design 5.52E+07 4.09E+07 3.44E+06 

Sea State 5     
R_Max 6.68E+07 4.95E+07 4.13E+06  
R_Design 7.96E+07 5.90E+07 4.90E+06 

Sea State 6     
R_Max 9.07E+07 6.72E+07 5.55E+06  
R_Design 1.08E+08 8.00E+07 6.58E+06 

Sea State 7     
R_Max 1.13E+08 8.32E+07 6.78E+06  
R_Design 1.34E+08 9.91E+07 8.05E+06 

 
 
Table 5.1-13: Extreme design loads in stern quartering waves (heading 315)  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 7.71E+07 3.65E+07 1.01E+07  
R_Design 9.23E+07 4.36E+07 1.21E+07 

Sea State 4     
R_Max 1.47E+08 6.77E+07 1.94E+07 3.75E+07 
R_Design 1.76E+08 8.09E+07 2.32E+07 

Sea State 5     
R_Max 2.24E+08 9.99E+07 2.95E+07  
R_Design 2.68E+08 1.20E+08 3.53E+07 

Sea State 6     
R_Max 3.17E+08 1.38E+08 4.18E+07  
R_Design 3.79E+08 1.65E+08 5.01E+07 

Sea State 7     
R_Max 4.20E+08 1.76E+08 5.55E+07  

R_Design 5.03E+08 2.10E+08 6.65E+07 
 
 

128 



Damage Scenario 3 
 
Table 5.1-14: Extreme design loads in stern quartering waves (heading 45) 
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 6.96E+07 3.37E+07 8.49E+06  
R_Design 8.33E+07 4.04E+07 1.02E+07 

Sea State 4     
R_Max 1.32E+08 6.33E+07 1.62E+07 -2.47E+08 
R_Design 1.58E+08 7.57E+07 1.94E+07 

Sea State 5     
R_Max 1.98E+08 9.44E+07 2.44E+07  
R_Design 2.37E+08 1.13E+08 2.93E+07 

Sea State 6     
R_Max 2.77E+08 1.32E+08 3.44E+07  
R_Design 3.32E+08 1.57E+08 4.12E+07 

Sea State 7     
R_Max 3.62E+08 1.70E+08 4.52E+07  
R_Design 4.33E+08 2.04E+08 5.42E+07 

 
 
Table 5.1-15: Extreme design loads in head waves  
 
  Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 8.86E+07 6.19E-04 1.91E-05  
R_Design 1.06E+08 7.35E-04 2.27E-05 

Sea State 4     
R_Max 1.73E+08 1.09E-03 3.38E-05 -2.47E+08 
R_Design 2.07E+08 1.30E-03 4.01E-05 

Sea State 5     
R_Max 2.67E+08 1.55E-03 4.80E-05  
R_Design 3.20E+08 1.84E-03 5.70E-05 

Sea State 6     
R_Max 3.82E+08 2.08E-03 6.44E-05  
R_Design 4.59E+08 2.47E-03 7.64E-05 

Sea State 7     
R_Max 5.16E+08 2.54E-03 7.85E-05  
R_Design 6.19E+08 3.02E-03 9.31E-05 
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Table 5.1-16: Extreme design loads in beam waves  
 
 Mwv (Nm) Mwh (Nm) TM (Nm) MS (Nm) 
Sea State 3     

R_Max 1.09E+07 1.32E+07 9.41E+05  
R_Design 1.30E+07 1.58E+07 1.12E+06 

Sea State 4     
R_Max 2.04E+07 2.50E+07 1.68E+06 -2.47E+08 
R_Design 2.44E+07 2.98E+07 1.99E+06 

Sea State 5  
R_Max 3.07E+07 3.77E+07 2.41E+06  
R_Design 3.67E+07 4.50E+07 2.86E+06 

Sea State 6  
R_Max 4.33E+07 5.32E+07 3.25E+06  
R_Design 5.18E+07 6.36E+07 3.86E+06 

Sea State 7  
R_Max 5.75E+07 7.11E+07 4.00E+06  
R_Design 6.88E+07 8.49E+07 4.75E+06 

 
 
5.2 Prediction of extreme design loads using the results from the 2-D nonlinear method 
 
In this section short-term prediction is used to predict extreme design loads in irregular waves by 
using the results of the 2-D nonlinear method in regular waves.  Strictly speaking the short-term 
prediction is only valid in the linear range, so it is not desirable to mix it with the 2-D nonlinear 
method.  However this method can produce results quickly and fairly accurately.  The 2-D 
nonlinear method has been used to calculate the wave-induced loads in the time domain in 
regular waves, and the time series has then been converted to RAOs for each load component. 
Finally the RAOs have been used in short-term predictions to calculate the extreme design value 
for each load component.  An immediate issue to be addressed in this context is what wave 
amplitude should be used to calculate the RAOs because different wave amplitudes would lead 
to different values of RAOs due to the nonlinearity in the responses.  Two wave amplitudes, 
namely 2.0 m and 2.5 m, have been chosen to calculate the RAOs of wave-induced loads in order 
to see how much difference there would be in the predicted extreme design loads. 
 
Firstly the 2-D nonlinear method has been applied to predict the extreme design value of the 
hogging and sagging bending moment at the cut of the ship model in the intact condition at head 
seas with duration of 96 hours under 2 different wave amplitudes, namely 2.0 m and 2.5 m.  The 
results are presented in Table 5.2-1.  Similarly the 2-D nonlinear method has been applied to 
predict the extreme design value of hogging and sagging bending moment at the cut of the ship 
model in damage scenario 2 at head seas with a duration of 12 hours under 2 different wave 
amplitudes.  The results are shown in Table 5.2-2.  It can be seen that the difference in extreme 
design loads (both hogging and sagging) between 2m and 2.5m wave heights is increasing with 
the increase of sea roughness, but always less than 6.62 percent in the intact condition and 6.60 
percent in damage scenario 2.  For hogging bending moments, the extreme design value based on 
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a 2-m wave height is greater than that based on a 2.5-m wave height, but it is the opposite case 
for the sagging bending moment.  
 
 
Table 5.2-1: Extreme design loads by the 2-D nonlinear method in the intact condition 
 
  Mwv (N-m) , Hogging Mwv (N-m) , Sagging 

(2m) (2.5m) Percent 
Difference 

(2m) (2.5m) Percent 
Difference 

Sea State 3 
R_Max 7.83E+07 7.66E+07 2.22E+00 9.60E+07 1.01E+08 -4.95E+00
R_Design 9.38E+07 9.18E+07 2.18E+00 1.15E+08 1.21E+08 -4.96E+00
Sea State 4 
R_Max 1.54E+08 1.51E+08 1.99E+00 1.88E+08 1.99E+08 -5.53E+00
R_Design 1.85E+08 1.81E+08 2.21E+00 2.26E+08 2.39E+08 -5.44E+00
Sea State 5 
R_Max 2.39E+08 2.33E+08 2.58E+00 2.91E+08 3.09E+08 -5.83E+00
R_Design 2.87E+08 2.80E+08 2.50E+00 3.49E+08 3.71E+08 -5.93E+00
Sea State 6 
R_Max 3.43E+08 3.34E+08 2.69E+00 4.18E+08 4.45E+08 -6.07E+00
R_Design 4.12E+08 4.00E+08 3.00E+00 5.01E+08 5.34E+08 -6.18E+00
Sea State 7 
R_Max 4.60E+08 4.46E+08 3.14E+00 5.64E+08 6.04E+08 -6.62E+00
R_Design 5.52E+08 5.35E+08 3.18E+00 6.77E+08 7.25E+08 -6.62E+00
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Table 5.2-2: Extreme design loads by the 2-D nonlinear method in DS 2 
 
 Mwv (Nm)  Hogging  Mwv (Nm)  Sagging  

(2m) (2.5m) Percent 
Difference 

(2m) (2.5m) Percent 
Difference 

Sea State 3 

R_Max 6.31E+07 6.17E+07 2.27E+00 7.74E+07 8.13E+07 -4.80E+00
R_Design 7.84E+07 7.67E+07 2.22E+00 9.62E+07 1.01E+08 -4.75E+00
Sea State 4 
R_Max 1.24E+08 1.21E+08 2.48E+00 1.52E+08 1.61E+08 -5.59E+00
R_Design 1.55E+08 1.51E+08 2.65E+00 1.89E+08 2.00E+08 -5.50E+00
Sea State 5 
R_Max 1.93E+08 1.88E+08 2.66E+00 2.35E+08 2.49E+08 -5.62E+00
R_Design 2.40E+08 2.34E+08 2.56E+00 2.92E+08 3.10E+08 -5.81E+00
Sea State 6 
R_Max 2.77E+08 2.69E+08 2.97E+00 3.37E+08 3.59E+08 -6.13E+00
R_Design 3.44E+08 3.34E+08 2.99E+00 4.19E+08 4.47E+08 -6.26E+00
Sea State 7 
R_Max 3.71E+08 3.59E+08 3.34E+00 4.55E+08 4.87E+08 -6.57E+00
R_Design 4.61E+08 4.47E+08 3.13E+00 5.66E+08 6.06E+08 -6.60E+00

 
 
In order to further evaluate the results from the 2-D nonlinear method, RAOs obtained in the 
experimental tests have been used to predict extreme design loads.  Similarly two different sets 
of wave amplitudes, namely large amplitude waves and very large amplitude waves, have been 
used separately to calculate the extreme design loads.  Because the experimental data were 
available only at the cut (the section where the force gauge was installed) of the ship model, the 
extreme design loads presented in this section were for the ship model at the cut, which was 54.5 
cm apart from the AP.  The Sea Area 16 of the Atlantic Ocean under Sea State 3 to Sea State 7 
was used in short term predictions.  A duration of 96 hours was used in the short-term prediction 
for the intact condition while a reduced duration of 12 hours, which was recommended in Lloyds 
Register’s Navy Vessel Rule (Lloyds Register of Shipping, 2002), was used for damage scenario 
2.  The results of the above calculations have been presented in Tables 5.2-3 and 5.2-4 for the 
intact condition and damage scenario 2 respectively.  
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In addition, also presented in Tables 5.2-3 and 5.2-4 are the results obtained from the analytical 
formulae, which were recommended in Lloyds Register’s Navy Vessel Rules (Lloyds Register of 
Shipping, 2002).  The details of the formulae used in this study are presented in Appendix D. 
 
 
Table 5.2-3: Extreme vertical bending moment in the intact condition 
 
 Extreme Design 

Load (Nm), Hogging 
Extreme Design 
Load (Nm), Sagging 

Sagging/Hogging 
Ratio 

Nonlinear methoda 5.52E+08 6.77E+08 1.23  
Nonlinear methodb 5.35E+08 7.25E+08 1.36  

Rulesc 5.58E+08 7.00E+08 1.25  
Experimentd 4.01E+08 5.45E+08 1.36  
Experimente 3.67E+08 5.22E+08 1.42  

Linear method 5.52E+08 5.52E+08 1.00  
 
 
Table 5.2-4: Extreme vertical bending moment in damage scenario 2 
 
 Extreme Design 

Load (Nm), Hogging 
Extreme Design 
Load (Nm), Sagging 

Sagging/Hogging 
Ratio 

Nonlinear methoda 4.61E+08 5.66E+08 1.23  
Nonlinear methodb 4.47E+08 6.06E+08 1.36  
Rulesc 3.13E+08 3.92E+08 1.25  
Experimentd 3.35E+08 4.55E+08 1.36  
Experimente 3.07E+08 4.36E+08 1.42  
Linear method 5.38E+08 5.38E+08 1.00  

The footnotes for Tables 5.2-3 and 5.2-4 are as follows: 
a:   Using RAOs from the 2-D nonlinear method under constant wave amplitude 2m. 
b:   Using RAOs from the 2-D nonlinear method under constant wave amplitude 2.5m. 
c:   Using the formulae in Lloyds Register’s Navy Vessel Rules. 
d:   Using RAOs obtained from the experiment with large wave amplitude. 
e:   Using RAOs obtained from the experiment with very large wave amplitude. 

 
From Table 5.2-3 it can be seen that the 2-D nonlinear method overestimates the extreme design 
hogging bending moment by 37.7 percent and 45.8 percent for 2.0m and 2.5m wave heights 
respectively.  Similarly it overestimates the extreme design sagging bending moment by 24.2 
percent and 38.9 percent.  However the 2-D linear method overestimates the extreme design 
hogging bending moment by 37.7 percent and 50.4 percent for 2.0m and 2.5m wave heights 
respectively, and overestimates the extreme design sagging bending moment by 1.3 percent and 
5.8 percent for 2.0m and 2.5m wave heights respectively.  Hence the results in the intact 
condition are slightly in favour of the 2-D linear method. 
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Similar comparison has also been applied to the results in Table 5.2-4.  The 2-D nonlinear 
method overestimates the extreme design hogging bending moment by 37.6 percent and 45.6 
percent for 2.0m and 2.5m wave heights respectively, and overestimates the extreme design 
sagging bending moment by 24.4 percent and 39.0 percent.  However the 2-D linear method 
overestimates the extreme design hogging bending moment by 60.6 percent and 75.2 percent for 
2.0m and 2.5m wave heights respectively, and overestimates extreme design sagging bending 
moment by 18.2 percent and 23.4 percent for 2.0m and 2.5m wave heights respectively.  
Therefore the accuracy of the 2-D linear method is almost as good as that of the 2-D nonlinear 
method in damage scenario 2. 
 
In Table 5.2-3, both hogging and sagging bending moments for the 2-D nonlinear method agree 
well with those of the LR Rules’ formulae.  However the hogging bending moment of the 2-D 
linear method agrees well with that of the LR Rules’ formulae, but agreement in the sagging 
bending moment is not as good as with the hogging bending moment because in the 2-D linear 
method the sagging bending moment is the same as hogging bending moment.  It should be 
pointed out that the extreme design value predicted by LR Rules is the maximum value for the 
ship model.  In another words, the extreme design value at the cut is the same as that of the 
sections at amidships because the cut is not far away from amidships.  However the extreme 
design value predicted by the 2-D nonlinear method at the cut could potentially be quite different 
from that of the sections at amidships, where the maximum vertical bending moment would 
occur.  This might at least partly explain why LR Rules produces the largest extreme design 
hogging and sagging moments in the intact condition. 
 
The ratio of sagging bending moment to hogging bending moment of the 2-D nonlinear method 
is in good agreement with that of the experimental tests.  This is an advantage of the 2-D 
nonlinear method over the 2-D linear method. 
 
  
5.3 Load combinations for strength assessment 
 
The load components are combined for both the intact condition and damage scenario 1 using the 
methods described in section 3.2, based on the results predicted by the 2-D linear method.  The 
loads are for the cross-section, which is 70.5 meters from the AP.  The details are presented in 
Tables 5.3-1 and 5.3-2.  
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 Table 5.3-1 Load combinations in intact condition at 45 degree heading 
 

Basic Loads 
Ms = 1.65E+08  

RAOmax
My = 7.68E+07 RAOmax

Mz = 4.25E+07 RAOmax
Mx = 1.74E+07 

1ω  = 0.85 2ω  = 0.75 3ω  = 0.75 
RAO2

My = 6.92E+07 RAO1
Mz= 3.48E+07 RAO1

Mx = 3.76E+06 
RAO3

My = 6.92E+07 RAO3
Mz = 4.25E+07  RAO2

Mx = 1.74E+07 
Load Combinations 

Sea State 3 
MY 

max = 8.63E+07 MZ 
max = 4.32E+07 MX 

max = 1.22E+07 
Heq 1 = 1.12E+00 Heq 2 = 1.02E+00 Heq 3 = 7.01E-01 

Load combination without Ms 
 My component Mz component Mx component  
LC1 8.63E+07 3.91E+07 4.23E+06 
LC2 7.03E+07 4.32E+07 1.77E+07 
LC3 4.85E+07 2.98E+07 1.22E+07 
Sea State 4 

MY 
max = 1.63E+08 MZ 

max = 8.12E+07 MX 
max = 2.29E+07 

Heq 1 = 2.12E+00 Heq 2  = 1.91E+00 Heq 3 = 1.32E+00 
Load combination without Ms 
 My component Mz component Mx component  
LC1 1.63E+08 7.39E+07 7.98E+06 
LC2 1.32E+08 8.12E+07 3.32E+07 
LC3 9.11E+07 5.59E+07 2.29E+07 
Sea State 5 

MY 
max = 2.45E+08 MZ 

max = 1.21E+08 MX 
max = 3.42E+07 

Heq 1 = 3.19E+00 Heq 2 = 2.85E+00 Heq 3 = 1.97E+00 
Load combination without Ms 
 My component Mz component Mx component  
LC1 2.45E+08 1.11E+08 1.20E+07 
LC2 1.97E+08 1.21E+08 4.95E+07 
LC3 1.36E+08 8.35E+07 3.42E+07 
Sea State 6 

MY 
max = 3.44E+08 MZ 

max = 1.69E+08 MX 
max = 4.75E+07 

Heq 1  = 4.48E+00 Heq 2 = 3.98E+00 Heq 3 = 2.73E+00 
Load combination without Ms 
 My component Mz component Mx component  
LC1 3.44E+08 1.56E+08 1.68E+07 
LC2 2.75E+08 1.69E+08 6.92E+07 
LC3 1.89E+08 1.16E+08 4.75E+07 

135 



 Table 5.3-1 Load combinations in intact condition at 45 degree heading 
 
Sea State 7 

MY 
max = 4.49E+08 MZ 

max = 2.18E+08 MX 
max = 6.09E+07 

Heq 1 = 5.85E+00 Heq 2 = 5.13E+00 Heq 3 = 3.50E+00 
Load combination without Ms 
 My component Mz component Mx component  
LC1 4.49E+08 2.03E+08 2.20E+07 
LC2 3.55E+08 2.18E+08 8.93E+07 
LC3 2.42E+08 1.49E+08 6.09E+07 
 
 

Table 5.3-2 Load combinations in damage scenario 1 at 45 degree heading 
 

Basic Loads 
Ms 5.51E+07     
      

RAOmax
My = 7.65E+07 RAOmax

Mz= 3.99E+07 RAOmax
Mx = 1.27E+07 

1ω  = 0.85 2ω  = 0.8 3ω  = 0.8 
RAO2

My = 7.65E+07 RAO1
Mz = 3.59E+07 RAO1

Mx = 7.05E+06 
RAO3

My = 7.65E+07 RAO3
Mz = 3.99E+07  RAO2

Mx = 1.27E+07 
 Load Combinations 

Sea State 3 
MY 

max = 8.95E+07 MZ 
max = 4.57E+07 MX 

max = 9.74E+06 
Heq 1 = 1.17E+00 Heq 2 = 1.15E+00 Heq 3 = 7.67E-01 

Load combination without Ms 
 My component Mz component Mx component  
LC1 8.95E+07 4.20E+07 8.25E+06 
LC2 8.76E+07 4.57E+07 1.45E+07 
LC3 5.87E+07 3.06E+07 9.74E+06 
Sea State 4 

MY 
max = 1.70E+08 MZ 

max = 8.52E+07 MX 
max = 1.83E+07 

Heq 1 = 2.22E+00 Heq 2 = 2.14E+00 Heq 3 = 1.44E+00 
Load combination without Ms 
 My component Mz component Mx component  
LC1 1.70E+08 7.98E+07 1.57E+07 
LC2 1.63E+08 8.52E+07 2.71E+07 
LC3 1.10E+08 5.75E+07 1.83E+07 
Sea State 5 

MY 
max = 2.57E+08 MZ 

max = 1.27E+08 MX 
max = 2.72E+07 

Heq 1 = 3.36E+00 Heq 2 = 3.18E+00 Heq 3 = 2.14E+00 
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Table 5.3-2 Load combinations in damage scenario 1 at 45 degree heading 
 

Load combination without Ms 
 My component Mz component Mx component  
LC1 2.57E+08 1.21E+08 2.37E+07 
LC2 2.43E+08 1.27E+08 4.04E+07 
LC3 1.64E+08 8.55E+07 2.72E+07 
Sea State 6 

MY 
max = 3.62E+08 MZ 

max = 1.76E+08 MX 
max = 3.79E+07 

Heq 1 = 4.73E+00 Heq 2 = 4.41E+00 Heq 3 = 2.98E+00 
Load combination without Ms 
 My component Mz component Mx component  
LC1 3.62E+08 1.70E+08 3.34E+07 
LC2 3.37E+08 1.76E+08 5.60E+07 
LC3 2.28E+08 1.19E+08 3.79E+07 
Sea State 7 

MY 
max = 4.75E+08 MZ 

max = 2.25E+08 MX 
max = 4.87E+07 

Heq 1 = 6.21E+00 Heq 2 = 5.64E+00 Heq 3 = 3.83E+00 
Load combination without Ms 
 My component Mz component Mx component  
LC1 5.30E+08 2.23E+08 4.38E+07 
LC2 4.86E+08 2.25E+08 7.16E+07 
LC3 3.48E+08 1.53E+08 4.87E+07 
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6. ULTIMATE STRENGTH OF THE HULL GIRDER 
 
6.1 Hull 5415 and Damaged Scenario 

The studies on reliability-based assessment of the residual strength of a damaged ship are 
performed for the notional USN Combatant ship, Hull Form number 5415.  The principal 
dimensions of Hull 5415 are given in Table 6.1-1. 
 

Table 6.1-1: Principal dimension of USN Hull 5415 

Principal Dimensions Value 

Length Between Perpendiculars 142.04 metres (466 ft) 

Overall Length 151.18 metres (496 ft) 

Maximum Beam 21.15 metres (69.4 ft) 

Beam at Water Line 20.03 metres (65.7 ft) 

Depth of Hull 12.74 metres (41.8 ft) 

Design Draught (moulded) 6.31 metres (20.7 ft) 

Displacement at Load Draught 9,032.24 tonnes (8,890 LTons) 

 

The ship’s layout plan and damaged scenario for this study are shown in Figures 3-7 to 3-9.  The 
collision damage scenario is based on Lloyd’s Register rules for naval ships, which for collision 
damage of level A is given in Table 2.3-1.  It is also graphically illustrated in Figure 6.2-2.  
 

Table 6.1-2. Properties of steel materials 

Material Yield Strength σy 
(MN/m2) 

HY 80 552 
High Strength Steel 531 

 
 
The structural design of Hull 5415 is developed with two types of steel, HY 80 and HSS.  The 
relevant properties of the steel materials are given in Table 6.1-1.  The details of the midship 
section of Hull 5415 are given in Figure 6.1-2.  The relevant cross sectional properties are listed 
in Table 6.1-3 that includes the values as calculated using MARS (Bureau Veritas software for 
structural calculation) and ANSYS (FE analysis software) for comparison of structural model of 
each software. 
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Figure 6.1-1: Midship scantlings of Hull 5415 
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Table 6.1-3: Cross section characteristics  

Parameter Value (MARS) Value (ANSYS) 

Total Section Area 1.2592 m2 1.2576 m2 

Neutral axis above baseline 6.57486 m 6.5119 m 

Vertical Moment of Inertia 28.968810 m4 28.995 m4 

Horizontal Moment of Inertia 43.141570 m4 43.11 m4 

 

In accordance with BV rules for ships with Cb less then 0.8, the requirement for section modulus 
is: 
 ZR, Min = n1 C L2 B (CB + 0.7) k 10-6        (6.1.1) 
 
The comparison of the required section modulus properties as per BV rules and the actual for 
Hull 5415 midship section is given in Table 6.1-4. 
 
Table 6.1-4: Section modulus required as per BV Rules and actual for the midship section. 

Parameter BV Rule Hull 5415 

Deck 3.2728 m3 4.6912 m3 

Bottom 3.0655 m3 4.4060 m3 

Vertical Moment of Inertia 21.1343 m4 28.968810 m4 

 

 

6.2 Ultimate Hull Girder Strength – using MARS 

The MARS software from Bureau Veritas is used to calculate ultimate hull girder strength using 
the beam-column idealization of the Smith Method.  The MARS software provides different 
failure mode algorithms for calculation of ultimate strength that include the Elastic Ideally 
Plastic (EIP) failure mode and the Beam-Column (BC) failure mode, apart from the others. 

As already discussed in Section 2.3, for the EIP failure mode material beyond the elastic limit is 
considered fully plastic under both tension and compression.  The Beam-Column method of 
MARS uses the load-end shortening curves given in Equation 2.3-1. 

The MARS calculations are performed for both the intact and damaged conditions.  Figure 6.2-1 
shows the intact ship section modelled for the MARS calculations.  The damaged cross section 
shown in Figure 6.2-2 is modelled as per LR recommended damaged structure sizes as discussed 
Section 3.3. 
 
Figure 6.2-3 shows the MARS calculation results for ultimate strength in pure horizontal bending 
of Hull 5415 for the elastic ideally plastic failure mode.  The results for ultimate strength in pure 
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vertical bending for the beam-column failure mode are given in Figure 6.2-4.  The ultimate 
vertical moment capacity for the elastic-plastic failure mode is 2.556 GN-m whereas the ultimate 
moment capacity for the beam-column failure mode is 1.561 GN-m.  The ultimate moment 
capacity for the beam-column mode is 38.92 percent lower than that for the elastic-plastic failure 
mode since the beam-column method is based on load shortening curves that take into count the 
shear lag, residual stress, and initial deformation along with other production related effects.  
 
The ultimate bending moment capacity for the combination of vertical and horizontal moments is 
given in Figures 6.2-5 and 6.2-6 for the elastic-plastic failure mode and in Figures 6.2-7 and 6.2-
8 for the beam-column method.  These results are for the intact ship in the hogging condition.  
 
The MV and MH interaction formulae in the form of equation 2.3-6 are as follows: 
 
−−  For the elastic ideally plastic failure mode (Also see Figure 6.2-6). 
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−−  For the beam-column failure mode (Also see Figure 8.2-8). 
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The comparison of ultimate moment capacity of the intact condition and damaged condition DS1 
in terms of a vertical and horizontal moment interaction diagram is given in Figure 6.2-9 for both 
hogging and sagging conditions.  For the damaged ship, the vertical and horizontal moment 
interaction formula derived from interaction terms as plotted in Figure 6.2-9 are as follows: 
 
−−  For the damaged ship hogging condition 
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−−  For the damaged ship sagging condition 
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The comparison of the ultimate moment for various bending curvature ratios (the ratio of 
horizontal to vertical bending) in the hogging condition for the intact and damaged ship is shown 
in Figure 6.2-10.  It may be observed that for the hogging condition when the bending curvature 
ratio is small and consequently, predominant curvature is in the vertical direction depicting the 
predominant vertical bending moment, the difference between the ultimate moment for damaged 
and intact conditions is small.  As the curvature ratio increases, the horizontal moment also 
increases and the difference between the intact and damaged conditions ultimate moments slowly 
increases until the curvature ratio reaches a value of about 2 and almost remains steady for 
further increases in curvature ratio, where the dominant moment is horizontal in nature.  The 
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ultimate moment capacity of the damaged ship in the hogging condition is higher than that in the 
case of the intact ship for same loading condition, which is about 1 percent higher for pure 
vertical bending curvature and increases to about 11 percent for pure horizontal bending 
curvature as shown in Figure 6.2-12.  The increase of ultimate moment capacity of the damaged 
ship in the hogging condition is attributed to a shift and change of the orientation of the neutral 
axis as shown in Figures 6.2-16 and 6.2-17. 
 
For the sagging condition, the ultimate moment capacity of the damaged ship decreases with an 
increase in the horizontal/vertical curvature ratio as shown in Figure 6.2-11.  For the sagging 
ship condition, the curvature ratio around zero represents a predominant vertical moment 
resulting in compression in the damaged section of the ship.  For the dominant vertical moment, 
the ultimate moment capacity of the damaged ship is reduced by 20 percent compared to that of 
the intact ship as shown in Figure 6.2-11.  For a dominant horizontal moment i.e. for higher 
curvature ratio, the difference between ultimate moment capacity of the intact and the damaged 
ship is reduced to around 10 percent.  
 
The ultimate moment capacity of the damaged ship as a function of damage depth for the 
ultimate vertical moment in the sagging condition, ultimate vertical moments in the hogging 
condition, and ultimate horizontal moments are shown in Figures 6.2-13, 6.2-14, and 6.2-15, 
respectively.  The results presented in these graphs are obtained using the beam-column method 
for ultimate strength calculation.  Such functional representation of damage vs. ultimate strength 
at various sections across whole length of ship may be an appropriate tool for residual strength 
assessment of a damaged ship and quick assessment of risk in case of a damage incident.  
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Figure 6.2-1: Midship section, MARS model intact ship 

 

 
Figure 6.2-2: Midship section, MARS model damaged condition 
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Figure 6.2-3: Elastic – Ideally Plastic ultimate strength of Hull 5415 in pure horizontal bending. 
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Figure 6.2-4: Beam-column failure mode ultimate strength of Hull 5415 in pure vertical bending 
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Figure 6.2-5: EIP ultimate strength of Hull 5415 for vertical and horizontal moments 
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Figure 6.2-6: EIP ultimate strength for vertical and horizontal moments interaction  
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Figure 6.2-7: BC ultimate strength of Hull 5415 for vertical and horizontal moments 
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Figure 6.2-8: BC ultimate strength of Hull 5415 for vertical and horizontal interaction 
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Figure 6.2-9: Comparison of Mv/Muv and Mh/Muh for intact and damaged conditions 

 
Figure 6.2-10: Ultimate hogging moment for intact and damaged conditions 
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Figure 6.2-11: Comparison of ultimate moment for intact and damaged sagging conditions 

 
Figure 6.2-12: Percentage reduction in ultimate hogging and sagging moment for intact and 

damaged conditions 
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Figure 6.2-13: Ultimate sagging moment as function of damaged depth 

 

 
Figure 6.2-14: Ultimate hogging moment as a function of damaged depth 
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Figure 6.2-15: Ultimate horizontal bending moment as a function of damaged depth 

 

 
Figure 6.2-16: Shift in vertical location of neutral axis as a function of damaged depth 
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Figure 6.2-17: Inclination angle of neutral axis as a function of damaged depth 
 
 
6.3 Ultimate Hull Girder Strength – using ANSYS 
 
ANSYS was used for FE analysis of Hull 5415 to determine the ultimate strength of the hull 
girder.  In FE analysis, the size of ship structure to be used in FE model is required to be 
carefully determined.  Some suggestions were made in the project kick-off meeting (21 Aug 
2006) to develop a model of a complete ship using a top-down procedure starting from a coarse 
model to fine mesh.  Considering the enormous amount of computing time in nonlinear analysis, 
this procedure was not considered realistic for the project because of budget constraints and 
enormous amount of computing time and effort that would be required.  The large model will 
obviously give response of the structure for the entire hull length but is not necessarily required 
because in the 3-compartment model we are examining the critical sections of the hull girder.  It 
was decided that a 3-compartment model would be sufficient as similar extent of structure is 
mostly recommended by classification societies for direct strength assessment of the primary 
supporting structure.  The 3-compartment part of Hull 5415 is shown in Figure 6.3-1 is modelled 
for FE analysis. 
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Figure 6.3-1: The range of ship for FE modelling of damaged ship analysis 
 
However, structural details of the Hull 5415 were only available for the midship section and 
therefore the three compartments are considered to be the same in cross section as the midship 
section in these studies.  Furthermore, no FE-based design assessment of the intact ship was 
available to compare the results with that of the damaged ship.  The FE analysis for ultimate 
strength of hull girder was therefore carried out for both intact and damaged conditions. 
 

6.3.1 Finite Element Model for nonlinear ultimate strength assessment 

The 3-compartment models is large in term of FE computational time and since reliability-based 
assessment of the residual strength of the damaged ship using FE analysis requires a number of 
runs to generate the response surface, and because of budget constraints and time available for 
project completion, a 3-level FE modelling approach was adopted for this project, with a plan to 
compare the results from the large model with that of small model to assess the influence of 
boundary conditions.  The reduced/small model was used for a large number of calculations for 
response surface development and reliability analysis.  The reduced/small model analysis was 
however only possible for the intact ship.  The three levels of FE models of ship in the intact 
condition are shown in Figure 6.3.1-1, which are the following: 

• 3-compartment model 
• One compartment model 
• Two frame model 

 
A full 3-compartment model was used for FE analysis of the ship in damaged conditions (see 
Figure 6.3.1-2).  All the three models developed were for both the port and starboard side of the 
ship, i.e. no recourse was made to symmetry of structure about centreline, as apart from vertical 
and horizontal moments, torsion is also considered to be a dominant load for a damaged ship. 
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The ANSYS SHELL181 element was used in this analysis.  SHELL181 is suitable for analysing 
thin to moderately thick shell structures.  It is a 4-node element with six degrees of freedom at 
each node: translations in the x, y, and z directions, and rotations about the x, y, and z-axes.  
SHELL181 is well suited for linear, large rotation, and/or large strain nonlinear applications.  
Change in shell thickness is accounted for in nonlinear analyses.  In the element domain, both 
full and reduced integration schemes are supported.  SHELL181 counts for follower (load 
stiffness) effects of distributed pressures.  
 
The 3-compartment FE model of the ship structure is discretised in two major meshing sizes.  
The middle part of the middle compartment up to one frame inside of the bulkheads is fine 
meshed with average element size of 8 to 10 cm.  For remaining part of the model a comparative 
coarse mesh of 35 to 40 cm was used in order to reduce the number of nodes and elements of the 
FE model.  The 3-compartment model in total consists of around 0.4 million nodes and 0.41 
million elements.  The fine mesh in the middle compartment was required to suitably simulate 
structural damage using ANSYS/LS DYNA explicit FE analysis. 
 
The 1-compartment model mainly consists of a coarse mesh of average size between 50 and 70 
cm.  The FE model consists of about 45 thousand nodes and 42 thousand elements.  
 
A fine FE mesh was used for the 2-frame model, which consists of 52 thousand nodes and 51 
thousand elements.  
 
The ship’s structural model for damaged case analysis was generated using explicit dynamic FE 
simulation of collision between two ships.  A typical bow structure for a merchant vessel was 
modelled for collision impact approximately in the centre of the middle compartment at right 
angles to the longitudinal-central vertical plane of hull 5415.  The damaged part of hull 5415 as 
obtained subsequent to collision simulation is shown in Figure 6.3.1-2.  Figure 6.3.1-3 shows 
residual stress distributions in the deformed structure.  The overly deformed elements from the 
damaged part of the model were removed in order to avoid computational divergence in 
subsequent static nonlinear FE analysis that was used to determine the ultimate moment capacity 
of the damaged hull.  The refined element mesh of the damaged structural model is shown in 
Figure 6.3.1-4 along with residual stress vectors.  
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Figure 6.3.1-1: Different odels for FE Analysis. 

 

 
 

Figure 6.3.1-2: Damaged structural model ANSYS/LS DYNA simulation. 
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Figure 6.3.1-3: Residual stress in the damaged part of model structure 

 
 

Figure 6.3.1-4: Refined mesh of damaged structure 

 

6.3.2 Initial Deformations 

The steel ship production process involves flame cutting and welding methods that cause uneven 
rapid heating and cooling, resulting in imperfections in the formed structural material.  Initial 
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deformation arising out of the production process may considerably reduce the load bearing 
capacity of ship structure.  There are a number of efforts made to model the initial deformation 
of welded structure based on analytical methods, numerical methods, and experimental/practical 
measurements e.g. Faulkner (1975), Carlsen and Czujko (1978), Antoniou (1980), Smith et al. 
(1988) and Masaoka (1996).  Furthermore, classification societies also specify limitations on 
maximum initial deflection of plate on completion of fabrication.  The post-weld initial 
deflections are represented by the following formula: 
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0 0
000 sinsin ππ

       (6.3.2.1) 

 
Where a is plate length, b is plate breath. Boij indicates the welding induced initial deformation 
normalized by the maximum initial deflection, w0pl.   The i and j are half wave numbers in the x 
and y directions.   
 
The values of maximum initial deflections proposed by different sources are given in Figure 
6.3.2-1.  Statistical analysis of proposed values relevant to structural plates of hull 5415 resulted 
in an average value of 0.00461m with a coefficient of variance of 0.508, which approximately 
follows a normal distribution as is apparent from the histogram in the figure.  Figure 6.3.2-2 also 
shows the deflection wave pattern that is applied as initial deformation to the FE model with 
random maximum amplitude and a normal distribution as described above.  The initial 
deformation is applied only to the middle part of the 3-compartment model.  In the case of the 1-
compartment and 2-frame model, the initial deformation is applied to the whole structure. 
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Figure 6.3.2-1: Initial deformation model for FE analysis 

 
Figure 6.3.2-2: Initial deformation as applied to mid part of 3-compartment model. 

 

6.3.3 Material Model 

The ship’s hull structure is designed for two types of steels.  The properties of steels are listed in 
Table 6.3.3-1 below.  Both types of steel material are modelled as elastic-perfectly-plastic.  
Production related variations in strength of material such as residual stress due to welding, cold 
working etc are not considered directly as a random parameter in the FE analysis but were 
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counted for in the reliability analysis using uncertainty factors.  Therefore, the yield strength and 
modulus of elasticity were taken as deterministic values in the FE analysis. 
 
Table 6.3.3-1: Statistics of yield strength, σy, of steel materials (MN/m2) 
 

Material Mean COV Distribution Correlation 

HY 80 552 0.08 Lognormal Independent 

HSS 351 0.08 Lognormal Independent 

 
 

6.3.4 Load modelling and boundary conditions 

As already discussed in Section 3.2, in the present study only vertical bending moment, 
horizontal bending moment and torsion are considered and the effects of local loads on plate 
panels and on stiffener bending are ignored.  The FE analysis was carried out to determine the 
ultimate strength for the following conditions: 

• Vertical bending moment to determine ultimate vertical bending moment capacity  
oment to determine ultimate horizontal bending moment 

 6.3.4-1. 
 

 

• Horizontal bending m
capacity. 

• Torsion to determine ultimate capacity of the section in torsion 
• Combined load to determine response function for hull structure in the form similar 

to equation 3.3-6 and also for interaction of three moments mentioned above. 
 
The incremental moment equivalent displacements were applied as loads on boundary nodes 
for nonlinear analysis and to achieve ultimate failure as shown in Figure
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Figure 6.3.4-1: Applied pure vertical bending moment equivalent force on section 

 
6.3.5 FE Analysis Results and Discussion 

As discussed earlier, three different levels of FE models were adopted for these studies 
considering available computing resources and project time to achieve good estimates for the 
ultimate strength of the intact ship and the residual ultimate strength of the damaged ship and for 
comparison of results.  A comparatively small 2-frame FE model was used to carry out extensive 
FE runs to develop the response surface for reliability-based assessment and for comparison of 
results with conventional beam-column methods for both the intact as well as for damaged 

 the influence 
f boundary conditions and to infer the results obtained from the 2-frame model.  

partment coarse mesh FE model and analysis results 

mbinations of 
oments such as interaction of vertical and horizontal moments, and one set for interaction of all 

conditions.  The 1-compartment and 3-compartment models were used to establish
o
 
Figures 6.3.5-1 and 6.3.5-2 show the 1-com
for pure ultimate vertical and horizontal moments, respectively, whereas Figure 6.3.5-3 shows 
the ultimate horizontal moment of the hull girder using the 2-frame FE model.  The FE model 
and stress distribution at ultimate failure for damaged structure of the 3-compartment model is 
shown in Figure 6.3.5-4.  The plot in Figures 6.3.5-5 and 6.3.5-6 show the torsion bending 
moment against load steps as structure approaches progressive collapse for the 3-compartment 
and 2-frame models, respectively.  
 
Two types of moment interaction functions were developed, one set of two co
m
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the moments, viz. vertical, horizontal and torsion moments.  Since only a vertical and horizontal 
interaction function was possible using conventional beam-column analysis, similar results were 
obtained from FE analysis to compare with that of the MARS calculations.  Figure 6.3.5-7 shows 
the vertical and horizontal moment interaction diagram developed using FE analysis results from 
the 2-frame model.  The vertical/horizontal moment interaction function is as follows: 
 

1
1.0752.9543
⎞⎛⎞⎛ MM 1

=⎟⎜+⎟⎜ hv                                       (6.3.5-1) 

pared 
ith that of the MARS beam-column and elastic-plastic interaction diagram in Figure 6.3.5-8.  

The comparison of the ultimate moment capacity estimate obtained using the two methods, FE 
and beam-column method of MARS is ve  in Fi ure 6. 5-9 fo
percentage difference of the two is plotted in Figure 6.3.5-10 where it is apparent that a 

aximum difference of 14 percent in the estimate of ultimate moment capacity of the hull girder 
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It may be observed that one point (0.577, 0.44) considerably departs from the trend followed by 
the remaining data points.  This point was excluded from response function evaluation.  A 
residual standard error of 0.056 in fitting the remaining data points was achieved. 
 
The vertical and horizontal moment interaction function obtained from FE analysis is com
w

gi n g 3. r various Mv/Mh ratios.  The 

m
is for an Mv/Mh ratio around 0.6.  The ultimate moment estimates obtained using the beam-
column method are higher than that from the 2-frame FE analysis.  The difference between the 
two results diminishes as the Mv/Mh moment ratio increases. 
 
The other interaction formulae obtained from the 2-frame FE analysis are the followings: 
 

− Vertical moment and torsion interaction 
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− Horizontal moment and torsion interaction 

 

1
2.89462.438
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=⎟⎜+⎟⎜ Th            (6.3.5-3) 

− Vertical moment, horizontal moment and torsion, also see Figure 6.3.5-11 
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The comparison of ultimate moment capacity of the hull girder in the intact and damaged 
conditions is given in Table 6.3.5-1.  Further, Table 6.3.5-2 gives the percentage of ultimate 
strength of the damaged hull in compari
moment capacity in torsion for the damaged hull is only 8 percent of the capacity of the ship in 
the intact c  

 

son to ultimate strength of the intact ship.  The ultimate 

ondition.
 



 
 

Figure 6.3.5-1: Ultimate vertical moment capacity of the 1-compartment model 
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Figure 6.3.5-2: Horizontal ultimate moment capacity of the 1-compartment model 
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Figure 6.3.5-3: Horizontal ultimate moment capacity of the 2-frame model 
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Figure 6.3.5-4: Deformation and stress distribution of damaged 3-compartment model 
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Figure 6.3.5-5: Ultimate torsion – 3-compartment FE analysis 
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Figure 6.3.5-6: Ultimate torsion – 2-frame FE model 
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Figure 6.3.5-7: MV and Mh interaction – 2-frame FE analysis results 
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Figure 6.3.5-8: Comparison of MARS results with 2-frame FE analysis results 
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Figure 6.3.5-9: Comparison of ultimate moment, MARS and 2-frame FE results 
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Figure 6.3.5-10:  Ultimate moment, percentage difference between MARS and FE results 
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Figure 6.3.5-11: Interaction response surface for Mv, Mh and Mt moment; FE results 

 

Table 6.3.5-1: Comparison of ultimate vertical bending moment from different methods (GN-m) 
 

Method MARS ANSYS 
Item EIP BC FPMC CM 2-Frame 

Model 
3-Comp. 

Intact 
3-Comp. 
Damaged 

MVU  
Hogging 2.3405 1.5609  2.1859 1.389 2.095 1.46  0.16 
Sagging -2.3405 -1.3273 -2.1859 -1.0701 -1.1445 -1.28 -0.214 

MHU  
2.5587 1.657 2.5878 1.625 1.3199 1.079 +0.341 

-0.281 
MTU  - - - 1.251 1.5611 0.898 0.0728 
 
Key:  

EIP  
BC   
FPMC  
CM 
2FrM  

Elastic- Ideally Plastic Failure Mode 
Beam Column Failure Mode (Smith’s Method) 
Full Plastic Moment Capacity of the section  
Coarse Mesh Model 
2-Frame Model – fine mesh   
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Table 6.3.5-2: Comparison of ultimate strength of intact and damaged ship 

Ultimate Moment (GN-m) Intact Damaged Damaged % of Intact 

Vertical (sagging) -1.28 -0.214 17 

Horizontal -1.079 0.341 32 

-0.281 26 

Torsion 0.898 -0.0728 8 

 



7. RELIABILITY BASED ASSESSMENT OF INTACT AND DAMAGED STRUCTURE 

 
The reliability-based assessment of hull structure was made for both intact and damaged 
conditions.  The reliability assessment for the intact condition was made for the worse case 
scenario, Sea State 7, and lesser sea states, including three load combinations as identified from 
the ship loading analysis.  The reliability analysis was carried out using the moment interaction 
formula given in equation 6.3.5-4.  Accordingly, the limit state function is defined as follows: 
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Where Sχ  and Rχ  are the modelling uncertainty parameters (Faulkner et al., 1988) defined as 
follows: 
 

responsepredicted
responseactual

=χ      (7-2) 

 
It is usual to assume in reliability analysis of ship structures the normal distribution for 
uncertainty parameters, the 10 percent variance Teixeira (1997) in ultimate strength modelling 
and 15 percent variance (Mansour et al., 1994) in load modelling as suggested in the references 
above.  The stillwater bending moment is considered normally distributed.  The extreme value 
Type-II distribution is taken for vertical, horizontal and torsion moment loads.  For ultimate 
moment capacity of the hull, Weibull distribution is assumed. 
 
Because of time constraints, a complete interaction diagram for vertical moment, horizontal 
moment and torsion for damaged cases using FE analysis was not possible.  The comparison 
between the vertical/horizontal moment for the damaged and intact conditions calculated using 
the beam-column method with that calculated with the 2-frame FE analysis shown in Figure 
6.3.5-9 gives a small difference in the moment ratio, around 11 percent.  Therefore the limit state 
function in equation 7-1 was used for reliability analysis of the damaged condition.  A scaling is 
built into the function because of the ultimate vertical, horizontal and torsion moment capacities 
of structure that were used in evaluation.  This assumption is considered reasonable to derive 
reliability the index in absence of a more accurate moment interaction function for damaged 
conditions.  
 
The reliability analysis was carried out using CALREL software to apply the First Order 
Reliability Method (FORM) and Monte Carlo Simulation (MCS).  The reliability index and 
relevant probabilities as calculated are given in Table 7.1 for both the intact and damaged cases. 
 
The reliability index for the intact condition is a minimum 3.771 for load combination 1 (LC 1) 
in Sea State 7, which is the worse operating scenario for the ship.  The reliability index is plotted 
in Figure 7-1 for the damaged scenarios against various sea states.  As it is given in Table 7-1, 
the FORM calculation did not converge for load combination LC 2 for Sea State 5, and for all 
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the load combinations in Sea States 6 and 7.  The minimum value of the reliability index is 
0.30812 with a probability of failure 0.621 for load combination case 1 (LC1) in Sea State 3.  It 
is interesting to note that reliability index for LC1 and LC2 of damaged ship structure for Sea 
State 4 is higher then that in Sea State 3.  The reasons for the lack of convergence and the 
anomalies in the results could not be determined. 
 
Table 7-1: Reliability analysis results  

Particulars Load 
Combination

Βeta Probability 

Intact Condition 
Sea State 7 LC1 3.771 8.1434E-5 

LC2 4.643 1.7154E-6 
LC3 5.389 3.5375E-8 

Damaged Case 1 
Sea State 3 LC1 FORM =-0.30812 6.2100E-1 

MCS    =-0.118 5.4700E-1 
LC2 FORM =0.13623 5.5418E-1 

MCS    =-0.0277 4.8900E-1 
LC3 FORM =-1.4114 9.2094E-1 

MCS    =-1.3047 9.0400E-1 
Sea State 4 LC1 FORM  =3.7956 7.3629E-5 

MCS     =3.8905 5.0000E-5 
LC2 FORM  =4.3257 7.6008E-6 

MCS    =3.2905 5.0000E-4 
LC3 FORM  =1.0294 1.5165E-1 

MCS    =1.2873 9.9000E-2 
Sea State 5 LC1 FORM =9.658 1.0000E-10 

MCS    =3.3201 4.5000E-4 
LC2 FORM = 0 Failed 

MCS  = 2.144 1.3400E-2 
LC3 FORM = 4.3915 5.6296E-6 

MCS   = 3.194 7.0000E-4 
Sea State 6 LC1 FORM = 0 Failed 

MCS    = 2.6256 4.3000E-3 
LC2 FORM = 0 Failed 

MCS  = 1.1838 1.825E-1 
LC3 FORM = 0 Failed 

MCS   = 2.3888 8.4500E-3 
Sea State 7 LC1 FORM = 0 Failed 

MCS    = 1.9943 2.3059E-2 
LC2 FORM = 0 Failed 

MCS  = 0.1917 4.2400E-1 
LC3 FORM = 0 Failed 

MCS   = 1.6919 4.5333E-2 
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Figure 7-1: The reliability index for different sea states – damaged case 
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8. SUMMARY  
 
When a ship is damaged, the operators need to decide the immediate repair actions by evaluating 
the effects of the damage on the safety of the ship using a reliability-based residual strength 
assessment procedure.  Assessment of the reliability of the damaged ship in various sea states 
will provide information on which such an evaluation can be made.  There are significant 
differences between the conditions of an intact and a damaged ship that affect the procedures to 
be used in a reliability analysis. 

• Damaged ships generally have heel and trim that are not part of the analysis of an 
intact ship. 

• A damaged ship may have flooding that will significantly increase the displacement 
and therefore increase hydrodynamic loads in a seaway. 

• The flooding of a damaged ship through an opening in the hull will be subject to 
inflow and outflow, which complicate the hydrodynamic loads estimation. 

• The damage to the hull may have jagged edges and unusual residual stress patterns 
that will affect the ultimate strength of the hull girder. 

• Openings in the hull may make considerations of loading by horizontal bending and 
torsion moments more important than for the intact ship. 

• The damaged ship will be expected to operate for only a short time prior to repairs, 
so the sea spectra that will be encountered will be different from the lifetime loading 
spectra used in ship design. 

 
This project has developed a procedure and tools for operators and decision makers to assess the 
loading, residual ultimate hull girder strength, and reliability of damaged ships for a given 
damage scenario.  This study is a continuation of the NICOP project (Lee, et al 2006), in which 
an assessment procedure was developed.  This procedure consists of four steps:  

(1) Identify the location and size of the openings.  Once a ship is damaged, the location 
and size in terms of length, height and depth of the penetration of the opening should 
be determined, so the degree of water ingress can be predicted.   

(2) Calculate the still water bending moment and wave-induced loadings including 
vertical bending moment, horizontal bending moment and torsion.  The floating 
conditions of the ship need to be calculated.  The stillwater bending moment and 
wave-induced loads are then estimated.  Because it is desirable to install the 
developed tools on board of ships for a quick and reliable assessment, computational 
time is a very important factor in choosing a particular method for both loading 
calculations and strength assessment.   

(3) Calculate the ultimate hull girder strength of the damaged cross-section considering 
the interaction of vertical bending moment, horizontal bending moment and torsion.  
The ultimate hull girder strength of the damaged cross-section needs to be assessed.  
The interaction of vertical bending moment, horizontal bending moment and torsion 
should be considered.  In addition, the strength of other cross-sections (not the 
damaged one), where the total load including stillwater bending moment and wave-
induced loads under the damage conditions exceed that in intact condition, should 
also be assessed.   
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(4) Assess the structural integrity by deterministic and probabilistic approaches.  The 
reliability of the damaged ship is calculated so a well-informed decision may be made 
based on this information. 

 
In the current project, some tools for predicting wave-induced loads and assessing ultimate hull 
girder strength have been further developed and applied to a notional ship, US Navy Hull 5415.  
A fibreglass model with a scale of 1/100 was constructed with openings in the starboard side and 
with internal bulkheads and decks to limit the extent of flooding.  The model had a transverse cut 
near midships with a force gauge installed to measure the vertical, horizontal, and torsion 
moments between the two sections of the hull.  The model was tested in the Newcastle 
University towing tank, which is 37 metres long, 4 metres wide, and 1.2 metres deep, and 
equipped with a wave maker at one end and an energy absorbing beach at the other end.  Tests 
were conducted at head, bow, beam, and quartering seas at three different regular wave heights 
and nine different wave frequencies.  Testing was conducted with the ship in the intact condition 
and with two different damage scenarios, scenarios 2 and 3 from the previous study.  For the 
damaged conditions, testing was conducted with flooding water free to flow into and out of the 
openings in the hull. 
 
The experimental results have revealed that the majority of the response RAOs show a nonlinear 
trend in which the non-dimensional responses are decreasing as wave amplitude increases in 
most frequency ranges, especially at the frequency where the responses achieve the maximum.  
For vertical bending moment this trend is very remarkable.  It may be said that the high 
nonlinearity is an inherent feature of the sample vessel with a very fine hull form.   
 
Because the damage on the ship is unsymmetrical transversely with the openings on the 
starboard side, it is expected that the wave-induced loads might be different when the wave is 
approaching the ship model from different sides due to the dynamic behaviour of the flooded 
water in the damaged compartment.  The test results have shown that the vertical bending 
moment at 45° wave heading at most of frequencies was slightly larger than that at 315° wave 
heading.  There was no clear trend for horizontal bending moment at 45° and 315° wave 
headings.  However, the horizontal bending moment in beam seas at 90° wave headings is 
slightly larger than that at 270° wave headings.  The torsion moment at 315° wave headings is 
larger than that in 45° wave headings. 
 
A 2-D linear and a 2-D nonlinear method have been applied to the ship model to calculate the 
wave-induced loads in regular waves at the cut where the force gauge is installed in the model.  
The analyses simulated flooding with instantaneous changes in the height of floodwater to 
conform to the changes in wave height and pitch and roll of the hull.  The Response Amplitude 
Operators (RAOs) computed from the numerical results have been compared with the RAOs 
computed from the experimental results.  For the purpose of comparison, the experimental 
results were assumed as correct and differences in results attributed to the analyses. 
 
The 2-D linear method was shown to predict accurately wave-induced vertical bending moments 
in head seas and stern quartering seas, but the accuracy deteriorates with increases in wave 
amplitude.  The accuracy in predicting the horizontal bending moment is not as good as that for 



 179

vertical bending moment, but is acceptable in most cases.  However, the predictions of torsion 
moment are not satisfactory, although the magnitude of the torsion moments were low and did 
not affect the results of the study.   
 
Compared to the results from the experiments, the 2-D nonlinear method did not produce 
satisfactory results for vertical bending moment, horizontal bending moment and torsion moment 
in regular waves.  Although this conclusion was largely based on the analysis of the results in 2-
metre wave height, it was equally applicable to the results in 2.5-metre wave height.  The 
predictions of torsion moment are the worst among the three components of the wave-induced 
loads, while the predictions of vertical bending moment have a similar level of accuracy to those 
of horizontal bending moment.  The nonlinear method tends to produce better results at the 
resonant frequencies than at the other frequencies.  However it should be pointed out that the 
measured wave heights were not equal to 2.0 metres, which was used in the numerical 
calculations, at most frequencies. 
 
Model uncertainties for both 2-D linear and nonlinear methods have been calculated.  The model 
uncertainty factor, Xm, is defined as the ratio of the experimental load to the numerically 
predicted load.  The accuracy of the estimated moments is measured by the mean and COV of 
the model uncertainty factor.  For the 2-D linear method it is observed that the accuracy of the 
vertical bending moment is generally better than that of the horizontal bending moment and the 
torsion moment, and the accuracy for loads in head seas is much better than for those in stern 
quartering seas and beam seas.  This could be mainly caused by the underwater hull form of the 
ship model with a small Cb compared with conventional ships.  The COV of the horizontal 
bending moment is almost as twice as that of the vertical bending moment.  The COV of the 
torsion moment is the largest of the three.  Because of the large difference in COV for different 
force components it is more rational to consider the model uncertainties for vertical bending 
moment, horizontal bending moment and torsion moment separately in reliability analysis rather 
than using one combined model uncertainty for all the components.  The 2-D linear method has a 
better mean and COV of Xm in the predictions of vertical bending moment and horizontal 
bending moment in both the intact condition and damage scenario 2 than the 2-D nonlinear 
method, and both 2-D linear and nonlinear methods have produced unsatisfactory results in 
torsion moment.   
 
Based on the current results, it may be said that the 2-D linear method is more accurate than the 
nonlinear method.  However the nonlinear method can distinguish the difference between the 
positive and negative responses, but linear methods can’t.  This advantage of the nonlinear 
method is especially important for ships with small block coefficient, such as frigates, etc.  For a 
frigate the ratio of sagging bending moment to hogging bending moment could be as large as 
1.78 (Clarke, 1986).  In addition, hull girder strength in hogging is normally different from that 
in sagging.  Therefore the nonlinear method is preferred.  This slight preference of the nonlinear 
method was also based on another fact that the nonlinear method tends to produce better results 
in the resonant region than at other frequencies.  Based on the current method for combining 
different load components, the accuracy in the resonant region is more important than that at 
other frequencies. 
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Extreme design loads in irregular waves based on the RAOs from the 2-D linear method, 2-D 
nonlinear method and experiment have been calculated for the ship model at the cut in the intact 
condition and damage scenario 2.  The formulae recommended in the Lloyds Register’s rule for 
naval vessels (Lloyds Register of Shipping, 2002) have also been used to calculate the wave-
induced extreme design loads.  The results have demonstrated that the difference of extreme 
design loads (both hogging and sagging) between 2 m and 2.5 m wave height was increasing 
with the increase of sea roughness, but always less than 6.62 percent in the intact condition and 
6.60 percent in damage scenario 2.  For the hogging bending moment, the extreme design value 
based on the 2 m wave height is greater than that based on the 2.5m wave height, but it was 
opposite for sagging bending moment.  Hence the effects of wave amplitude on the prediction of 
extreme design loads are modest.   
 
Both 2-D linear and nonlinear methods overestimate the extreme design loads compared with the 
experimental tests.  The results are slightly in favour of the 2-D linear method in the intact 
condition, while the accuracy of the 2-D linear method is almost as good as that of the 2-D 
nonlinear method in damage scenario 2.  Both hogging and sagging bending moments predicted 
by the 2-D nonlinear method agree well with those of LR Rules’ formulae.  However the 
hogging bending moment of the 2-D linear method agrees well with that of LR Rules’ formulae, 
but agreement in sagging bending moment is not as good as in hogging bending moment because 
in the 2-D linear method the sagging bending moment is the same as the hogging bending 
moment.  It should be noted that the extreme design value predicted by LR Rules is the 
maximum value for the ship model.  In other words, the extreme design value at the cut is the 
same as that of the sections at amidships because the cut is not far away from amidships.  
However the extreme design value predicted by the 2-D nonlinear method at the cut could 
potentially be quite different from that of the sections at amidships, where the maximum vertical 
bending moment would occur.  This might at least partly explain why LR Rules produces the 
largest extreme design hogging and sagging moments in the intact condition. 
 
The disappointing accuracy in horizontal bending moment prediction might be caused partly by 
the mooring lines in the experimental tests.  The ship model was moored by four mooring lines, 
which were attached to the ends of the model to keep the model from drifting too far away from 
its original position and orientation.  It is a very dedicate process to adjust the tensions in the 
mooring lines.  On one hand, the tensions should be as small as possible to reduce its effects on 
the responses to waves.  On the other hand, the model could not maintain its original position 
and direction if the tension in the mooring lines was too small.  During the tests the mooring 
lines were initially fixed fairly loosely.  A trial run was then carried out and if the model drifted 
too far away, the tension would be increased.  However if the tension in the mooring lines was 
clearly interfering with the ship motions under waves, the tension would be reduced.  Hence a 
dedicate compromise had to be achieved.  Even so, the tensions in the mooring lines were still 
noticeable in the resonant frequencies, in which responses were quite large in the recorded test 
runs.  The tensions in the mooring lines could contribute to the horizontal bending moment at the 
cut.  Unfortunately the tensions were not recorded in the tests, so it was not possible to evaluate 
the extent of the effects of the tensions on the horizontal bending moment.   
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The torsion moments in quartering seas have a covariance that is greater than 130 percent.  One 
of the possible reasons for such a poor performance in torsion moment prediction might be the 
small scale of the ship model, which is 1/100.  The maximum measured torsion is only about 0.3 
N-m, so its measurement is very sensitive to any imperfections, such as the quality of installation 
of the cling film, which was used to seal the cut section of the model; calibration of the 
instruments; electrical noise in the records; etc.  The other possible reason is the inherent 
difficulty in determining the radius of gyration for roll motion (kxx) and the damping coefficient 
for roll motion, which is a very important motion component influencing the accuracy of the 
prediction of torsion moments. 
 
The ratio of sagging bending moment to hogging bending moment of the 2-D nonlinear method 
is in good agreement with that of the experimental tests.  This is an advantage of the 2-D 
nonlinear method over the 2-D linear method.  Because the 2-D nonlinear results were not 
available when the strength calculations were being performed, the RAOs of the 2-D linear 
method rather than 2-D nonlinear method were used in the strength assessment phase of this 
project.   
 
The 2-D linear method has also been applied to the original ship (not the model) in order to 
predict the extreme design loads for the strength assessment.  The extreme design loads in Sea 
States 3 - 7 have been calculated using short-term prediction.  An ‘equivalent wave system’ has 
been used to combine vertical bending moment, horizontal bending moment and torsion moment.   
 
The ultimate hull girder strength was calculated for both intact and damaged structure using 
MARS (Bureau Veritas software for structural calculation) and ANSYS (FE analysis software).  
The MARS software provides different failure mode algorithms for calculation of ultimate 
strength that include Elastic Ideally Plastic (EIP) failure mode and Beam-Column (BC) failure 
mode, apart from the others.  The ultimate bending moment capacity for the combination of 
vertical and horizontal moments for the elastic-plastic failure mode and for the beam-column 
method were found and interaction formulae were derived based on that.  It may be observed that 
for the hogging condition when the bending curvature ratio (ratio of horizontal to vertical 
moments) is small and, consequently, predominant curvature is in the vertical direction depicting 
a predominant vertical bending moment, the difference between ultimate moments for damaged 
and intact conditions is small, with only a 10 percent difference in the sagging condition. 
 
The finite element analysis to determine the ultimate strength of the hull girder was carried out 
using ANSYS for both the intact and damaged conditions.  Three different levels of finite 
element modelling were used with a model consisting of two frames of the hull used for 
comparison with the beam-column and elastic-plastic calculations of MARS.  Models extending 
over one compartment and over three compartments of the ship were used to establish the 
boundary conditions for the 2-frame finite element model. 
 
The finite element analysis was used to get an accurate assessment of the residual strength of 
damaged ship.  Initial deformation, deformation due to collision impact and residual stresses 
were all included in finite element modelling and simulation.  Two types of moment interaction 
functions were developed; one set of two combinations of moments such as interaction of 
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vertical and horizontal moments, and one set for interaction of all the moments viz. vertical, 
horizontal and torsion moment.  The vertical and horizontal moment interaction functions 
obtained from the finite element analysis were compared with those from the MARS beam-
column and elastic-plastic interaction diagram.  The elastic-plastic calculations of MARS agreed 
well with the results of the 2-frame finite element analysis, but the beam-column method showed 
results that were as much as 14 percent greater than from the 2-frame finite element model when 
the bending moment was predominantly horizontal, although the difference between the two 
results diminished as the ratio of the vertical to the horizontal bending moments increased.  The 
large difference in the damaged ship strength estimated using the beam-column method and the 
finite element method suggest a requirement to update the load-shortening curves used in beam-
column methods to improve estimation of residual strength in damaged conditions. 
 
For the studied case scenario, the ultimate torsion moment evaluated with the 3-compartment 
finite element analysis was found to be 8 percent less than the strength in the intact case.  The 
damage reduced the ultimate vertical moment strength by 17 percent and the horizontal moment 
ultimate strength by 26 percent compared to the intact condition.  
 
The reliability analysis was carried out using CALREL software, the First Order Reliability 
Method (FORM) and Monte Carlo Simulation (MCS).  The results from the beam-column 
analysis were used for deriving the limit state function.  The reliability-based assessment of hull 
structure was made for both intact and damaged conditions.  The reliability assessment for the 
intact condition was made for the worse case scenario, Sea State 7 and for lesser sea states.  
Three combinations of loads identified from the ship loading analysis were included in the 
calculations.  The FORM calculations failed to converge for several load cases in Sea States 3 
and 4, and the MCS calculations showed lower reliability in Sea State 3 than in higher sea states.  
The reasons for the lack of convergence and the anomalies in the results could not be determined. 
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9. CONCLUSIONS 
 

(1) A methodology for assessment the loads on, residual strength of, and reliability of the 
structure of a damaged ship in various sea states has been developed and 
demonstrated on a sample combatant ship. 

 
(2) The loads on the hull developed with a nonlinear analysis did not agree as well as 

those from a linear analysis with loads developed from testing a model in a wave tank.  
Factors such as modelling to a small scale and the effects of tethers on the model 
could have affected the experimental results. 

 
(3) The accuracy of prediction of vertical bending, horizontal bending, and torsion 

moments were different.  Therefore separate modelling uncertainties were used in the 
reliability analysis. 

 
(4) For the damage scenarios studied, the beam-column method overestimates the 

residual strength of the hull girder by as much as 14 percent compared to finite 
element analysis.   

 
(5) The elastic-plastic collapse calculations used in the MARS software agree well with 

the finite element analysis. 
 

(6) Lack of convergence and inconsistent results indicate that a re-evaluation of the 
methods used in the reliability analysis is necessary.  
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10. RECOMMENDATIONS 
 

(1) Conduct tests on instrumented damaged models that are built to a larger scale than the 
1/100 scale used in this study to determine if the results of the experiments are biased. 

 
(2) Perform systematic tests on damaged ship models with varying size of openings to 

determine if the rate of inflow and outflow of flooding water significantly affects 
results.  Determine if the weight of flooding water alone with no inflow our outflow 
results in the predominant change in loading. 

 
(3) Examine and enhance the beam-column method for the analysis of the ultimate 

strength of the hull girder of a damaged ship, especially in torsion loading. 
 

(4) Assess the effects of local loads on plating and stiffeners of damaged ship structure to 
determine its effect on reliability and the conditions under which it should be 
included in a reliability analysis. 
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