CH 1-1-R SERIAL NO. SSC-75

FINAL REPORT

(Project SR-119)

00

1 e

WELDED REINFORCEMENT OF OPENINGS IN STRUCTURAL STEEL TENSION MEMBERS

by

MTRB LIBRARY

D VASARHELYI and R. A. HECHTMAN University of Washington

for

SHIP STRUCTURE COMMITTEE

Convened by The Secretary of the Treasury

Member Agencies-Ship Structure Committee

Bureau of Ships, Dept. of Navy Military Sea Transportation Service, Dept. of Navy United States Coast Guard, Treasury Dept. Maritime Administration, Dept. of Commerce American Bureau of Shipping

Address Correspondence To:

Secretary Ship Structure Committee U. S. Coast Guard Headquarters Washington 25, D. C.

SERIAL NO. SSC-75 BuShips Project NS-731-034

MARCH 21, 1955

SHIP STRUCTURE COMMITTEE

MEMBER AGENCIES:

BUREAU OF SHIPS. DEPT. OF NAVY MILITARY SEA TRANSPORTATION SERVICE, DEPT. OF NAVY United States Coast Guard, Treasury Dept, Maritime Administration, Dept. of Commerce American Bureau of Shipping ADDRESS CORRESPONDENCE TO: BECRETARY SHIP STRUCTURE COMMITTEE U. S. COAST GUARD HEADQUARTERS WASHINGTON 25, D. C.

March 21, 1955

Dear Sir:

As part of its research program related to the improvement of hull structures of ships, the Ship Structure Committee has sponsored an investigation on the welded reinforcement of openings in structural steel members at the University of Washington. Herewith is a copy of the Final Report, SSC-75, of the investigation, entitled "Welded Reinforcement of Openings in Structural Steel Tension Members" by D. Vasarhelyi and R. A. Hechtman.

Comments concerning this report are solicited and should be addressed to the Secretary, Ship Structure Committee.

This report is being distributed to those individuals and agencies associated with and interested in the work of the Ship Structure Committee.

Yours sincerely,

KK, Cowarh

K. K. Cowart Rear Admiral, U. S. Coast Guard Chairman, Ship Structure Committee FINAL REPORT (Project SR-119)

on

WELDED REINFORCEMENT OF OPENINGS IN STRUCTURAL STEEL TENSION MEMBERS

Ъу

D. Vasarhelyi and R. A. Hechtman

University of Washington

under

Department of the Navy Bureau of Ships Contract NObs-50238 BuShips Project No. NS-731-034

for

SHIP STRUCTURE COMMITTEE

٤

TABLE OF CONTENTS

.

ω.

I.	SYNOPSIS	1
II.	INTRODUCTION . 1. Problem of the Opening in a Structural	2
	Member	2 6
III.	 TESTS OF PLATES WITH OPENINGS Specimen Material and Specimens Method of Testing Definition of Terminology General Behavior During Test and Fracture of Plates with Openings 	7 7 16 17 25
IV.	 BEHAVIOR OF PLATES WITH OPENINGS IN THE PLASTIC RANGE 1. Theoretical Elastic Stress Distribution. 2. Plastic Stress Distribution in Plates with Openings 	26 26 26
	3. Plastic Energy Distribution in Plates with Openings	33
	4. Effect of Testing Temperature upon the Plastic Stress and Energy Distribution .	39
	5. Conditions for the Initiation of Fracture. 6. Effect of the Shape of the Opening upon	39
	the Properties of the plates with Openings 7. Effect of the Percentage of Reinforcement upon the Properties of the Plates with	42
	Openings	,11 ,1
	Plates with Openings	46
	Openings	51 51 57
V.	CONCLUSIONS	60
	 and Fracture	61
	inforcement	62
VI.	ACKNOWLEDGMENTS	63
VII.	REFLRENCES	65

LIST OF FIGURES

<u>No.</u>	Title	Pa	ge
1	Details of Body Plates of 36" x 1/4", 36" x 1/2" and 48" x 1/2" Specimens	••	13
2	Details of Opening and Reinforcement	• •	14
3	Specimens for Room and Low Temperature Tests in 2,400,00-1b. Testing Machine	••	15
} +	Load-Average Elongation Curves for 36" x 1/4" and 36" x 1/2" Specimens	• •	23
5	Load-Average Elongation Curves for 48" x 1/2" Specimens		24
6	Stress-Concentration Contours in y-Direction by Theory of Elasticity for Typical Cases		27
7	Plastic Stress-Concentration Contours in y-Direct for Unreinforced Plates as Determined from Mea- sured strains	ion	29
8	Plastic Stress-Concentration Contours in y-Direct for Reinforced Plates as Determined from Measur Strains	ion ed	30
9	Comparison of Elastic and Plastic Stress-Concentr tion in y-Direction on Net Cross-Section of Unr forced Plates	a- ein-	31
10	Comparison of Elastic and Plastic Stress-Concentr tion in y-Direction on Net Cross-Section of Rei forced Plates	a- .n-	32
11	Unit Strain Energy Contours at Ultimate Load for Unreinforced Plates as Determined from Measured Strains	••	34
12	Unit Strain Energy Contours at Ultimate Load for Reinforced Plates as Determined from Measured Strains	• •	35
13	Contours of Equal Relative Rate of Increase of Ur Strain Energy Absorption with Increase in App Load. Unreinforced Plates	it ied	37

1

<u>No.</u>	Title	<u>Page</u>
14	Contours of Equal Relative Rate of Increase of Unit Strain Energy Absorption with Increase in Applied Load. Reinforced Plates	• 38
15	Plastic Stress Concentration, Maximum Unit Strain and Maximum Unit Strain Energy as Ultimate Load was Approached	. 41
16	Effect of Notch Acuity Upon Properties of Plates with Openings	. 43
17	Effect of Percentage of Reinforcement upon Proper- ties of Plates with Openings	. 45
18	Effect of Geometric Shape of Reinforcement upon Properties of Plates with Openings	. 48
19	Efficiency with Respect to Ultimate Strength of Plates with Openings Sustaining Shear Fracture.	• 50

LIST OF TABLES

<u>No</u> .	Title	Page
I	Mechanical Properties of Plates of Different Thick- ness, Semikilled Steel U As Rolled	. 8
II	Description of Specimens	. 10
III	List of Plates Used for Fabrication of Each Speci- men	. 12
IV	Strength and Energy Absorption of Specimens	. 18
v	Nature of Failure in Specimens	. 21
VI	Elongation to Ultimate Load and Failure of Plates with and without Openings	. 52
VII	Efficiency of 36" x 1/4" Plates with Openings as Compared with Plain PlatesTests at Room Tempera- ture	- . 54

iv

.

WELDED REINFORCEMENT OF OPENINGS IN STRUCTURAL STEEL TENSION MEMBERS

I. SYNOPSIS

The purpose of this research has been the investigation of some of the geometric factors which affect the performance of plates with reinforced openings, such as the shape of opening, the type and amount of reinforcement, and the width and thickness of the body plate. Some of the tests were repeated at low temperatures to bring in the factor of cleavage fracture. In the course of the project, a considerable amount of work was directed toward determining the nature of the plastic flow which precedes the initiation of fracture and the conditions which precipitate fracture. Specific recommendations based on the findings of the investigation have been made with respect to the design of openings and their reinforcement. Many of the results of the research are applicable to welded structures in general.

The extensive test work required the use and development of somewhat new research methods and techniques. The applicability of Nadai's octahedral strain energy method (1^{+}) , the plastic stress computation (2,6), and the resistance-wire grid system of measurements for plastic strain studies might be mentioned as particularly useful.

II. INTRODUCTION

1. <u>Problem of the opening in a structural member</u>. The introduction of an opening in a structural member under tension decreases its effectiveness by reducing its net cross section area and producing a region of stress concentration. The purpose of the reinforcement is the restoration to the greatest possible degree of the characteristics of the member which existed before the opening was present. Some of the more important factors which must be considered in the development of design standards for the welded reinforcement of openings are:

- a) Shape of the opening.
- b) Cross section shape of the reinforcement and the notches present in welded reinforcement because of abrupt changes in section.
- c) Deformability of the region around the opening as it affects the action of the whole member as part of a statically indeterminate structure such as a ship.
- d) Mechanical properties of the steel.
- e) Nature of the loading.
- f) Low-temperature cleavage fracture.

This investigation has been concerned with the first three factors which are related principally to the geometric shape of the opening and its reinforcement.

The load carrying capacity of a member containing an opening can be made equal to that of the intact member by restoration of cross sectional area through suitable reinforcement around the opening. However, as this report will show, only a fraction of the energy absorbing capacity in the plastic range of a member is restored by such reinforcement because the reinforcement cannot improve the stress distribution sufficiently to remove the stress raising effect of the opening. The greatest capacity to absorb energy would exist in a member in which all elements were stressed uniformly up to the point where failure would begin. A plain plate with parallel sides loaded concentrically represents such a member. In contrast, an opening, because of its stress raising effect which results in a nonuniform distribution of strain, prevents the most efficient utilization of the potential capacity of the material to deform plastically. The best that any good design of reinforcement for an opening can assure is the recovery of a fraction of the energy absorbing capacity of the plate without an opening. Since the tendency towards brittle fracture at low temperatures is closely related to the capacity of a structural steel member to absorb energy, the degree to which good design can bring about this restoration is very important in certain cases.

-3-

Another point to be considered is that the addition of common types of welded reinforcement increases the thickness and rigidity of the member around the opening and introduces abrupt changes in cross section. It is quite possible to increase the stress raising effect of an opening by the addition of reinforcement and thereby worsen the condition rather than improve it.

Thus it may be seen that the design of an opening in a structural member and the reinforcement therefor is not a simple problem. It is one in which the deformation of the member, as well as its ability to carry stress, must be considered, for only by adequacy in both of these respects can the member carry its proper share of the load as a part of the structure and have the capacity to absorb sufficient energy to prevent fracture in the face of adverse conditions. The objective of the design must be greater efficiency in transmitting the applied forces through the member. Because openings in structural members of all types, including the details of ships, have been the source of many failures, it may be assumed in this problem that the only satisfactory design for an opening is the one which provides the greatest ability to carry load and absorb the energy of deformation.

The purpose of this project has been an investigation of welded reinforcement for openings in plate members to determine

-4-

ways in which the design of openings and their reinforcement may be improved. The factors which were varied were the body plate thickness and width, the shape of the opening, the type and amount of reinforcement, and the testing temperature. Forty-one large plate specimens, each having a centrally located opening with or without reinforcement, and two plain plates without an opening were tested. Most of these tests were made at room temperature and resulted in shear fractures. A few specimens were tested at temperatures sufficiently low to produce brittle cleavage fractures. Since failure occurs subsequent to general yielding of the material, an investigation of the plastic deformation which preceded fracture was carried out to establish the manner in which this deformation was related to the geometry of the specimen and the testing temperature.

While a considerable amount of research was accomplished in the course of the project, it did not lessen the need for more work in the future because this problem is a large one and only few variables have been investigated--and none of these exhaustively.

Detailed descriptions of these tests in previous progress reports and papers (1--6), listed in the References, have been summarized in this final report. The reader is directed to these references for information not presented herein, such

-5-

as additional data, the method of testing, and the theoretical methods of analysis.

2. General background of the problem. The problem of openings in plates has been dealt with in a number of papers, and solutions (7--12) are available for the elastic stress distribution for cases exactly the same as or similar to those investigated here. These solutions assume plane stress conditions, which actually are not realized or even approached in the case of many types of reinforcement, especially those with an appreciable width in the direction of the body plate thick-The assumptions made in these solutions concerning the ness. interaction of the reinforcing ring and the body plate are also important. For example, when the reinforcing ring becomes sufficiently rigid, it begins to act in the manner of a rigid inclusion in the body plate⁽¹⁵⁾. In this experimental investigation no particular correlation was found between the parameters developed by the theory of elasticity and the ultimate strength and energy absorption to maximum load of the plates with openings.

Theoretical analyses (11) based on the theory of elasticity have shown that reinforcement of an opening in a plate cannot restore the strength to that of the prime plate. Recent analyses (13) based on the theory of plasticity indicate that yield strength can be re-established with well designed reinforcement, provided that the material is ductile.

-6-

Only a small number of theoretical solutions are available for the problem of the reinforced opening, primarily because of its difficulty. The simplifying assumptions momentumes necessary to permit a solution for this case often impair the usefulness of the solution.

III. TESTS OF PLATES WITH OPENINGS

1. Specimen material and specimens. All specimens were fabricated from the same heat of plain carbon semikilled steel, a grade meeting ASTM Designation A 7-49T, in the as-rolled condition and called "Steel U as-Rolled" in this report. Plate thicknesses of 1/4, 1/2, 3/4, and 1 inch were used. Their mechanical properties are shown in Table I. The plates used in the fabrication of each specimen are listed in Table III. The transition temperature as determined from one plate of each thickness was as follows:

Plate Thickness Inches	Tear Test Transition Temperature oF	Temperature for 15 ft-lb Energy (Charpy Keyhole Test) •F	Average ASTM Grain Size
).0		Ω
1/4	-+0		0
1/2	40	-24	6
1	120		5

-7-

TABLE	Ι
-------	---

MECHANICAL PROPERTIES OF PLATES OF DIFFERENT THICKNESS, SEMIKILLED STEEL U AS ROLLED

Plate No.	Thick- ness	Temp. of Tensile Test	Used for Spec. No.	Direction of Test, Parallel or Trans- verse to Bolling	T Upper Yield Point	<u>e n s i l</u> Ultimate Strength	e Pro Elong. in 8 in*	<u>perti</u> Reduction of Area	<u>es</u> Poisson's Ratio in Plastic Range	Tear Test Trans. Temp.
	In.	٥F			psi	psi	per cent	per cent		۰F
1	1/2	Room	35	Р	Room To 36,600	emp. Tests 62,400	28	56	0.45	, `
3	1/2	Temb.	69,70	P	34,900	61,200	33*	62	0.47	
ւ	1/2		38	T P T	38,100 34,900 35,200	62,600 60,200 61,500	30* 32*	52 61	0.45	4 0
5 6**	1/2 1/2	49	52,56 9,50,51	P P	39,900	61,900 59,500	27 27 27	45 43		(
10	1	55,	56,70,71	P	32,800	61,100	33	56		120
15 16 17 18	1/4 1/4 1/4 1/4		2,34,99 7,23,31 3,19,21	P P P P	44,200 44,100 44,300 45,100	63,400 65,300 65,200 65,800	28 29 29 29	45 51 52 51		-40

Percentage elongation in 12 inches where noted.
 ** Tensile specimen is the from normalized sample out of permanently strained specimen.
 Tensile specimen broke outside of gage length. All tear test specimens of full-plate thickness.
 Chemical Composition

Chemical Composition

С	Mn	Р	S	Si	Ni	Cr	Cu	Mn/c
0.22	0.47	0.010	0.028	0.05	0.07	Tr.	0.066	2.14

ά

TABLE I (Cont.)

MECHANICAL PROPERTIES OF PLATES OF DIFFERENT THICKNESS, SEMIKILLED STEEL U AS ROLLED

Plate No.	Thick- ness	Temp. of Tensil Test	Used for e Spec. No.	Direction of Test, Parallel or Trans- verse to	T e Upper Yield Point	e <u>nsil</u> Ultimate Strength	e Pro Elong. in 8 in*	<u>perti</u> Reduction of Area	e s Poisson's Ratio in Plastic Range	Tear Test Trans. Temp.
	In.	۰F		Kolling	psi	psi	per cent	per cent		۰F
19	1/4	Room	9,20,22	Р	¥¥ , 000	65,900	28	52		
20 21 22	1/4 1/4 1/4		5,14,16 13,15 11,12,18	P P P P	44,700 44,500 43,800	66,000 66,000 65,600	28 29 29	50 50 50		
23 24 25 26	1/4 1/4 1/2 1/2		4,6 2,9 55A 37,55	P P P T	45,400 44,800 36,500 36,900 36,500	66,100 65,800 61,800 61,800 61,100	30 299 31 35* 31*	50 550 54 54 54	0.48 0.46	
				Lo	w Temper	<u>ature Tes</u>	ts			
1 3 4	1/2 1/2 1/2 1/2	-46 -46 -46 -20 -20	96 71 38	P P T P T	42,300 44,300 43,900 42,500 38,900	69,900 70,900 72,000 68,500 64,100	23* 29* 32*	51 56 49 60 50	0.48 0.50 0.51 0.51 0.46	40
24	1/4	_ ¹ +6		Р	55,100	73,600	28*	50		

TABLE II

DESCRIPTION OF SPECIMENS

Spec. No.	Openi: Shape	ng Corner	Size of Reinforcement	Percen- tage of	Cross-S Al	Section rea	tion Gage	
		Radius In.		Reinf.	Gross In ²	Net In ²	In	F
		<u>36"</u> :	r 1/4" Plain Plai	tes (No Op	ening)			
1 23				100 100	9.07 بلار 9	9.07 9.14	36 36	81 76
		<u>36" x 1</u>	An Plates with I	inreinforc	ed Openi	inge		
2 3 4	Circular Square Square	1/32 1-1/8		0 0 0	9.21 9.18 9.15	6.92 6.82 6.87	36 36 36	76 72 78
		<u>36" x 1</u>	/2" Plates with [Inreinforc	ed Open	ings		
37 38A 38 69 95 96	Square Square Square Circular Square Square	1-1/8 1-1/8 1-1/8 1/32 1/32		0 0 0 0 0	18.00 18.00 18.00 18.00 18.00 18.00	13.50 13.50 13.50 13.50 13.50 13.50	36 36 36 36 36 36	76 0 -20 76 76 -46
	<u>36" x</u>	1/4" Pla	tes with Opening	s Reinforc	ed by a	Face B	r	
5 6 7 8 9 10 99 31	Circular Circular Square Square Square Square Square Square	1/4 3/16 1-1/8 1-1/8 1-1/8 1-1/8	$2 \times 1/4 \\ 1 \times 1/4 \\ 2 \times 1/4 \\ 1 \times 1/4 \\ 2 \times 1/4 \\ 1 \times 1/4 \\ 1 \times 1/4 \\ 2 \times 1/4 \\ 1 \times 1/4 \\ 1 \times 1/4 $	40 17 40 16 40 16 40	9.11 9.15 9.11 9.02 9.13 9.15 9.00 9.00	7.76 7.25 7.72 7.13 7.74 7.22 7.74 7.22	36 36 36 36 36 36 36	74 75 75 77 75 77 75 75 75 75 75 75 75 75
	<u>48° x</u>	1/2" Pla	tes with Openings	a Reinford	ed by a	Face Ba	tr	
ц9 50	Square Square	1 -1/ 8 1 -1/ 8	2 x 1/2 2 x 1/2	33 33	24.32 24.32	21.24 21.24	48 48	70 20

See Fig. 1 for location of gage length and dimensions of body plate, and Fig. 2 for details of reinforcement.

TABLE II

DESCRIPTION OF SPECIMENS (Cont.)

.

Spec.	Open	ing	Size of	Percen-	Cross-	Section	Cage	Test
NO.	Snape	Radius	Reinforcement	Reinf.	Gross	ea Net	léngth	.1.emb
		In			In ²	In ²	In	F
36	5" x 1/4" 1	Plates w	ith Openings Reinf	arced by	a Sing	Le Doub]	er Pla	te
11	Circular		18"D x 1/4	102	9.11	9.13	36	75
12	Circular	_	13矿D x 1/4	50	9.14	7.99	36	73
13	Square	1/32	18 x 18 x 1/4	104	9.17	9.21	36	76
14	Square	1/32	$13\frac{1}{2} \times 13\frac{1}{2} \times 1/4$	51	9.14	8.02	36	71
15	Square	1-1/8	$18 \times 18 \times 1/4$	103	9.13	9.16	36	76
<u>52</u>	Square	1-1/8	$18 \times 18 \times 1/4$	103	9.00	9.16	36	-46
10	Square	1-1/0	135 x 135 x 1/4	52	9.13	8 •01	30	73
<u>1</u> 8	™ x 1/2" 1	Plates w	ith Openings Reinf	orced by	a Sing	le ^J oubl	ler Pla	te
รา	Squara	1-1/8	$18 \times 18 \times 1/2$	96	21.17	air m	1.8	71.
52	Square	1-1/8	$18 \times 18 \times 1/2$	<i>9</i> 6	21.00	21,01	18	-16
	- 36" x 1/l	" Plate	s with Openings Re	inforced	by an	Insert. I	 Plate	
					0, 01,		10,00	
17	Circular		12 -3/4 D x 1/2	39	9,11	7.71	36	7Ц
18	Circular		$10-1/2D \times 1$	50	9.13	8.08	36	75
19	Square	1/32	$15D \times 1/2$	33	9.04	7.55	36	76
20	Square	1/32	12-3/4x12-3/4x1/2	39	9.13	7.72	36	72
21	Square	1-1/8	$150 \times 1/2$	62	9.02	8.17	36	77
34	Square	1-1/8	$15D \times 1/2$	62	9.00	8,17	36	-46
22	Square	1-1/0	12-3/4x12-3/4x1/2	39	9.04	7.00	6	73
	<u>48" x 1/8</u>	" Plate	s with Openings Re	inforced	by an	Insert H	late	
55	Square	1-1/8	15D x 1/2	66	23 63	22.09	1.8	20
554	Square	1-1/8	$150 \times 1/2$	67	23.58	22.10	18	69
56	Square	1-1/8	$15D \times 1/2$	66	24.00	22 .09	<u>18</u>	-46
70	Square	1-1/8	$12 - 3/\sqrt{12} - 3/\sqrt{12}$	39	24.00	21.38	<u> 4</u> 8	76
71	Square	1-1/8	12-3/4x12-3/4x1	39	24.00	21.38	48	- 46
	36" x 3	l/4" Pla	te with Opening Re	inforced	by a Co	ombinati	lon	
-			or add bar and H	SCI U I LA	00	<u></u>	<u></u>	
85	Square	1-1/8		78	9.00	8 .50	36	76

Specimen	Dedre	Plate Number	Used for
	Douy		Reiniorcement
1 2		18 24	
4		24 23	
5		20	20
6		23	23
8	:	10 17	18
9		19	19
10		18	īś
12		22	21
13		21	21
<u>1</u> 4	:	20	21
16		20	21
17		ī6	25
		22	10
20	:	19	25 25
21	-	ī́7	25
22	-	19	25
31	-	16	21
32	-	15	21
34		L5 26	26
38A	2	<u>ц</u>	
38		4	
50		6	25
51		ő	25
52 55		5	26
55A		20 25	
56		5	10
69 70		3	
71		3	10
85	ב	Ĩ	11, 1
96	-	 7	
<u> 99</u>	נ	5	21

LIST OF PLATES USED FOR FABRICATION OF EACH SPECIMEN

TABLE III

*Mechanical properties of plates are given in Table I. Sketches of specimens are in Figs. 1 and 2.

,

FIG. 1. DETAILS OF BODY PLATES OF 36" X 1/4", 36" X 1/2" AND 48" X 1/2" SPECIMENS.

-13-

.

FIG. 2. DETAILS OF OPENING AND REINFORCEMENT

Specimens for Room and Low Temperature Tests in 2,400,000-lb. Testing Machine FIG. 3. The details of the specimens, including the size of the body plate, the shape of opening, and the type of reinforcement are given in Figs. 1 and 2 and Table II. Three sizes of body plates were used: 36-in. by 1/4-in., 36-in. by 1/2-in., and 48-in. by 1/2-in. The edges of the specimens were flame cut and ground smooth. The reinforcement was welded in accordance with U. S. Naval General Specifications, Appendix 5 (Navships 451). The electrodes met AWS Specification E-6010. No specimen was tested until at least seven days after the welding was completed.

2. <u>Method of testing</u>. All specimens were loaded as shown in Fig. 3 in a 2,400,000-lb. universal hydraulic testing machine with their longitudinal centerline parallel to the rolling direction of the plate. Three types of gaging were used on all specimens to make the following measurements: the overall elongation by slide-wire resistance gages on a gage length equal to the width of the plate and straddling the area of the opening, the strains in the elastic range on one quadrant of the plate by SR-4 strain gages, and the temperature of the plates by thermocouples. The deformation in the plastic range of an area containing the opening was intensively studied in the case of seven plates (2, 4). The elongations were measured by a slide-wire gage grid system specially devised for those tests. The specimens for the low-temperature tests were

-16-

enclosed in an insulated bag through which chilled air was circulated to bring the temperature of the plate to as low as $-\frac{1}{6}$ °F, as shown in Fig. 3.

3. Definition of terminology. Some terms used in this report are defined below. The elongations measured over a gage length equal to the plate width at five points across the width as shown in Fig. 1 were averaged to give the average elongation. The term "load at general yielding of the specimens" refers to the load at the point where a definite elbow appeared in the plot of the total load on the plate against the average elongation. The area under this curve, or any portion of it, represented the energy absorption of the specimen up to the point under consideration. Two values of the energy absorption have been reported, the energy to ultimate load and the energy to failure.

The ultimate load (the maximum load sustained by the specimen) was divided by the original net cross section area of the specimen to give the maximum average net stress or ultimate strength of the plates. The three shapes of opening are referred to as circular, square with rounded corners, and square; and the plates without openings as plain plates.

The unreinforced plates with openings were considered as having zero percentage of reinforcement. For reinforced plates the percentage of reinforcement was computed as the ratio in

-17-

STRENGTH AND ENERGY ABSORPTION OF SPECIMENS

Spec. No.	Openi Shape	Opening ape Corner		Test Temp.	General Yielding Load Average Stress			Ultimate Strength Load Average Stress			Energy Absorption in 1000's in-1b t	
		Radius	In	F	lbs	Gross psi	Net psi	lbs	Gross psi	Net psi	Ultimate Load	Failure
				<u> </u>	Plain	Plates	(36" x 1/1	<u>(")</u>	- <u> </u>			
1 23			100 100	81 76	380,000 390,000	42,000 43,300	142,000 143,300	585,500 583,000	65 ,390 64,780	65 ,390 64 ,780	4,018 4,062	6, 276 6,779
			P	lates	with Unre	inforced	Openings	(36" x 1	/4")			
2 3 4	Circular Square Square	1/32 1 - 1/8	0 9 0	76 72 78	291,500 292,000 292,000	32,400 32,500 32,500	43,200 43,250 43,250	ЦЦ0,000 357,500 Ц21,000	48,900 39,800 46,700	65,150 52,900 62,350	1,136 338 717	1 ,164 538 899
			<u> </u>	lates	with Unre	inforced	Openings	(36" x 1	/2")			
37 38A 38 69 95 96	Square Square Square Circular Square Square	1-1/8 1-1/8 1-1/8 1/22 1/32	0 0 0 0 0	76 0 -20 76 76 -46	450,000 500,000 500,000 500,000 477,500 550,000	25,000 27,800 27,800 27,800 27,800 26,500 30,600	33,300 37,000 37,000 37,000 37,000 35,400 40,700	800,000 898,000 915,000 845,000 710,000 648,000	141,500 119,900 50,800 147,000 39,1100 36,000	59,300 66,500 67,700 62,500 52,600 48,000	1,700 2,890 2,778 1,739 1,100 486	2,179 3,470 2,778 2,533 1,597 486
			Plates	with O	penings R	einforce	d by a Fac	e Bar (3	6" x 1/4	<u>")</u>		
5 6 7 8 9	Circular Circular Square Square Square	1/4 3/16 1-1/8	110 17 110 16 140	7Ц 73 75 7Ц 72	324,000 321,000 322,000 288,000 319,000	36,000 36,000 35,800 32,000 35,500	42,500 45,500 42,230 110,1120 41,8110	517,000 457,000 397,000 391,500 451,000	57,400 50,800 44,100 43,500 50,100	67,800 64,200 52,070 54,950 59,150	1,277 725 422 447 747	1,420 910 750 780 1,063

Where the energy to ultimate load is slightly larger than the energy to failure, the difference represents elastic recoil of the specimen during fracture.

- .

с а

TABLE IV (Cont.)

. .

.

.

STRENGTH AND ENERGY ABSORPTION OF SPECIMENS

Spec. No.	Ope Shape	Opening ape Corner Radius		t Test . ^T emp.	Gen Load	eral Yie Average Gross	lding e Stress Net	Ulti Load	Mate Stru Average Gross	ength Stress Net	Energy At in 1000's Ultimate	sorption in-1b to Failure
		in		F	lbs	psi	p si	lbs	psi	psi	Load	
		Pla	ates wit	th Openir	ngs Reinf	orced by	a Face	Bar (36"	x 1/4")	(cont.)		
10 99 31	Squ are Squ are Squa re	1-1/8 1-1/8 1-1/8	16 40 16	75 -46 -46	313,000 340,000 364,000	143,930 37,800 140,1100	ц8,930 Ц1,000 50,400	467,000 507,000 527,000	51,900 56,400 58,600	65,540 65,500 73,000	1,211 1,062 1,857	1,504 1,019 1,880
			Plates	with Ope	enings Re:	inforced	by a Fa	ce Bar (4	8" x 1/2'	<u>')</u>		
49 50	Square Square	1 -1/ 8 1 -1/8	33 33	70 20	740,000 880,000	30,400 36,600	311 ,800 111,500	1,255,000 1,410,000	51 ,600 58,800	59,000 66,800	3,510 5,892	h,710 5,610
		Plates	with C	Dpenings	Reinforce	ed by a S	Single U	oubler Pla	te (36"	x 1/4")		
11 12 13 14 15 32 16	Circular Circular Square Square Square Square Square	1/32 1/32 1–1/8 1–1/8 1–1/8	102 50 104 51 103 103 52	75 73 76 71 76 -46 73	360,000 331,500 337,500 300,000 362,000 141,000 300,000	40,050 36,900 37,500 33,300 40,220 49,000 33,300	1,0,050 1,2,100 37,500 38,100 1,0,220 1,8,100 38,100	555,000 488,000 1151,500 406,000 522,500 5118,000 1187,000	61,670 54,200 50,170 45,100 58,060 60,900 54,100	61,670 62,000 50,170 51,600 58,060 59,800 61,900	1,358 771 387 328 729 894 779	1,569 983 728 621 1,099 1,104 1,154
		Plates	s with (Openings	Reinforc	ed by a	Single D	oubler Pla	te (48ª	x 1/2")		-
51 52	Square Square	1-1/8 1-1/8	96 96	74 -46	770,000 950,000	31,900 39,600	32 ,10 0 39 ,6 00	1,385,900 1,160,000	57,400 60,800	57,700 60,800	4,730 4,303	5,360 4,187

TABLE IV (Cont.)

STRENGTH AND ENERGY ABSORPTION OF SPECIMENS

Spec.	Oper	ning	Percent	Test	Gener	al Yield	ing	Ultim	ate Stre	ngth	Energy Ab	sorption
NO •	onupe	Kadius in.	Merin .	P.	lbs	Cross psi	Net psi	lbs	Gross psi	Net psi	Ultimate Load	Failure
<u></u>		Pla	tes with	Openin	es Reinfo	rced by	an Inser	t Plate (3	6" x 1/4	<u>")</u>		
17 18 19 20 21 34 22	Circular Circular Square Square Square Square Square	1/32 1/32 1-1/8 1-1/8 1-1/8 1-1/8	39 50 33 39 62 62 62 39 ates wit	74 75 76 72 77 -46 73 n Openi	522,000 340,000 301,000 320,000 300,000 376,000 319,000 ngs Reinf	35,800 37,800 33,100 35,600 33,300 11,800 35,500 orced by	1,880 13,200 39,660 11,620 36,360 16,000 11,190 an Inse	495,000 521,500 362,000 427,000 478,000 551,500 437,000 rt Plate (55,000 58,000 40,200 47,500 53,100 61.300 43,600	64,390 66,300 47.690 55,540 57,940 67.500 56,840 2")	1,196 1,268 229 545 1,155 1,652 600	1,361 1,400 548 836 1,484 1,542 974
55 55a 56 70 71	Square Square Square Square Square Plate w	1-1/8 1-1/8 1-1/8 1-1/8 1-1/8 1-1/8	66 67 66 39 39 39	70 69 -46 76 -46 prced b	800,000 800,000 900,000 800,000 800,000 y a Combi	33,800 33,900 38,200 33,300 33,300 nation o	36,200 36,200 40,800 37,600 37,600 f Face B	1,275,000 1,288,000 1,360,000 1,276,000 1,176,000 ar and Inse	54,000 54,800 57,600 53,100 48,800 rt Plate	57,700 58,300 61,500 59,700 55,000 (36"	4,240 4,082 3,424 3,362 2,084 x 1/4")	4,660 4,328 3,220 3,699 2,084
85	Square	1-1/8	78	76	295,000	32,780	34,710	493 ,00 0	54,780	58,000	1,442	1,747

ι.

4

.

* ^{1*}

-21-

TABLE V

.

.

.

NATURE OF FAILURE IN SPECIMENS

Spec. No.	Shape of Opening	Per Cent Reinf.	Test Temp.	Fract Cleavage	ure Per Shear	<u>Cent</u> Unbroken	Location of Final Fracture			
<u>Plain Plate (36" x 1/4")</u>										
1 23		100 100	81 76	0 0	76 70	24 30				
	Pla	ates with	Unrein	forced Open	ing (36	" <u>x 1/4")</u>				
2 3	Circular Circular	0 0	76 72	0 0	80 60	20 40	Through Opening Through Opening (Corner)			
4	Square R.C.	. 0	78	0	59	41	Through Opening			
Plates with Unreinforced Opening (36" x 1/2")										
37 38A 38 69 95 96	Square R.C Square R.C Square R.C Circular Square Square	. 0 . 0 0 0 0	76 0 -20 76 -46	0 87 91 0 100	54 13 67 89 0	46 0 33 11 0	Through Opening Through Opening Through Opening Through Opening Through Opening Through Opening			
	<u>Plates wi</u>	th Opening	<u>s Rein</u>	forced by a	Face B	ar (36" x	1/4")			
5 6 7 8 9 10 99 31	Circular Circular Square Square R.C Square R.C Square R.C Square R.C	40 17 40 16 • 40 • 16 • 40 • 16	74 73 75 74 75 -46 -46	0 0 0 0 97 75	58 563 562 49 35 25	42 37 41 38 56 31 0 0	Through Opening Through Opening Weld to Rein. Through Opening Weld to Rein. Through Opening Through Opening Through Opening			
	<u>Plates wi</u>	th Opening	<u>gs Rein</u>	forced by a	a Face P	ar (48" x	1/2")			
49 50	Square R.C Square R.C	• 33 • 33	70 -20	0 99	77 1	23 0	Weld to Rein. Through Opening			

TABLE V (Cont.)

NATURE OF FAILURE IN SPECIMENS

Spec. No.	Shape of Opening	Per Cent Reinf.	Test Temp.	Fract Cleavage	ure Per Shear	<u>Cent</u> Unbroken	Location of Final Fracture
Plat	es with Open	ings Rein	forced	<u>by a Singl</u>	e Double	er Plate	(36" x 1/4")
11 12 13	Circular Circular Square	102 50 104	75 73 76	0 0 0	58 62 58	42 38 42	Through Opening Through Opening Through Opening
14	Square	51	71	0	50	50	(Corner) (Corner)
15 32 16	Square R.C. Square R.C. Square R.C.	103 103 52	76 -46 73	0 63 0	65 22 55	35 15 45	Through Opening Through Opening Through Opening
<u>Plat</u>	<u>es with Open</u>	ings Rein	forced	<u>by a Singl</u>	e Double	er Plate	(48" x 1/2")
51 52	Square R.C. Square R.C.	96 96	74 -46	0 100	81 0	19	Weld to Reinf.* Through Body Plate*
	Plates with	Openings	Reinfor	<u>ced by an</u>	Insert I	<u> Plate (36</u>	" x $1/4$ ")
17 18 19	Circular Circular Square	39 50 33	74 75 76	0 0 0	72 61 54	28 39 46	Through Opening Through Opening Through Opening
20	Square	39	72	0	62	38	Through Opening (Corner)
21 22 34	Square R.C. Square R.C. Square R.C.	62 39 62	77 73 -47	0 0 96	66 67 4	34 33 00	Through Opening Weld to Reinf. Through Opening
	<u>Plates with</u>	Openings	Reinfor	ced by an	Insert I	<u>Plate (48</u>	" <u>x 1/2")</u>
55 55A 56	Square R.C. Square R.C. Square R.C.	66 67 66	70 69 -46	57 1100	28 1 79 0	15ro 21 0	u Throughi@peni ng* Through Opening Through Body Plate
70 71	Square R.C. Square R.C.	39 39	76 -46	1 100	50 0	49 0	Through Opening Through Opening
	Plate with	Opening and I	Reinfor Insert H	rced by a C Plate (36"	ombinati <u>x 1/4")</u>	ion of Fa	ce Bar
85	Square R.C.	78	76	0	67	33	Weld to Body Plate
	*Initial fa	ilure in	pulling	plates.	Spec. No	. 51 rel	oaded after

3 days, Spec. No. 52 after 9 days, and Spec. No. 55 after 10 days.

-

SQUARE INSERT

à

REINFORCED

48" × 1/2" R

o

INSERT

BY ROUND

48" I 1/2" R. REINFORCED

~

്റ

200

0

-4695

10.71

200

per cent between the additional net cross section area added to the unreinforced specimen and the cross section area of the material removed from the body plate by the opening. Thus a reinforced plate with a net cross section area equal to the area of the plain plate would have a percentage of reinforcement of 100 per cent.

The percentage of cleavage or shear in the fracture was taken as the ratio in per cent of the cleavage or shear portion of the actual cross section, including any unbroken part, of the specimen along the fracture line.

4. General behavior during test and fracture of plates with openings. A detailed description of the results of these tests has already been presented in the previous progress reports (1--6). Accordingly, only a summary of the data is included here.

A comparison of the applied load and the average elongation on a gage length equal to the width of the plate is shown for all tests in Figs. 4 and 5. A summary of the more **impor**tant data and a description of the failure are given in Tables IV to VII, inclusive, and Figs. 7--18. The results of the tests and their significance will be discussed in the subsequent sections of this report.

-25-

IV. BEHAVIOR IN THE PLASTIC RANGE OF PLATES WITH OPENINGS

1. Theoretical elastic stress distribution. For purposes of comparison with the plastic stress distribution determined for certain specimens, the elastic stress distribution was computed by theory wherever a solution was available for a case similar to or the same as that of the specimens being The results are presented in Fig. 6 in the form of tested. elastic stress concentration contours. This figure indicates three important facts: first, that for those cases where the ratio of the width of the plate to the diameter or width of the opening is greater than about four, the solution for a plate of infinite width gives satisfactory results; second, for all practical purposes the shape of the opening affects the elastic stress pattern only in the vicinity of the opening; and third, the elastic stress concentration factor for a circular opening is 3.00 and for a square opening with a corner radius one-eighth the width of the opening 3.09. These facts are in accord with St. Venant's principle.

In the plates with a single doubler plate reinforcement, the SR-4 readings indicated a second peak of stress concentration in the body plate adjacent to the outer edge of the doubler. The theoretical stress distribution for an insert plate in Fig. 6 shows such a point.

2. <u>Plastic stress distribution in plates with openings</u>. The stresses in the plastic range of the steel were computed from the measured strains in the specimen by the tangent

-26-

-27-

modulus method of stress analysis (2,6) developed by this investigation. The plastic stress concentration contours and distributions in Figs. 7 to 10, inclusive, give the ratio of the true stress at any point in the y-direction (the direction of the applied tension) to the uniform true stress on the <u>gross</u> area of the specimen in a region remote from the opening.

The transition from the elastic to the plastic stress state brought about no significant change in the general nature of the stress pattern but only in the relative values of the stresses themselves. As the load on the specimen was increased to the maximum, or ultimate load, there was a tendency for the plastic stresses across the section to approach uniformity, that is, for the specimen to develop a more efficient manner of carrying the stresses than existed in the elastic range. This trend towards a leveling out of high stress concentrations and consequently more nearly uniform stress distribution was most pronounced in the specimens with the lower elastic stress concentration factors. These tests showed why it is desirable in the design of openings and their reinforcement to remove causes of stress concentration to the greatest possible degree. When a severe stress raiser was present, the plastic stress gradients around the opening were steeper. Good design by reducing stress concentration results in a more

-28-

....

SPEC. NO. 70. 76* F.

FIG 8. PLASTIC STRESS-CONCENTRATION CONTOURS IN Y DIRECTION FOR REINFORCED PLATES AS DETERMINED FROM MEASURED STRAINS.

٦

SPEC. NO. 38. -20" Fr

FIG 9. COMPARISON OF ELASTIC AND PLASTIC STRESS-CONCENTRATION IN Y DIRECTION ON NET CROSS SECTION OF UNREINFORCED PLATES

FIG. 10. COMPARISON OF ELASTIC AND PLASTIC STRESS-CONCENTRATION IN Y DIRECTION ON NET CROSS-SECTION OF REINFORCED PLATES.

.

efficient plastic stress distribution and thereby a higher ultimate strength and energy absorption.

3. <u>Plastic energy distribution in plates with openings</u>. The unit strain energy distribution in the vicinity of the opening was computed from the measured strains in the specimens by the octahedral theory of A. Nadai⁽¹⁴⁾. Contour maps showing the unit energy distribution in the plastic range appear in Figs. 11 and 12.

It is interesting to point out that the contour line for the average unit energy absorption (the total energy absorption in the gaged area divided by the volume of the specimen within that area) fell in almost the same location in each plate as the contour line for unit stress concentration for both the elastic and the plastic stress states. Also, the higher values of the unit energy absorption appeared in the same area of the specimen where the higher values of the elastic and plastic stresses occurred.

These few tests appear to indicate that one principal function of the reinforcement is that of reducing the spread between the maximum and the minimum values of the unit energy absorption. In respect to the unreinforced plates, Fig. 11 shows how decreasing the severity of the notch reduced the concentration of high values around the corner of the opening and caused a more nearly uniform distribution of the energy. Here again the importance of using generous notch

٠

SPEC. NO. 71. -46* F.

2000

2000

15.00

Ş,

200

2000

200

FIG. 12. UNIT STRAIN ENERGY CONTOURS AT ULTIMATE LOAD FOR REINFORCED PLATES AS DETERMINED FROM MEASURED STRAINS.

radii in design was indicated. Similar statements could also be made concerning the plastic stress distributions shown in Figs. 7--10.

It was found (2,6) that the unit plastic energy absorption at any given point in the specimen increased in accordance with the empirical equation,

$$u = e^{A+BP}$$
,

where e is the base of Naperian logarithms, A and B were numerical quantities, and P the applied load. The small quantity A was found to remain almost constant. The significant variable was B, the slope of the semi-logarithmic curve relating u and P. From semi-logarithmic plots of u against P for each of the many points of the grid system on the surface of the specimen, the values of B were obtained. A similar semilogarithmic plot with respect to the average unit energy absorption $u_{\Delta w}$ for the entire gaged area gave the average value of B, or B_{Av} . The ratio $\frac{B}{B_{Av}}$ has been called the relative rate of increase of the unit energy absorption. Maps showing the contours of equal values of this ratio appear in Figs. 13 and 14. The fact that the experimental data were amenable to such a rationalization indicated that the energy absorption developed in a systematic and logical manner at all points of the specimen as the load increased.

-36-

FIG. 13. Contours of Equal Relative Rate of Increase of Unit Strain Energy Absorption with Increase in Applied Load. Unreinforced Plates.

FIG. 14. Contours of Equal Relative Rate of Increase of Unit Strain Energy Absorption with Increase in Applied Load. Reinforced Plates.

4. Effect of testing temperature upon the plastic stress and energy distribution. The plastic stress distributions in Figs. 7 and 8 and the plastic unit energy distributions in Figs. 11 and 12 were examined by the application of statistical methods for the purpose of determining whether they could be correlated with the mode of fracture in any way. In each of these plots are shown the results for duplicate specimens tested at two different temperatures -- one selected to produce shear fractures and the other predominately cleavage fracture, Specs. No. 37 and 38, and 95 and 96, and 70 and 71. It was found that in the plates with the latter mode of fracture the higher plastic stress and unit energy values were concentrated more closely around the opening than in the plates with the former mode of fracture; that is, the plastic stress and energy gradients were steeper. Cleavage fracture was accompanied by a less efficient stress and energy distribution than shear fracture. Moreover, this effect of testing temperature on the behavior of two identical specimens suggests that tests resulting in shear fractures cannot be used to give reliable predictions of the probable results of low-temperature tests which produce cleavage fracture.

5. <u>Conditions for the initiation of fracture</u>. In these tests it was observed that the fracture was initiated at the maximum, or ultimate load, whether it was of the shear or cleavage type, and in the region where the maximum values of

-39-

the true stress, unit energy, and unit strain were observed. The highest elastic stress and first Luders line were also found in this region.

The experimental data were examined for information which might describe the conditions under which fracture was initiated, such as the maximum true stress, the maximum unit energy absorption, and the maximum unit strain. It should be pointed out with respect to these maxima that the use of a grid system of 1-in. gage lengths may have resulted in small errors in determining the exact location or the true value of the absolute maximum, which always occurred near the boundary of the opening.

A considerable variation of the maximum true stress was observed in the seven specimens, the range being from 68.5 to 105.0 ksi. However, when the maximum plastic stress concentration factor was computed, the relations shown in the upper two diagrams of Fig. 15 were found. The stress concentration factor was always maximum in the elastic range, decreased as the plastic stress or load level increased, and approached a constant and also a minimum value as the ultimate strength of the plate was reached. This observation suggests that perhaps the low energy cleavage fracture of some welded members, which is often accompanied by low ultimate strength, may result in part because the amount of plastic flow which has occurred is not large enough to bring about a sufficient reduction in the plastic stress concentration factor.

-40-

.

٠

,

۱.

FIG. 15. PLASTIC STRESS CONCENTRATION, MAXIMUM UNIT STRAIN AND MAXIMUM UNIT STRAIN ENERGY AS ULTIMATE LOAD WAS APPROACHED.

٠

٠

The maximum unit nominal strains observed in the specimens are plotted in the middle diagrams of Fig. 15, and the maximum unit energy absorption in the lower diagrams.

While the plots in Fig. 15 show that certain of the maximum properties of the specimens followed a consistent relation, they also indicated that no single numerical value of any one of these properties could be used to predict the imminence of fracture. While the geometry of the specimen was an important factor in determining failure, other factors, such as the testing temperature, the mechanical properties of the steel before and after permanent deformation, and undoubtedly the many small stress raisers produced during the fabrication and welding of the specimens were also significant. The common theories of failure are related only to the geometry of the specimen.

6. Effect of the shape of the opening upon the properties of the plates with openings. In these tests it was found that the most important factor affecting the properties of the plates with openings was the notch severity of the opening, which depends primarily upon the notch radius. The notch acuity was expressed in terms of the ratio, $\frac{R_0}{R_N}$, where R_0 is the halfwidth of the opening and R_N the radius of the notch. The relations of various properties of these plates to this ratio are shown in Fig. 16. All the specimens in these plots sustained shear fractures.

-42-

FIG IG. EFFECT OF NOTCH ACUITY UPON PROPERTIES OF PLATES WITH OPENINGS.

The average net stress at general yielding did not appear to be affected by the notch acuity to any appreciable extent. However, an increase in the ratio, $\frac{R_0}{R_N}$, which amounts to an increase in the notch severity, reduced the ultimate strength, the energy absorption to ultimate load, and the elongation to ultimate load in a manner which was linearly related to the logarithm of this ratio. The variation within the scatter bands in these plots represents the effect of the percentage of reinforcement and the geometric shape of the reinforcement.

In general, it was noted that the plates which developed the higher ultimate strengths absorbed the most energy.

7. Effect of the percentage of reinforcement upon the properties of the plates with openings. The effect of the percentage of reinforcement upon the properties of specimens sustaining shear fractures is shown in Fig. 17. A slight downward trend in the average net stress at general yielding and the ultimate strength and an increase in the ultimate load was found as the percentage of reinforcement increased. The load carrying capacity of the plates was increased by adding more reinforcement, but this improvement was accompanied by a small reduction in the ultimate stress carrying capacity of the plate. Thus the increase in load carrying capacity was not commensurate with the added amount of reinforcement. No significant change in the energy absorbing capacity of the plates was brought about by increasing the percentage of reinforcement.

FIG. 17. EFFECT OF PERCENTAGE OF REINFORCEMENT UPON PROPERTIES OF PLATES WITH OPENINGS.

Fig. 17 shows the general trends for all the types of reinforcement. There existed for each type of reinforcement an optimum percentage below which the plates failed through the opening. Above this optimum percentage the reinforcement tended to act as a rigid inclusion in the body plate, and failure occurred by shear in the weld joining the outer edge of the reinforcement to the body plate. This latter mode of failure resulted in somewhat reduced strength and energy absorption.

This optimum percentage of reinforcement was different for each type of reinforcement. For example, it was around 35 to 40 per cent for a face bar, 95 to 100 per cent for a single doubler plate, and somewhere between 30 and 60 per cent for an insert plate. These values are tentative inasmuch as an insufficient number of tests were made to establish these values more definitely. However, they indicate that the doubler plate type of reinforcement would be most efficient for the higher percentages of reinforcement.

8. Effect of the geometric shape of the reinforcement upon the properties of plates with openings. The previous section showed that the optimum percentage of reinforcement varied for the different types of reinforcement. The reason for this variation was found to lie in the geometric shape of the cross section of the reinforcement, principally its width in the direction of the thickness of the body plate. Since

-46-

the solutions by theory of elasticity for the reinforced opening assume plane stress conditions and therefore do not fit the actual problem, it was necessary to develop an empirical parameter which would express the "shape factor" of the reinforcement. The square of the radius of gyration (the moment of inertia of the net section of the specimen about the transverse centerline of the plate divided by the area of the net section) was found to be a suitable parameter and will be referred to hereafter for brevity as k^2 . Various properties of the plates with openings are related to it in Fig. 18.

The average net stress at general yielding decreased as the value of k^2 increased to a value between 20 and 30, in which range the triaxiality of stress induced by the width of the reinforcement was maximum. For higher values the greater rigidity of the reinforcement, which tended to make it act as a rigid inclusion, increased the yield stress somewhat.

The relations of the ultimate load, the ultimate strength, and the energy absorption to ultimate load to the parameter k^2 were similar in nature. For the plates with the square opening and the square opening with rounded corners, there was an optimum value of k^2 , and the plotted points corresponding to higher values of this parameter represent those plates where fracture occurred in the weld at the outer edge of the reinforcement or in the body plate. However, no such failures took place in the plates with a circular opening, and for

-47-

٤

FIG. 18. EFFECT OF GEOMETRIC SHAPE OF REINFORCEMENT UPON PROPERTIES OF PLATES WITH OPENINGS.

-48-

this shape of opening no significant drop-off in strength or energy absorption was found for the higher values of k^2 . Thus this empirical parameter, the square of the radius of gyration of the net section of the plate, appeared to describe adequately and consistently the effect of the geometric shape of the reinforcement upon the ultimate properties of the plates.

There is good reason to believe that this parameter would be equally applicable to coamings, hatch corners, and other similar details.

The data of these tests were combined with the data of other tests of plates with reinforced openings ⁽¹⁶⁾ in Fig. 19. Unfortunately, only the ultimate strength, and not the energy absorption of these latter tests, was recorded. A correlation similar to that in Fig. 18 was found here for the efficiency with respect to ultimate strength. In the Model Basin tests plates with square openings and values of k^2 larger than the optimum value almost failed in the weld at the outer edge of the reinforcement or in the body plate. Moreover, plates with a circular opening and a value of k^2 almost seven times the maximum value for any specimen in the present tests showed only a slight reduction in efficiency with respect to ultimate strength. This last observation suggests the possibility that it would be difficult to make a poor design of reinforcement for a circular opening. Again the extreme importance of the

-49-

4

٠

-50-

ι

-

shape of the opening is evidenced. Contrariwise, as the notch severity of the opening increases, the likelihood increases of losing some of the capacity to carry load or stress and absorb energy because of too much rigidity in the reinforcement in the direction of the thickness of the body plate.

9. Overall ductility of the plates with openings. The degree of ductility attained by the different specimens is summarized in Table VI. While the average unit strain to ultimate load in the plain plates exceeded 21 per cent, it ranged from approximately 2 to 11 per cent in the plates with openings. Most of the values fell between 2 and 6 per cent. The strain raising and ductility reducing effect of an opening in a structural member was made quite apparent by these tests.

10. Efficiency of the plates with openings. One purpose of the reinforcement is that of restoring to the greatest possible degree the properties of the plain plate. The ratio of the value of some particular property of a plate with an opening to the similar value for a plain plate may be called the efficiency with respect to the property under consideration. This ratio expresses the degree to which the reinforcement restores the qualities which would exist in the plain plate.

Table VII lists the values of the efficiency of the various 36-in. by 1/4-in. plates with openings. The average of the values for the two plain plates was used as the basis for each comparison. All the specimens in this table were tested

-51-

TABLE VI

ELONGATION TO ULTIMATE LOAD AND FAILURE OF PLATES WITH AND WITHOUT OPENINGS

Spec. No.	Reinforce Type	inforcement Test Gage Total Elongation in be Per Temp. Length Gage Length to:		gation in h to:	Av. Unit S Gage Longt	train in h to:		
		Cent			Ultimate Load	Failure	Ultimate Load	Failure
			F.	In.	In.	In.	In./In.	In./In.
		Ē	lates V	lithout O	pening (36"	x 1/4")		
1			81	36	7.75	8.83	21.5	21, 5
25			10	50	1.10	ور. عد	<u>د</u> ۲.4	54.5
	Plate	s With	Square	Opening ·	with Sharp C.	orners (36	5" x 1/4")	
3		0	72	36	1.08	1.80	3.0	5.0
7 8	Face Bar	40 16	75 71	36	1.19	2.35	3.3	6.5
13	Doubler	101	76	36	0.97	2 004	2 7	ン+上 ビ バ
บ้	Doubler	51	71	36	0.92	2.01	2.6	5.6
19	Insert	33	76	36	0.73	2,00	2.0	5.6
20	Insert	39	72	36	1.47	2,00	4.1	5.6
	Plates	With S	Square (Dpening w	ith Sharp Co	rners (j	36 ⁿ x 1/4 ⁿ)	
4		o	78	36	2.07	2.67	5.7	بلہ 7
9	Face Bar	40	72	36	1.97	2.73	5.5	7.6
99	Face Bar	10	-46	36	2.55	2.38	7.1	6.6
10	Face Bar	16	75	36	3.04	4.00	8.4	11.1
31	Face Bar	16	-46	36	3.93	4.16	10.9	11.6
15	Doubler	103	76	36	1.70	2.70	4.7	7.5
32	Doubler	103	-46	36	1.93	2.30	5.4	6.4
10	Doubler	52	73	36	2.00	3.38	5.6	9.4
5T 5T	Insert	62		30	2.00	3.72	7.9	10.3
24	Insert	20	-40	30 26	3.50	2.15	9•1 1. F	0 <u>.</u> /
85	Incert &	77 R	76	36	2 1.7	2.00	9.6	19 1
0)	Face Bar	(1.0		U	÷ ۲۰۰ ک	4.)(<i>y</i> ₆ 0	<u> </u>
		Plat	tes Wit	n Circula	r Opening (<u>36" x 1/4"</u>	2	
2		a	- 76	36	2 67	כר ב	7),	87
5	Face Bar) iõ	7)	36	2,98	3,53	8.3	9.8
6	Face Bar	17	73	36	1.94	2.61	5	7.3
11	Doubler	102	75	36	2 88	3.38	8.0	9.4
12	Doubler	50	73	36	1,88	2.55	5.2	7.1
17	Insert	39	74	36	2.98	3.59	8.3	10.0
18	Insert	50	75	36	2,88	3.40	8.0	9.4

TABLE VI (Cont.)

ELONGATION TO ULTIMATE LOAD AND FAILURE OF PLATES WITH AND WITHOUT OPENINGS

Spec.	Reinforc Type	ement Per	Test Temp,	Gage Length	Total Elong Gage Length	ation in to:	Av. Unit S Gage Leng	Strain in th to:
	- , - , - , - , - , - , - , - , - , - ,	Cent	1-+		Ultimate	Failure	Ultimate	Failure
		·	F'.	In.	In.	In.	In./In.	In./In.
	Plates	With	Square O	pening W:	th Sharp Cor	ners (36"	x 1/2")	
95 96		0 0	76 -46	36 36	1.81 0.67	2.81 0.67	5.0 1.9	7.8 1.9
	Plates V	(ith S	quare Op	ening Wi	th Rounded Co	orners (36	<u>" x 1/2")</u>	
37 38a 38		0 0 0	76 20 0	36 36 36	2.30 3.80 3.60	3.36 4.63 3.60	6.4 10.6 10.0	9.3 12.9 10.0
		Pla	tes With	Circular	Opening (3	16" x 1/2")		
69		0	76	36	2.45	3.57	6.8	9.9
	Plates V	lith S	quare Op	ening Wit	th Rounded Co	rners (48	" x 1/2")	
49 50 51 52 55 55 56 70 71	Face Bar Face Bar Doubler Doubler Insert Insert Insert Insert Insert	33 33 96 96 66 67 66 39 39	70 -20 74 -46 70 69 -46 76 -46	78 78 78 78 78 78 78 78 78 78 78	3.36 4.90 5.58 3.97 3.94 3.05 3.25 2.00	5.08 4.58 5.15 3.58 4.20 2.75 4.0 2.0	7.0 10.2 8.4 7.5 8.3 8.3 6.3 6.8 4.2	10.6 9.5 10.7 7.5 8.9 8.7 5.7 8.3 4.2

۴.

,

TABLE VII

EFFICIENCY OF 36" x 1/4" PLATES WITH OPENINGS AS COMPARED WITH PLAIN PLATES

TESTS AT ROOM TEMPERATURE

Spec.	Spec. Opening		Opening Reinforcement		Efficiency Compared to Plain Plate - Per Cent					
No _°	Shape	Corner Radius In.		<u>Initia</u> Load	<u>1 Yielding</u> Average Stress	Ultimat Load	e Strength Average Stress	Energy A To Ult. Load	bsorption To Failure	
	<u></u>		Plates with Unrein	forced 0	penings					
2 3 4	Circular Square Square	 1/32 1-1/8		76 76 76	101 101 101	75 61 72	100 82 96	28 8 18	19 9 15	
			Plates with Openings Re	inforced	by a Face	Bar				
5 6 7 8 9 10	Circular Circular Square Square Square Square	1/4 3/16 1-1/8 1-1/8	2"x1/4" Face Bar 1"x1/4" Face Bar 2"x1/4" Face Bar 1"x1/4" Face Bar 2"x1/4" Face Bar 1"x1/4" Face Bar	84 84 81 77 83 81	100 106 99 95 98 103	88 78 68 67 77 80	104 99 80 84 91 101	32 18 10 11 18 30	24 15 12 13 18 25	
		F	lates with Openings Reinford	ed by a a	Single Doub	ler Plate	3			
11 12 13 14 15 16	Circular Circular Square Square Square Square	1/32 1/32 1-1/8 1-1/8	18"Dx1/4" Doubler 13-1/2"Dx1/4" Doubler 18"Sq.x1/4" Doubler 13-1/2"Sq.x1/4" Doubler 18"Sq.x1/4" Doubler 13-1/2"Sc.x1/4" Doubler	94 86 88 78 94 78	94 98 88 59 94 89	95 83 77 65 89 83	95 81 86 89 95	34 19 10 8 18 19	26 16 12 10 18 19	

4

.

All specimens listed in this table sustained shear fracture.

57

h

TABLE VII (Cont.)

EFFICIENCY OF 36" x 1/4" PLATES WITH OPENINGS AS COMPARED WITH PLAIN PLATES

TESTS AT ROOM TEMPERATURE

Spec .	Openi	ng	Reinforcement	<u> </u>	iciency Co	mpared to	Plain Pla	ite - Per	Cent
No.	Shape	Corner Radius In.		<u>Initial</u> Load	<u>Yielding</u> Average Stress	Ultimate Load	Strength Average Stress	Energy I To Ult. Load	To Failure
			Plates with Openings Rein	forced by	an Insert	; Plate			
17	Circular		12-3/4"Dx1/2" Insert	84	98	84	99	30	22
-	Circular		10-1/2"Dxl" Insert	88	101	89	102	31	23
19	Square	1/32	15"Dx1/2" Insert	78	93	62	73	6	9
20	Square	1/32	12-2/4"Sq.x1/2" Insert	83	97	73	85	14	14
21	Square	1-1/8	15"Dx1/2" Insert	78	85	82	89	29	25
22	Square	1-1/8	12-3/4"Sq.x1/2" Insert	83	97	75	87	15	16
	P	late with	Opening Reinforced by a Co	mbination	of Face B	ar and In	sert Plate		
85	Square	1-1/ 8	1-1/2"x 1/4" Face Bar 14"x14"x1/2" Insert	7 6	82	85	85	36	29

at room temperature and sustained shear fractures. Since no 1/4-in. plain plates were tested at low temperatures or 1/2in. plain plates at either room or low temperature, no direct comparisons could be made for the remainder of the specimens.

The efficiency with respect to the average net stress at general yielding did not vary through a very wide range. However, the ultimate strength and the energy absorption to ultimate load were greatly affected by the shape of the opening and to a lesser degree by the type and amount of reinforcement. The ten specimens which gave the best performance had either circular openings or square openings with rounded corners, and all had reinforcement. In this group were two with face bar reinforcement, three with insert plate reinforcement, and four with doubler plate reinforcement, and one with a combination of face bar and insert plate reinforcement.*

One interesting observation about the plates with square openings, either reinforced or unreinforced, is that their performance was worse in every case than that of the unreinforced plates with the square opening with rounded corners or the circular opening. Reinforcement could not improve a bad

-56-

^{*}The results of these tests should not be applied to types of reinforcement and proportions of details of reinforcement which depart from those existing in these specimens. Quilted doubler plates, doubler plates on both faces of the strength member, wide coamings, and heavy insert plates are examples of types of reinforcement or proportions of details which differ considerably from those described in this report.

notch.

The inherent low capacity of a member containing an opening to absorb energy is indicated in Table VII. The efficiency with respect to energy absorption to ultimate load ranged from 6 to 36 per cent with only eight specimens having values in excess of 25 per cent. While it appears possible in the case of shear fractures to design welded reinforcement for openings that would develop the ultimate strength of a plain plate, the stress concentrations present in an opening and its reinforcement would prevent the member from absorbing more than a small fraction of the energy of a plain plate.

11. <u>Modes of fracture in plates with openings</u>. A summary of the modes of fracture of the different specimens as given in Table V is as follows:

No. o: Specime	f ns Mode of Fracture	<u> 1/4-in.</u> Room Temp.	<u>Plates at</u> -46°F	<u>1/2</u> Room Temp.	<u>-in</u> ÔF	<u>Plate</u> -20F	<u>es at</u> -46f
28	Shear fracture	22	0	6	0	0	0
l	One per cent cleavage	0	0	1	0	0	0
¥+	5090 per cent cleavage	0	2	1*	1	0	0
8	90100 per cent cleavage	e 0	2	0	0	2	4

*Initial failure in pulling plate. Specimen reloaded ten days later.

The transition temperature as determined by the Navy tear test for a representative sample of each plate thickness was -40°F for the 1/4-in. plate and 40°F for the 1/2-in. plate.

It is interesting to relate the mode of fracture to the energy absorbed to failure as in the following tabulation:

Group of Specimens	Notch Radii in Group, in.	Percentages of Cleavage	Energy to in-k	Ult. Load,
		in Group	Minimum	Maximum
	36" by 1/4" Plates	3		
Unreinforced	1/32, 1 1/8, 4 1/2	2 0	338	1136
Reinforced	1/32, 1 1/8, 4 1/2	2 0	328	1442
Reinforced	1 1/8	6397	894	1857
	36" by 1/2" Plates	5		
Unreinforced	1 1/8, 4 1/2	0	1100	1739
Unreinforced	1/32, 1 1/8	87100	486	2890
	48" by 1/2" Plates			
Reinforced	1/1/8	01	3510	4730
Reinforced	1 1/8	57100	2084	4303

There are represented here four types of failure:

- 1. High-energy shear fracture.
- 2. Low-energy shear fracture.
- 3. High-energy cleavage fracture.
- 4. Low-energy cleavage fracture.

This tabulation shows that the minimum value of energy shown was always associated with the sharpest notch radius, regardless of the type of fracture surface. Examples of the first type of failure can be found in Table V. The second type of failure appeared in at least the three of the 36-in. by 1/4-in. plates with a square opening which absorbed the least energy of all the plates, Specs. No. 3, 13, and 14. A number of examples of the third type of failure are those in which the energy absorption for predominately cleavage fractures was equal to or even greater than that developed for shear fractures. The fourth type, which was completely brittle in nature, was found in only two plates, Specs. No. 71 and 96. This unusual array of types of failure suggests to the designer that cleavage fracture of itself should not be regarded as undesirable, but rather low-energy fracture, whether cleavage or shear.

The third type of failure, high-energy cleavage fracture, occurred when the original notch in the specimen was not sufficiently sharp to initiate cleavage fracture at the testing temperature and if the testing temperature was below the transition temperature of the steel as determined by the Navy tear test. In this case the first crack to form was a shear fracture. This shear crack then became the predominate stress raiser and was immediately sufficiently severe to cause a cleavage fracture to pass completely through the plate. This cleavage fracture occurred in the same explosive manner as the low-energy cleavage fracture. The apparent explanation for this third type of failure is that the specimens displaying

-59-

this type fell in the fracture transition range and not in the ductility transition range for the particular combination of geometry and steel.

In Fig. 15, the plots on the left side of the figure include specimens with a circular opening or a square opening with a 1 1/8-in. corner radius. These plates sustained highenergy cleavage or shear fractures. These data fell in two groups--one for reinforced and one for unreinforced specimens-and certain favorable geometric characteristics of the plates, not testing temperature, were the decisive factor in determining the test results. However, in the diagrams on the right of Fig. 15 for the unreinforced plates with a sharp notch of 1/32-in. radius, shear fracture and brittle or low-energy cleavage were the modes of failure, and the plotted points were segregated according to the testing temperature. In the latter case with an unfavorable geometry, a sharp notch present, testing temperature became a decisive factor.

V. CONCLUSIONS

In view of the complexity of this problem, as well as its many interrelations with others not even touched upon by this investigation but no less important, some of the following conclusions may be modified by future research in this field. Such factors as the properties of different steels, states of stress other than pure tension, and dynamic loading, for example, deserve intensive study. <u>Conclusions with respect to plastic flow and fracture</u>.
 a. Good design by reducing stress concentration results in a more efficient plastic stress and energy distribution and therefore a greater capacity for plastic deformation. This greater capacity is reflected in a higher ultimate strength and energy absorption.

- b. High energy absorption and high ultimate strength can be obtained in welded structures, together with either shear or cleavage fracture, if all stress raising effects are sufficiently reduced and if, in addition, the operating temperature of the structure is not far below the fracture transition temperature for the steel as determined by the Navy tear test.
- c. Cleavage fracture of itself should not be regarded as dangerous, but rather low-energy fracture, whether cleavage or shear.
- d. Cleavage fracture was accompanied by a greater concentration of the high values of plastic stress and energy around the opening than shear fracture. These differences in the plastic flow of two identical specimens give warning that tests resulting in shear fractures cannot be used to give entirely reliable predictions of the probable results of low-temperature tests which would produce cleavage fracture.

-61-

e. Where cleavage fracture is anticipated rather than shear fracture, it is more necessary to reduce stress concentration because, as these tests indicated, the concentration of the high values of plastic stress and energy was greater in the case of the cleavage type of fracture.

2. <u>Conclusions and recommendations with respect to the</u> <u>design of an opening and its reinforcement</u>.

- a. It is reasonable to conjecture on the basis of these tests that the best possible practical design of an opening and its reinforcement would assure the development of the yield strength and the ultimate strength of the steel--but only about one-fourth to one-third of its potential energy absorbing capacity--and these properties only when the conditions of loading and temperature are favorable.
- b. The primary problem in the design of an opening and its reinforcement is the reduction of stress concentration.
 The shape of the opening was found to be more important in these tests than the amount or type of reinforcement.
 The present tests indicated that a corner radius equal to or greater than one-eighth of the width of the opening is desirable.
- c. While reinforcement can somewhat increase the load carrying capacity of a member with an opening, it does not appreciably improve its energy absorbing capacity.

- d. Increasing the cross section area of the reinforcement for an opening brought about increased ultimate strength and energy absorption only when the width of the reinforcement in the direction of the body plate thickness was kept small.
- e. The optimum percentage of reinforcement was around 35 to 40 per cent for a face bar, 95 to 100 per cent for a single doubler plate, and somewhere between 30 and 60 per cent for an insert plate.
- f. Above the optimum percentage of reinforcement, failure with reduced strength and energy absorption occurred in the weld at the outer edge of the reinforcement or in the body plate.
- g. That the optimum percentage of reinforcement increases as abrupt changes in the dimensions of the reinforcement in the direction of the body plate thickness are reduced was apparent in the present tests.
- h. The square of the radius of gyration of the net cross section of the plates with openings about the transverse centerline was a satisfactory empirical parameter for determining the best distribution of the reinforcement.

VI. ACKNOWLEDGMENTS

This research was under the guidance of Project SR-119 Advisory Committee of the Ship Structure Committee. The members of the Advisory Committee are:

Mr.	John Vasta, Chairman	Bureau of Ships, Navy Department
Mr.	W. G. Frederick	Maritime Administration
Mr.	Hubert Kempel	Military Sea Transportation Service
Mr.	M. J. Letich	American Bureau of Shipping
Mr.	W. E. Magee	United States Coast Guard

The investigation was carried out at the University of Washington in the Structural Research Laboratory of the Department of Civil Engineering, of which Professor R. B. Van Horn is executive officer, as a project of the Engineering Experiment Station, of which Professor F. B. Farquharson is director. Their assistance in the administration of the project, as well as that of Dr. H. E. Wessman, Dean, College of Engineering, is appreciated.

The investigation was directed by Dr. R. A. Hechtman, Professor of Structural Research. Dr. D. Vasarhelyi, Assistant Professor of Civil Engineering, was project engineer and was assisted by Mr. Keith J. Kenworthy, Mr. Y. T. Yoshimi, and Mr. Robert McHugh, Research Assistants.

The authors express their appreciation to Mr. Vasta for his active interest in the research, to Dr. Finn Jonassen of the National Research Council for his many suggestions and encouragement, and to the many others who assisted on the project.

-64-

VII. REFERENCES

7

- 1. Vasarhelyi, D., and Hechtman, R. A. "Welded Reinforcement of Openings in Structural Steel Members," First Progress Report, Ship Structure Committee, Serial No. SSC-39, December 15, 1951.
- 2. . "Welded Reinforcement of Openings in Structural Steel Members: A Determination of Strain Energy Distribution and True Stresses in the Plastic Range in Plates with Openings," Second Progress Report, Ship Structure Committee, Serial No. SSC-50, March 10, 1952.
- 3. —. "Welded Reinforcement of Openings in Structural Steel Members: Room and Low Temperature Tests of Plates with Reinforced Openings," Third Progress Report, Ship Structure Committee, Serial No. SSC-55, June 30, 1953.
- 4. —. "Welded Reinforcement of Openings in Structural Steel Members: Cleavage Fracture and Plastic Flow in Structural Steel Plates with Openings," Fourth Progress Report, Ship Structure Committee, Serial No. SSC-56, March 1, 1954.
- 5. —. "Welded Reinforcement of Openings in Structural Steel Members: Determination of the Effectiveness of Three Types of Arc-Welded Reinforcement, Face Bars, Single Doubler Plates, and Insert Plates for Circular, Square with Rounded Corners and Square with Sharp Corners," THE WELD-ING JOURNAL, Res. Suppl., April 1951, pp. 182-s--192-s.
- 6. —... "Welded Reinforcement of Openings in Structural Steel Members: A Determination of Strain Energy Distribution and True Stresses in the Plastic Range in Plates with Centrally Located Openings," THE WELDING JOURNAL, Res. Suppl., April 1952, pp. 169-s--180-s.
- 7. Kirsch, G. "Die Theorie des Elastizitaet und die Beduerfuisse der Festigkeit," ZEIT. V. D. I., vol. II, p. 797, 1898.
- 8. Inglis, C. "Stress in Plate Due to the Presence of Cracks and Sharp Corners," PROC. INST. NAWAL. ARCH., 1913.
- 9. Howland, R. C. Y. "Stresses in the Neighborhood of a Circular Hole in a Strip under Tension," ROYAL SOCIETY OF LONDON, PHIL. TRANS., vol. 229, p. 49, 1930.
- Greenspan, M. "Effect of a Small Hole on the Stresses in a Uniformly Loaded Plate," QUART. of APPL. MATH., vol. II, pp. 60--71, April 1944.
- 11. Gurney, C. "An Analysis of the Stresses in a Flat Plate with Reinforced Circular Hole under Edge Forces," Brit. Res. Memo. No. 1834, 1938.
- 12. Beskin, L. "Strengthening of Circular Holes in Plates under Edge Loads," JOURN. APPL. MECH., 1944, p. A-140.
- 13. Weiss, H. J., Prager, W., and Hodge, P. G. (Jr.). "Limit Design of a Full Reinforcement for a Circular Cutout in a Uniform Slab," JOURN. APPL. MECH., 1952, p. 397.
- 14. Nadai, A. "Energy of Distortion Absorbed by Plastic Deformation of Thin Steel Plates," Res. Rep. SR-182, Westinghouse Research Laboratories, April 1943.
- 15. Yi-Yuan, Yu. "Solution for the Exterior of a General Ovaloid under Arbitrary Loading," Dissertation, PhD. Eng. Mech., Northwestern University, 1951.
- 16. U. S. Exp. Model Basin, Navy Yard, Washington, D. C. "The Effect of Openings on the Ultimate Tensile Strength of Flat Plates, Report No. 446, 1938.

١

7