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ABSTRACT

A formula previously developed for
calculating propeller -induced vibratory
hull surface forces is reorganized for
improved computational efficiency. The
reorganized formula is simplified to
several alternative forms which are more
readily usable by the designer. Speci-
fically, for non-cavitating conditions,
a simple relation is derived by which
the vertical hull surface force can he
estimated if the propeller bearing forces
are known. Data which pertains to the
stern surface shape is required in the
formula; this data for sterns represen-
ting the two characteristically different

tYPes is included in the paper. TWO
simplified formulas for estimation of
hull surface forces associated with
cavitation are also derived. The
accuracy of the several simplified for-
mula proposed is judged on the basis of
more rigorous computations performed on
four different ships.
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mth harmonic of time vari-
ation of cavity crOss-sec -
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coefficients in Legendre
function expansion
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surface area of propeller
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influence coefficient in
hull surface source den-
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nNi 1 components of nth
blade rate harmonic vertical
bearing force
amplitudes of cavitating
and non-cavitating vertical
hull surface forces

infinite fluid Green !s
function

~tb harmonic of G in prc,-

peller disk

~plitude of bare hull
v~bratory velocity poten-
tial

kernel of hull contour
source density equations

subscript defining direc-
tion of excitation force;
also ~

unit vector in axial direc-
tion

hull section contour inte-
gral

index on hull section con-
tour line segments

number of hull section con-
tour line segments per
quadrant

= index on hull section con-
tour control points; also
propel ler blade index

= function related to hull
surface source distribution

vector representing mth
harmonic propeller blade
loading and thickness

= half-width of infinite
strip: also semi-beam of
bull in propeller plane;
also length along propeller
blade section; also length
along hull section contour
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= distances to forward and
aft ends of ship in hull
coordinate system

= vector representing mth
propeller blade loading
harmonic

= propeller section leading
edge

= subscript denoting harmonic
order; also abbreviation
for meters

= number of axial stations
over length of hull

= blade rate harmonic order;
also index on hull stations

= unit normal vector on hull
surface

= unit normal vector on prO-
peller blade pitch surface

= number of propeller blades

= “nit normal on hull section
segmented contom

= control point in hull sur-
face source density compu-
tation

= propeller pitch distribu-
tion

= propeller blade surfaces

= propeller blade SOUI-Ce
distribution

= source point in hull sur-
face source density compu-
tatio”

= Legendre function of 1/2-
integer order

mtb harmonic of blade
cavity line source strength

= radius to propeller blade
point in propeller Coor-
dinate system

= radius to hull surface
point in propeller Coor-
dinate system

= radius to jth bull contour
segment in propeller system

= Propeller hub radius

= propeller tip radius

complex number-

= position vector
ler blade point

= position vector
surface point

= position vector
trailing edge

= position vector
in space

to prclpel-

to hull

to blade

tO point

= Surface of “do”ble,,hUl]

I-2

%
s

t

TE

Tn

?m

u

propeller blade operator
used in formula reorgani-
zation

blade skew angle

subscript msed in Lege”dre
function expansions

time

propel ler blade trailing
edge

nth blade rate harnOni~ of
alternating thrust

vector representing mth
propeller blade thickness
harmonic

ship forward speed

Uo = mean tangential inflow
velocity to propeller blade
section

+ “th harmonic of hull induced
‘iv

velocity field in propeller
disk
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‘jk = 2-dimensional h“l1 induced
velocity cm hull section

‘jk’wjk = components of ~jk in hull
coordinate system

= components of ;j k in cOn-‘jk’wjk
tour element coordinate
system

“*
3Gx’”%’a = hull induced velocity har-

monics at .7 propeller
radius

+iv

‘1

= slipstream integral invOl-
ving hull- induced velocity

= axial coordinate to pro-
peller point in propeller
system

Xo

‘on

Yo

Z,z
n]

Zo

= axial coordinate to hu~~
point in propeller system;
alSo distance between pro-
peller plane and waterline
ending

= axial coordinate to nth
hull station

= lateral distance betWeen
hull and propeller vertical
centerplanes

= hull contour coordinates

= hull contour coordinates in
element system

= aygument of Legendre fu”c-
tIon

= VertiCal distance between
water surface and propeller
horizontal centerplane

= propeller blade local cylin.
drical Coordinate

= blade projected leading
edge angle
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blade projected trailing
edge angle

cylindrical coordinate to
hull surface point in hull
system

unit vector defining direc-
tion of excitation force

an integer

blade section geometric pitch
angle

slope of ktb hull contour
segment

Gamma function

length of jth bull section
contour segment
1/2 V=o

1 V>o

dummy variables for y and z

dummy variables for y 1 in
bull contour element system

angular position of propeller
blade

propeller position angle at
which cavitation growth at

rl Comences
propeller position angle at
which cavitation collapse at
rl commences

propeller position angle at
which cavitation collapse at
rl is completed.

propeller blade rake angle

propeller blade dipole
strength related to lift

mth harmonic of u

= subscript denoting harmonic
order

= dummy variable for xl

= water density

= radial coordinate to hull
point in hull system

= distance between control
point and source point on
hull section contour

= propeller blade dipole
strength related to thickness

= bull surface source density

mth harmonic if o

= unit vector tangent to prO-
fi~~er blade section pitch

= average cavity thickness at
blade radius rl

= bull induced potential field
in propeller disk

= vth harmonic of ~i

‘$~; = hull. induced potential harmonic
at outer propeller radius

w = angular velocity of propeller

HULL SURFACE FORCE FORMULA

In reference [1] 1 a method was
proposed for calculating the unsteady
propeller-induced forces acting on the
surface of a ship stern. Formula (7) of
that paper is:

where Fin is the amplitude of the total
unsteady hull surfa”ce force in direction
i and at the nth harmonic of propeller
blade rate frequency.

As explained in [1], tbe right-hand
side of equation (1) involves an inte-
gration over the propeller blades and
slipstream. All of the variables on the
right-hand side, except the last one,
Hin, are related to propeller blade
geometry or loading. The hull is intro-
duced in equat i n (1) through the func-
tion Hin. :Hin ( )IS the amplitude of the
unsteady fluid velocity potential resul-
ting from the bare ship bull traveling
backwards with speed U across the water
surface and oscillating with unit ampli-
tude in the direction i, and at the fre-
quency harmonic n, of the excitation
force of interest, Fin.

This formula is exact within the
linear ideal fluid theory for give”
propeller characteristics. The hull and
water surface boundary conditions will
be satisfied through the Hin function by
solving the hydrodynamics problem de-
scribed in the previous paragraph.

Equation (1) is not completely
general, however. The dipole represen-
tation of the propeller thickness effect,
u (El) in (1), does not allow completely
for the existence of propeller blade
cavitation, as explained in the Appendix.

Furthermore, the triple and quad-
ruple integrals in (1) imply a somewhat
laborious computation for a general ship
hull if (1) is executed by purely numeri-
cal methods. As shown in the Appendix,
the first integral in (1) can be per-
formed analytically, thus reducing the
computational effort.

The generalized and reorganized
form of (1), which is developed in the
Appendix, is the following:

1Numbers in brackets denote references
at end of text.
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(2)

Fin by (2) involves an integration over
the radius of one propeller blade of
sums of products of functions which+
pertain entirely to the propeller, Km
and ~, with functions whic~ pertain
entirely to the bare hull , v<,,and div .

i!il~(rl)and $lV(X1) in 72) are the
“th harmonics of the fluid velocity and
fluid potential function, respectively,
at radius .1 in the propeller disk due
to the bare hull moving with unit velo-
city in the direction, i, of the exci-
tation force of ~nterest. The Fourier
series of which viv and $iv are compo-
nents is in the a~gular coordinate in the
propeller disk. viv and @iv can be com-
puted for a given hull as described in
the Appendix.

Q“(rl) in (2) is the mth harmonic
Of the first time derivative of tbe blade
cross-sectional area at radius rl. The
blade is considered as a “pseudo-blade,,
composed of the material blade plus any
attached cavitation. Therefore, the
blade cross-sectional area will be time
dependent only where unsteady cavitation
exists; ,Qm in (2) “ill be zero for a no”-

ca”’’~;;n~~~;;ey;) is,

km = IIinNmTm ~p + ~ 3P (3)

~ (r~) and ~ (rl) in (3) are unit “ectors
.a~th$ prope!’ler blade section at radius

rl. Tp,is the “nit tangent+vector to the
blade pitch line at r~ and np is the unit
normal vector to the blade ~ltch surface

‘l=cl
9. (4)

The Tm and ~ functions are integrals
over the blade section at r~ involving
the mth harmonics of the strengths of
the blade tangential and normal dipoles,
o and u from (1) rezpecti”ely. Om
represents blade thickness effects and

Pm,represents blade lift. Tbe relation-
sh~p between the am in (4) and the Qm
in (2) is described in the Appendix.
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AN E~CT ANALYTICAL EVALUATION

Equation (2) will require numerical
evaluation for any case which is at all
general. However, for tbe very simple
case of a large flat plate above the
propeller, an analytic evaluation of (2)
is both easy and enlightening.

Consider the configuration sho”n on
Figure 1. The propeller axis lies at a
distance Z. beneath and parallel to a
strip whose length is infinite and whose
width is 2t. The vertical force on the
strip “ill be evaluated in tbe limit of
large 9./zo.

Figure 1. Wide Flat Strip

The fluid velocity and potential
function required in (2) for vertical
force analysis (i=3) is that correspond-
ing to vertical translation of the strip
with unit downward velocity. The velo-
city potential, for Z. negati”e (Figure
1), is,

$3 = Re F(L)

with

F(c) = i(? + ~)

and< =y+iz

The velocity “ector is,

+
V3 = 3$s = V3Y] + V3ZZ

with components,

‘3Y=ReFr ‘<)‘ ‘3z=-*tir ‘~)

where F‘ (C) is obtained from (6) by
clifferentiation,

F(L) = i [I+*)

(5)

(6)

(7)

(8)

The field points L in (6), (7), and (8)
correspond to points in the propeller
disk centered at <=-zoi. For .L>>ILI,
(6) and (8) become,

lim F(G) = -t
L+large

lim F1 (c) = i
.t+l.arge

.
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Therefore, in the limiting case of the
infinite flat plate, for which L+m, the
fluid potential and velocities o“er the
propeller disk are,

In the propeller coordinate system,
Figure 1,

i = cOs E Z= - sine ~e (lo)

+
V3 and $3V are required in (2). By
de~inition,

+
“3” . ~

/nJ3 (e’e-iv’d’
(11)

-n

with

{

1 V>o
Eo=l ~ “.0

Combining (9), (10), and (11),

. .
+“3v=_>’ 1 -iv’d”+%el~in’e-i”’de

~ r c0s8e

:11 -T

Integrating,

G3V =

(

v#l
-yZr+iZ@) “=1

Likewise, for $3V

Jn
$3” = ~ 43(f3)e-iv6d@

-T

Substituting (9),

{
$3” = _:

Vfo
“=0

Substitute (12) and (13) into (2),

‘r‘3n=T [(~nN-l.~31-PinNtiQnN ‘$30)

‘l=rh
+

+ (.il+nN.~31-PinNuQnN T30)ldrl

(12)

(13)

(14)

The effects of blade cavitation are re-
presented in (14) both in the source
strength harmOnics, QnN, and in the 7P
component of the ~m vectors by (3) and
(4). In fact, the Tm coefficients of
? in (3) will involve only cavitation
!’e fects at m=nN+l and m=nN-l, (14),
since the thickness of the material blade
is time independent and therefore con-
tributes only to the m=O term of Tm.
Then, considering (12) and (13) and the
fact that L is large, the cavitation
effects will be dominated by the SO”rCe
terms in (14). (14) can therefore be

separated into cavitating (C) and non-
cavitating (NC) components as,

rt
NC_N

/

.
‘++Lii.~

‘3n ‘~ ‘LnN-lnp”v31 nN+l P 31)‘rl
(15)

‘l=rh

and

, rt

—-+
F3~=-ipn2N u QnN($30+330)dr1 (16)

‘l=rh

Considering first the cavitating compo-
nent, (16),

‘$30=
J30 = -g. by (13).

Therefore,

rt
c

‘3n J
= iPnN2m9. QnN(rl)drl (17)

‘l=rh

But as preciously stated, and as shown in
the Appendix, Qm is just the mth harmonic
of the 1st time derivative of the cavity
cross-sectional area at r~. The integral
in (17) is therefore the mth blade-rate
harmonic of the first time derivative of
the total cavity “olume on one blade,

‘nN=f:nN(rl)drl = ~nN(rl)drl

‘l=rh ‘l=rh

(17) is therefore,

c
‘3n = ipnN2@$nN (18)

(18) implies that the cavitation induced
vertical force on the infinite strip,
whose width, 2k, is large compared to the
propeller submergence, Z. (Figure 1) , is
simply proportional to the width of the
strip.

Consider ~ow the non-cavitating
force, (15). ‘p, frOm the Appendix, is,

where P is the blade geometric pitch at

rl. Blade rake has b$en ignored in the
above expression for np.

Defining 6 (rl)~as the geometric
pitch angle at rl, np can be written,

;
P

= COSB ; - sin8 :6

Then, with ~31 defined by (12), (15)
becomes

‘~=~:L.N-,-LnfJ+l)‘in’ ‘r,
‘l=rb
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Inserting the ~ functions from (4) ,

‘3Y=$:~Jn..,’iadadr,
a=at

(19)

‘~ltan~nN+le-i”dadrl

‘l=rh a=aL

But (19) is just the negative of the nth
blade rate harmonic of the vertical pro-
peller bearing force due to propeller
blade lift, [2]. The result, (19), is
therefore in agreement with Breslin 1s
cOndition, [31, that the net vertical
force (bear ing force plus surface force)

corresponding to a propeller operating
beneath an infinite flat plate is zero.

Equation (18) suggests on the other
hand, however, that Breslin ts condition
does not hold for a cavitating propeller.

BY (18) , the vertical cavity induced
force on the infinite flat plate is it-
self infinite. But it is known that
vhile very large surface forces are

associated with moderate sheet cavita -
tlOn, there is no corresponding large
ef feet on propeller bearing forces.
lllis seeming inconsistency was very
adequately explained by the late Pro-
fessor F.M. Lewis in a written disc”ssicm
of reference [1]:

By the Breslin condition it is
evident that the total (“et,
non-cavitating) force will be
the momentum force of the verti-
cal motion of the free water
surface outside the ship. If
the wave patterns on tbe free
surface produced by the pro-
peller could be determined, the
total force could be calculated
from this.

For cavitating conditions,
●ither steadv or intermittent.
the problem ;ecomes enormously
mre difficult. The Breslin
amdition does not hold because
_tum forces are produced
by -tion of the surface of the
cavities. 1 suspect that the
Wrtical force will be greatly
increased.

_ ~2UATE EVALUATION

?0rm12as (18) and (19) of the pre-
_ -ion, which apply to the verti-
A ~ on an infinitely long strip
~ tith is large compared to the
~ dimensions, are simple and
~. However, even though the
- -ip can be physically related to
● - ship stern in a limiting sense,
r29! ~ (19) should not be expected to
~~.q realistic force estimates

~wlxnl to a typical ship.
A9 titernative is to compute (2)

?:=lY, using the procedures described

in the Appendix. !lowever, an approximate
reduction of (2), similar to that per-
formed for the strip in the previous
section, yet not so extreme, is possible.

The velocity vector in (2), in the
propeller coordinate system, is written,

+ .
; ;

‘iv=vivx~ + ‘ivr r + ‘ive 8

with

- e @i”“ive - Xl

For the flat pl~te, the Fourier series
in v , of which viv and @iv are cmnpo -
nents, are composed of single terms, as
shown by (12) and (13). For a general
ship stern, instead of a flat plate,
~iv and +iv will, in general, be non-
zero for all v. However, for a ship
stern which is “fl~t-plate like, “ the
Fourier series on Viv and @iv will con-
verge rapidly from the leading terms.
For the vertical case, i=3, the leading
terms in tbe series are v=O for V3VX,

v3vr1 and $3u I and V=l fOr V3Ve I since
v.~~.o.
A

For a ship whose stern is
c aracterized as broad and flat, these
leading terms will be the dominant terms.
If only these leading terms are carried
in (2), (2) reduces to,

rt

1 +
F3n=~ (inN”V30x ~ + KnN-~cV316es

‘l=rh

+ (20)
-pinNwQnN$30 + KnN.;X13x ~

+il+nN.;31 e~6-oinNtiQnN~3~)drl

The radial velocity component h s not
ibeen carried in (20) since the ~ vectors

do not contain a radial component.
As in the case of the flat plate,

the dipole terms in the Km in (20) per-
taining to blade thickness are associated
entirely with unsteady cavitation at
m=nN-1, n., and nN+l. The force d“e to
cavitation should, as in the case of the
plate, be dominated by the source tern,
~ in (20), when the ship stern is broad
and flat. Therefore, representing the
cavitation effects entirely by the source
terms, the vertical force separates into
cavitation and non-cavitation parts as,

rt

‘3:=. ~ ‘nN

‘l=rh

‘: ~LnN-lv3,@’%”:@)dr
.

(21)

‘l=rb

rt
+:

J ‘nN+l;31e(;p”:,’drl \
rl=rh



b

and

rt
c=

‘3n ~
-pinN2u QnN

‘l=rh

Advantage has been
(21) and (22) that

real so thatpure

and

;
30X = “30X

T 30 = $30

$30drl (22)

taken of the fact in
both V30X and $30 are

It bas been observed that the !aoten-
tial and velocity components in (2 Ij and
(22) do not vary greatly ~ver the pro-

peller radius. Therefore, replace these

fu~ctions by sone ~“verage radial values:

‘30X< V3~e, and $30 . Typically,

“3:X = “30X(=1)
rl’ .7rt

*

’31e = v31e (rl)
1-1..7rt

+’ = $30 (rl)
30 rl>.71.t

The suggestion that the potential be
evaluated at a larger radius than the
velocities is because cavitation, with
which +30 is associated, is typically
distributed more toward the blade tip.
However, since these functions usually
vary slowly with radius, the selection
criterion should not be critical.

+
(21) and+ (22) then become, with

np=c0s61-sin6ee,

‘3’c”iE:Nc0’Bdrll”;x
-fyl‘in’+V3;0 (23,

- ~tLnN+l ‘inB “J ‘3~@
[:~=rh

and

rt
c=

‘3n
-pinN2u

~ ‘nN
rl=rh

or

J
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c
‘3n = -pnN20+m$3~ (24)

c
F3n by (24) bears a strong resemblance
to (18), which was developed for the
wide strip of,width 2!. (24) reduces
to (18) if ‘$30is replaced by -k. The
definition of L can be generalized to
aPPIY tO a ship as, say, the offset to
the design waterline at a station
corresponding to the vertical plane of
the prope~ler disk. With this defini-
~iOn, 1‘$30I should always be le., than

Formula [24) is equivalent to the
result obtained by Bre~lin in [4] when
specialized to a flat plate of infinite
Length, but whose width, compared to
the propeller dimensions, is not neces-
sarily large. In that case, referring
to Figure 1,

+3: = -(/..2+12- 2.)

which can be obtained from (5) and (6)
by setting <=-izo. This is the same
as Breslin’s potential ~ in [4], ex-
cluding an erroneous factor of 2. ?+n
improvement over (18) for a flat plate
of flnlte width sbo”ld therefore be,

c= pinN2u+nN‘3n (- - 2.) (18a)

Turning
force, (23),
from (4),

to the non-cavitating
and substituting the ~

1‘3:= ; ~t’l ~“nNdadrl ‘3~x

- ‘l=rh a=a9.

1- rl=rh a+t, J
The second and third bracketed terms in
(25) can be related to the vertical
propeller bearing force by comparison
with (19). The vertical flat plate
force, (19), has been identified as the
negative of the propeller vertical
bearing force. Denoting the amplitude
of the nth blade rate harmonic of the
propeller vertical bearing force as,
Fvbn 1

F
vbn

= Fv~n + Fv:n

where the two terms are the contribu-
tions of the nN-1 and nN+l blade pres-
sure, or wake, harmonics, respectively.

I



(26)

‘~n’~ ~E1’an6~;nN+le-iad”drl

‘I=rh a=ai

Recoqniz ing additionally that the first
bracketed term in (25) is just the nega-
tive of the am.plit”de of the ~th blade-
rate harmonic of the alternating thrust,

Tn,

‘l=rb a=aA.

(25) can be written,

‘3~=-Tn v3~x - iFv~nv3~6+iF + ~ *vbn 310

(27)

If the alternating thrust and “ertical
bearing force for a propeller operating
in a specified ship wake have been es-
timated, then (27) provides a means of
estimating the corresponding non-cavita-
ting “ertical hull surface force, if the
velocity harmonics in (27) corresponding
to the particular bare-hull Can be ~sti-

mated.
Note that (27) degenerates to (19)

in the case of an infinite flak plate.
FOF the infinite flat plate VSOX=O and
v31~=-i, by (12).

l’+
GEOMETRIC

Xolk 1.047

Yo/ ~ .457

zo/i .457

d/1 .219

DATA

D/’ ;

t/D

~ D CORRESPONDING

.450

.127

TO PROP 1/ TABLE 1

Figure 2.

EVALUATION OF APPROXINATE METHODS

The formula (2) has been applied
to a number of ships over the past
se”eral years. The Calculated data
corresponding to four of these applica-
tions is used to compare the approximate
formulas for the vertical hull surface
force, (24) and (27), and also (18),
(18a), and (19), with the more accurate
evaluations by (2) directly.

The four ships chosen are two with
twin propellers and two with single
propellers. The twin-screw ships are a
large coastal ferry and a naval cruiser.
The single .screw ships are a Great Lakes
ore-carxier and a container ship. The
pertinent geometric characteristics of
the four ships, including the hull velo-
city and potent ial data required in (24)
and (27), is gi”en on Figures 2, 3, 4,
and 5. Note that the sterns of three of
the ships would be characterized as flat-
plate-like, while one, that of the
container ship, wmld not. The pertinent
propeller data for each of the four ships
‘S gi”en in Tables 1, 111, VI, and VIII.
The calculated vertical surface forces
for each case are compared in Tables

11, IV, V, VII and 1X; the force amplit-
udes are expressed as percentages of
steady thrust as indicated on the
tables.

Each of the four cases are
described individually as follows:

Ship 1 - Twin.Screw Ferry (Figure 2)

The blade rate harmonic, n=l,
of the bearing forces and vertical non-

-TT
l-l

HULL POTENTIAL AND VELOCITY DATA
(VERTICAL FoRcE ANALysIs]

“30X
“*
316

~50/L

.316

-.423 -.586i

-.604

cDFiSt.31Ferry
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cavitating surface force was calculated
for three different 5-bladed propellers.
The characteristics of the three pro-
pellers are given in Table 1. The three
propellers, identified as 1, 2, and 3,
are all about the same diameter, with
propeller 1 being slightly larger than
2 and 3, which are the same diameter.
Propeller 1 is essentially unskewed and
delivers a lower power at a lower RPM
than propellers 2 and 3. Propeller 2
has moderate skew and propeller 3 is
unskewed.

,,0,1 ,,,,2 m.,3,

!M:T%DW
3

,.64 2.,, ,.,3
,..23f,) (7.*7f,, (,.*7,.,

z,,,., ,,., ,5., ,
“m 275 320 320
8“, ,>,, 4.,0 4.8,

TABLE 1

Ship 1 - Twin- Screw Coastal Ferry
Propeller Data

Table II compares the blade rate
(n=l) vertical surface forces calculated
by (2) versus the more approximate
predictions by (27) and the flat plate
fomn”la (19).

Ship 11 - Single -Screw Great Lakes Ore
Carrier (Figure 3)

This ship is the subject of
reference [51. The ship experienced bad
cavitation induced stern vibration on
the builder’s sea trails. An abbreviated
stern tunnel was added above the pro-
peller (Figure 3) to improve the wake
in the propeller disk, and thereby
reduce the severity of the cavitation
and resultant vibration.

BEAR,..mace
Co!oow,,s

Fv:l
.

r“,,

‘,

,,,h, ,2,%

F,,by (“!—.
‘T,%’ox-ip,m% ,

‘1P.:,%

=)
,

-Gi-Fvbl

PROP1

RE

-.23

.1,

-,.,

,.2

.96

.1?

1. ,wP

T
-,.,

.16

..4,

,., ,,,

.s, 1.,

.98 .99

PHASE

-9,6

-6.1

-,,.

Force calculations were performed
for the ‘“without’,and ,Kvith,,tunnel
configurations. Bearing forces and the
vertical component of the hull surface
force were calculated for both stern
configurations. Both blade-rate and
twice-blade rate harmonics “ere cs.l-
culated, and the effects of cavitation
were included in the hull surface force
calculations.

Figure 3 shows the geometric
characteristics of the ship stern. TWO
sets of hull velocity and potential data,
for “se in (24) and (27), are listed on
Figure 3; these correspond to the ,,with-
out” and ‘,with,,tunnel configurations,
as indicated.

Table 111 li~ti? the pertinent pro-
peller characteristics.

NO OF BLADES, N
41

DIAMETER, D [m) 6.42 (20 ft)

Ae/Ao .581

% SKEW 4.3

RPM 120

SHP 14,000

1, CONTROLLABLEPITCH,LEFT-HANDROTATION

TABLE III
Ship 11 - Single .screw Great Lakes Ore

Carrier
Propeller Data

Tables IV and V S11OWthe comparisons of
the vertical surface forces calculated
by (2), from [51, and by the approximate
formulas (18), (18a), (19), (24), and
(27). The non-cavitating forces are
shown in Table IV and the cOrresDOndina
forces due to cavitation are sho;n in -
Table V.

It can be noted in Table IV that
the same bearing force components are
listed for both the without and with

PRO, 2

RE lH

T
,15 -.11

-.2, ,03

.,1 -,99

-.34 .65

.06 .,1

.06,,079

AMP

.73

.5,

.,0

‘HA5E

-23.

-,7.

-10.

PROP3

RE

-,.,

.,,

-.30

1.9

,.,

,.,

[M—

.0,

..,,

,.2

.1.3

.,.,

,0,0

w.

2.3

,.6

1.,1
HASE

6,7

9,5

,.5,

1. f>,,(t)- .WP,COS“. 1.t-PF%4SEl:AMPPEFCENTOFSTEM.TH.OSTVPmst. 57.3.[ThN-o(-IV/W)l/.Nlc.E4P..M). msmm. orwm.
,-s, m,-.mrbc,.,mm,” f(t),sPOsr,,vm.Axrw”,

2, X 1=—I.. (=-0TO151ANO1 TmmNIC [=-01USEDIt+(21.

TABLE 11 Ship I - Twin-Screw Coastal Ferry
Non-Cavitating Blade-Rate Vertical Surface Forces’

(Refer to Figure 1 and Table I)
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GEOMETRIC DATA

xo/E .237 D/E .526

‘zo/t .375 t/D .113

d/9. .053

HULL POTENTIAL AND VELOCITY DATA
(vERTICAL FORCE ANALYSIS )

W/O TUNNEL WITH TUNNEL

“*
30X

.752 .690

’310
-.585i -.491i

$;O/i -.633 -.590

Figure 3. Great Lakes Ore Carrier
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,.4
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.16
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-.,5

&

-,44

.14

-.086

.33

.24

.,,

~

,.,

1.2

.34

~

-.005

.16

,.4

-1.0

-1.0

-.15

~

-.44

.,4

-.086

.,7

.2,

.3x

1. FORCESPERCENTOFSTEADYTHRUST
2, PHASE- ‘57,3,T.,-x(-,H/Rdh FORLEFT-HANDROTATION(KE ,A3LE,,)
3, 16laFLARMONICS(*OTOL5)AND1 T.IURHONIC(.4)uSED1)4(2),

TABLE IV Ship 11 - Single -ScreW Great Lakes Ore Carrier
Non-Cavitating Vertical Surface Forces

(Refer to Figure 2 and Table III)

tunnel cases. The only model wake survey reference [51. specifically,
conducted was Prior to the addition of
the stern tunnil. The bearing forces
were calculated from this wake survey
and used for both stern configurations.
The difference in surface forces shown
on Table IV is therefore due entirely
to the differences in diffraction
effects of the two stern configurations.

In the cavitation force comparisons
of Table V the volume variation $n4 , as
well as the G and am used in (2), were
calculated by formulas proposed in

an(rl,a)

H__2UoZEXT ~-imOe l-e
‘m(ee-’t)~

mz~ (ee-et)
1

[

1.(’.-’,)=_e-imOc l-e
(eC-’at) 2

1)

1-10

1,.
1,



m“,,,“mum
VM,m,.atl

+“, 1l”,,s..)

‘,.by IZ~I

-Oin’’-n,+,;

‘,.b’ ~18)”
Pi.N%$”4L

‘3.by (18=)
,inx%+n,mmpo)

] ~,o,uNNELBLADERA;.=)

UITHTUNNEL

J&

-,.5

6500.

-,.,

-,.7

-L.,

1M AMP

T
21. 21.

440.

16. 16.

26. 26.

,9. 19.

{AS;—
14,

,4.

*4.

24.

RE 1.

T
8, 1.6

9,. ,200,

.7.1 1.,

.12. 1.9

.9.1 1.5

~
8.1

7.2

n

9.3

4A,—
,2.

,3.

,3.

,,.

TWICE-BLADE-RATE(.=2)
“/0TUNNEL

RE—
4,9

,00.

,,3

6.8

.5.,

x-
,,,

860.

9,,

14.

11.

AMP

1
,2,

10.

,6,

12.

I“AS

Y

14.

,,.

1,.

——
WITHTUNNEL

RE !M

T
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TABLE v Ship II - Single -Screw Great Lakes Ore Carrier
Vertical surface Forces Due to Cavitation

(Refer to Figure 2 and Table 111)

Qm(rl) = %(rlrat) which cavity growth begins

and

where, as a function of radius,

Uo(rl) = mean inflo” velocity tangent
to pitch line at r~

?(rl) = average cavity thickness

EXT(rl) > at-al ~ maximum angular =X.
tent, In the projected plane,
of the cavity along the blade
section

@c (rL) = propeller position angle at
which cavity collapse begins

Ot(rl) = propeller position angle at
which cavity collapse is com-
pleted

This data for the ore carrier was esti-
mated largely from photographs of model
propeller cavitation tests as explained
in [5]. Separate cavitation tests were
performed with the two stern configura-
tions (with and without tunnel ), pro”i -
ding separate sets of cavitation data
for the two cases.

Ship III - Twin-Screw Naval Cruiser
(Figure 4)

ee (rl) = propeller position angle at

l----’ ----i ~x”~

D

1[

GEOMETRIC DATA HULL POTENTIAL AND VELOCITY DATA

xo/9. 1.483 D/L .756 (VERTICAL FORCE ANALYSIS )

YQ/k .567 t/D .292

ZO/t .769

d/t .252

Fi.g”re 4. Naval Cruiser

%x .146

+
31e

-.325 - .350i

0:0 -.518
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The blade-rate harmonic, n=l, of
the bearing forces and vertical non-
cavitating surface force was calculated
for two different propellers. The
characteristics of the two propellers
are given on Table VI. The two pro-
pellers are of the same diameter, RPM,
and power, but one is a 5-bladed Pro-
peller with high skew, and the other
has 7-blades and zero skew.

,,0? 1 PRw2

NO068LADES,, 5 7
DIAUETER.D [d ,.,,,1,,,) 5.70<,8,.,

%SKEW ,, 0

TABLE VI
Ship 111 - Twin Screw Naval Cruiser

Propeller Data ]

Table VII compares the blade-rate
vertical surface forces calculated by
(2) wersus the approximate formulas for
both propellers.

Ship Iv - Single-Screw Containership
(Figure 5)

Figure 5 and Table VIII define the
stern/propel ler configurat ion for ship
IV. Tbe blade-rate and twice-blade-
rate non-cavitating vertical hull sur-
face forces calculated by the three
methods, (2), (19), and (27), are com-

T:
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1

1 ma,1 I ,,,

‘1
M

BM”IH6 m.c,
-
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,.:, -.,,
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,,, ,“ ,2, . M
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.,,

.,,

.>,

.,4
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.,,

w WA,,

T,2, ,,.

u ,,0

,’ ,.,

8, ,.

T
,,,,.,,
,,0-.,7
,,, .“

-,4, -.,0

.,., ..,,

..,, .1.

,, w,, ,,ncm, 0, ,,Em, rnms,

2.9L.-,,, W 1081w 1h -,, (.+)US,,,,(2).

1,*,,,.,,
TABLE VII

Ship III - Twin- Screw Naval Cruiser
Non-Cavitating Blade Rate Vertical

surface
(Refer to Figure

NO OF BLADES,N

DIAMETER,D (m)

Ae/Ao

% SKEW

RPM

SHP

Forces
4 and Table VI)

6

7.55 (23.5ft]

.744

39

108

27,800

TABLE VIII

Ship IV - Single-Screw Containership
Propeller Data

GEOMETRIC DATA

xo/ L 2.707 D/L 3.00

zc,/k 2.556 t/D .096

d/L .767

— —

HULL POTENTIAL AND VELOCITY DATA

(VERTICAL FORCE ANALYSIS)

“*
30X

.153

“;l’a
-.0192i

‘$; o/L
-.475

Figure 5. Containership
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pared on Table 1X.

m,. .,., .,., -,,, -,0.,

~ -.<0 2.7 ,,, -L’, ..,’ .,4, ,,,

,,” b“ ,,7, .,, ,,, .,, .,,, ..>> ..,, ,“,
-,.”;”.-%%,
%.%,
,,M (L,, -.$,-.,,,.. ,., ....,..,,,.“,

-1,
I

.,.,

Il.

-GA&
L -?-. ,W,W4,

z,16L.-,. M.?o151ml,.m#, W-,”(J),

TABLE 1X

Ship IV - Single- Screw Containership
Non-Cavitating Vertical Surface Forces

(Refer to Figure 5 and Table VIII)

In tbe comparison of the vertical
hull surface forces on Tables 11, IV,
V, VII, and 1X, the predictions by (2)
should be taken as tbe+standard. NO
fewer than 9 terms on Km and Qn in (2)
were used; the precise number in each
case is indicated by footnotes cm the
respective tables. The essential step
in reducing (2) to (24) and (27) was
truncating the series in (2) at its
leading terms in the hull– induced velo-
city and potential functions, (2o).
The differences between (2) and (24)
and (27) are primarily a reflection of
this truncation. The same propeller
blade pressure distributions, Um, were
used in (2) and (27); nine .point Simp-
son’s rule integration was used both
radially and chordwise in (2) and (4),
as well as in the bearing force compo-
nents of (19) and (27), which are gi”en
by (26). Likewise’ the same cavitation
data and cavity model, from [5],-were
used in Um and ~ of (2) and in VnN of
(18), (18a), and (24). The hull. induced
velocity and potential data was the
same for (2) versus (24) and (27), but
with average radial values used in the
truncated series of the approximate
formulas (Figures 2 thrcmgh 5). The
hull. flow data was calculated for all
cases by the procedures described in
the Appendix.

D18CUSSION OF COMPARISONS

Non-Cavitating Forces

First of all, there is no consis-
tent agreement at all between (2) and
the flat-plate formula (19), either in
an absolute or relative sense. Indeed,
none should be expected. (19) is the
negative of the vertical bearing force.
Consistent agreement between (19) and
(2) would therefore imply zero net
vertical vibratory force on ships. This
is, of course, not the case, in general.
(19) is of value in the comparisons in

establishing a lower bound on the capa-
bility of the theoretically more accurate
aPPrOximatiOn (27): the upper bound is
established by (2).

Considering (27) versus (2), the
agreement ranges from very poor on the
single-screw containership to very good
on the naval cruiser with the 7-bladed
propeller. The performance of (27)
should be expected to be poorest on the
conventional stern ship. The ‘Narrown-
ess” of the counter of the container-
ship stern violates the “broadness”
assumption required in the reduction of
(2) to (27). As previously stated, the
Fourier series on the hull-induced flow
field converges more rapidly when the
stern is broad, relative to the pro-
peller disk, versus narrow. Tbe series
truncation error in (27) is therefore
less for the broader stern, and (27)
should be more accurate for ships, 1, 11,
and 111, than for ship IV. This
generality with regard to stern shape
is contradicted by the case of the ore-
carrier at blade-rate freq”ency; the
barge stern of this ship “ould certainly
be characterized as broad and flat. The
primary reason for the poor agreement of
(2) and (27) shown on Table IV is d“e to
an unusually large blade thickness con-
tribution, particularly in the “with
tunnel” case, which is excluded by the
truncation associated with (27). Note
that the comparison at twice blade-rate
frequency for the ore carrier shown on
Table IV is quite good.

Cavitating Forces

While the compari sons are limited
(Table V) , the approximate evaluations
of the vertical surface forces due to
cavitation by (18.3)and (24), both com-
pare favorably to the more acc”r.ate
evaluations by (2). The comparisons on
Table V are probably indicative of the
capability of the approximate formulas
when applied to ships with broad flat
sterns like that of the ore-carrier.
Both (18a) and (24), and particularly
the flat-plate formula (18a), would be
expected to be considerably poorer if
applied to a more conventional stern
such as that of the container ship, Figure
5.

For a conventional stern the zeroth
harmonic potential in the propeller disk
may not be the dominant flow harmonic
that it is in the case of the broad flat
open stern: compare the velocity and
potential data tabulated on Figure 5
versus Figure 3. It is the dominance of
‘$35over other harmonics of either the
potential or velocity components in the
case of the barge stern which produces
the good agreement between (24) and (2)
shown on Table V. Specifically, the
dipOle te~s in (2), by way of the h“ll-
induced “elocity field, should play a
much more important role in the cavita-
ting hull- surface force on conventional
stern ships.
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Hull -Induced Flow Data

The hull induced velocity and
potential data of Figures 2 through 5 is
interesting in itself. It provides in-
s~ght into the influence of certain
characteristics of stern configuration
on the vertical hull surface forces, at
least for the broad flat stern type of
Figures 2, 3, and 4. This is through
the approximate formulas (24) and (27),
which have been shown to be reasonably
accurate, at least in a relative sense,
for the broad flat stern type.

For the non-cavitating force, for
example, (27) shows that the alternating
thrust multiplies the zeroth harmonic of
the axial hull induced velocity in the
disk, and sums with products of the
vertical, bearing force components and
the first harmonic of the tangential
hull flow velocity in the disk. For an
infinite flat plate the tangential velo-
city approaches a limiting maximum abso-
lute value of 1, (12). Therefore the
ma~nitude of the,tangential velocity,
vqle, fOr a particular hull, is indica-
tive of the magnitude of a component of
the vertical surface force relative to
the ver~ical bearing force. That is,
for a glve~ vertical bearing force, the
smaller v318, the smaller should be the
bearing force related component of the
surface force. In general, the narrower
the w~terplane aft, the smaller should
be v~~~; this is confirmed by the data
on Figures 2 through 5.

The axial velocity induced by an
infinite flat plate or by any cylindri-
cal body of infinite length is zero, and
the alternating thrust does not contri-
bute to the vertical surface force for
such cases, by (27). If however, the
body surface is terminated aft of the
propeller disk, typically like the water-
plane ending of a broad flat stern, an
axial velocity will be induced which in-
creases as the waterplane end is
approached. This increasing axial velo-
city with decreasing inset, xo/8, is
clearly shmm cm Figures 2, 3, and 4.
Therefore, for a given alternating
thrust, the closer is the propeller to
the waterplane ending, the larger is
the axial induced velocity, and the
larger is the thrust contribution to the
vertical surface force. [6]. Of course
cancellation between the three compo-
nents of (27) can occur, and w.ually
does to some degree. Nevertheless, some
useful rules of thumb are believed to be
provided by the formula (27).

With regard to the cavitating h“ll-
surface force, the zeroth harmonic of
the hull induceg potential in the pro-
peller disk, +313,is the dominant hull
effect, according to (24), for the broad
flat stern. Tbe potential approaches
the negative of the waterplane half
breadth as an uPPer limit. (13). and
decreases with ~=creasing” waterplane
breadth, Figures 2, 3, and 4. The
potent ial will also decrease on approach-

1-14

ing the “aterplane ending aft, but the

%:::’ :pgr:{~’%:nz :t~
potential should be somewhat insensitive
to the location of the disk relative to
the waterplane ending for typical stern
configurations. This is supported by
the data on Figures 2, 3, and 4. There-
fore, in converse to the non-cavitating
force, the force due to cavitation, for
given propeller cavitation characteris-
tics, will be reduced on reducing the
distance between the waterplane ending
and the propeller disk, xo/t on the
Figures. However, the controlling
characteristic in the cavitating force
should be the breadth of the waterplane
aft.

CONCLUSION

The approximate formulas developed
for calculating propeller -induced vert i-
cal hull- surface forces are reasonably
valid, at least in a relative sense, for
sterns which are broad a“d flat aft,
typical of open strut or transom stern
ships . The formulas are not valid for
ships whose counter is narrow relative
to the propeller diameter.

The hull. flow data required in the
approximate, formulas is in itself ~Se-
ful in qualitatively evaluating the
relative merit of sterns with different
but similar character istics, independent
of any particular propeller design.

The hull ‘flow data presented for
the particular ships studied in this
paper should be useful to the reader
interested in approximating the hull-
surface forces on similar sterns, for
which propeller. bearing forces and/or
propeller cavitation data is available.
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APPENDIX

GENEIU+L1ZATION AND COMPUTATIONAL IMPROVE-
MENT OF THE HULL SURFACE FORCE FORMULA

FORNULA GENERALIZATION

A formula for calculating the
complex amplitude of the nth blade-rate
harmonic of the propeller-induced bull
surface force in direction i was origi-
nally derived in reference [7] as,

1. ~Hin(~l)d~-pq (fil)Hin(fil) dSdt (28)

Here tbe propeller is represented in

terms f singu ar~ty distributions u (33,)
%and q( I).

+ “,
u ( I) 1S a distribution of

normal dipoles over tbe blade pitch

~$’
surfaces and t elr helicoidal extensions
downstream; u ( ~) represents the un-
steady lift ng effects of the propeller

blades. q ( 1) is a distribution of
sources over tbe blade pitch surfaces

and represents tbe thickness effects of
tbe propeller blades.

The source representation for blade
thickness is disadvantageous from a
computational point of view. Cbordwi se
rates of change of blade tbickne ss+are
required in the co”str”ction of q (RI).
Nhile the blade thickness distribution
is always specified on the propeller
drawing, its chordwise rates of change
are troublesome to estimate, particular-
ly near the chordwise extremities. More
important y, when blade cavitation
occurs, it is useful to simply consider
the blade as having a time-dependent
thickness distribution composed of the
thickness of tbe blade proper plus that
of the attached cavitation. While an
approximate cavitY thickness distribu-
tion might be estimated from, say,
observations or photographs of cavita-
tion tests, it is ““likely that such
could lead to usefully accurate esti-
mates of the rates of change of cavity
thick~ess required in the construction
of q(Rl) in (28).

These problems associated with the
rate of change of blade thickness can
be overcome by using a tangential dipole
distribution, instead of a source dis-
tribution, to represent tbe effects of
blade thickness in the hull surface
force calculation. The tangential
dipole singularity, being of higher
order than the source, requires the
thickness distribution itself, rather
than the distribution of thickness
derivative, in its construction. In
view of the advantage of tangential
dipoles over sources, the hull- surface
force formula, (28), was rederived in
terms of tangential dipoles directly in
both references [11 and [61. However,
the tangential dipole form of references
[11 and [61 is not completely general.
That is, in tbe case of a time-dependent
blade thickness, which corresponds to a
cavitating propeller, tangential dipoles
alone are not sufficient to completely
repzesent the thickness effect; a line
source along the blade trailing edge,
whose strength at any radius is equal to
the instantaneous time rate of change of
the blade cross-sectional area at that
radius, is required additionally.

A form O* the bull-surface force
formula which properly allows for blade
cavitation, while taking advantage of a
tangential dipole distrib”tion for thick-
ness, ca” be manipulated from (28). Write
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Fin in (28) aS , Fin=Fin&+Fin where sub-
scripts I and t denote liftt and ,lthi.ck-

ness. ” The thickness part is isolated
as,

Fin:-~r-inNmtJ\ q(A1)Hin(~l)dSdt

-n/Nu
P (ill (29)

The surface integral in (29) is an+in-
tegral over all propeller blades; RI,
the position vector to a blade point,
is time-dependent. Write the surface
integral in (29) as,

H
q(il)Hin(*l)dS

P (il)

TE (rl)

= J f q(’rlt)Hin(~,rl,t)didrl
radially LE(rl)
over N
blades

The inner line integral in 9.is along
the blade section at radius rl; refer
to Figure 6. Write,

TE(rl)

I(rl,t) =
[

q(L,rl,t)Hin(L, rl,t)d~

LE(rl)
(30)

Figure 6. Prope 1ler Geometry

and integrate by parts along the section;
the positive L d+rection is identified by
the unit vector Tp on Figure 6, which is
tangent to the section pitch-line at
radius r~.

u = Hin dv = qdt

Write v(l, rl, t) a5,

I
v(9,, rl, t)=v(LE, rl, t)+ q(~trl,t)dc

<=LE

and define,

1
u(Q,rl,t)= q(c,rl,t)dc (31)

G=LE

Then 1, from (30), is,

TE

l=Hin(l,rl,t)V(LE, rl,t)

LE

TE

+Hin(9.,rl,t)o(i,rl,t) (32)

T(LErrlJt)tHin”:pdL-T(Lrrlrt)vHin”Tpdt
LE LE

The first and third terms in (32) cancel
identically. o(LE,rl,t)=O bY (31).
(32) then becomes,

1 = ‘in(TE’rl’ t)o(TE’rl’t)

“Ta(’rrlJt)FHin”:pd’
c=LE

By (31),
TE

f
G(TE,rl,t) = q(c, rl,t)d~ (31.1)

<=LE

which is just the net source strength of
the blade section at rl, at time t. De-
note, o(TE,rl,t)=Q(rl, t). The surface
force due to blade thickness is then
obtained by substitution back in (29),
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Here, iTE is vector position to the
blade trailing edges.

The complete force, corresponding
to (28), is therefore,

‘p”(il)*lHin(Rl)d’
(33)

-P
/ )

2(iTE)Hin (iTE)ds dt

TE (fiTE)

The first two terms in (33) correspond
to the formula derived in [11 and [61.
0 (fi~)represents a distrib”ticm of
tangential dipoles over the blade pit$h
surfaces; the axis of the dipoles iS Tp.
The third term in (33) represents the
contribution from a line source along
the blade trailing edges; the strength
of the line source is equal to the
di ole density at the

i0( TE), by (31.1). .(~;;i::d’~;e_

fore the third term in (33), will be
zero when the blade thickness is time
invariant (non-cavitating blades) . For
the cavitating blade, the 1ine-source
will contribute.

FORMULA REORGANIZATION

Formula (33) can be reorganized
for computational advantage. First
make the change of “ariable,

‘a=ult

E is the positiwe counterclockwise
looking forward (so that, for right hand

$’
rota Ion, w is $eqative) . Also write,

Hin( l)=lnN@i (Rl) so that, in view of
the definition of Hin, $i becomes the
potential due to the hull mo”ing
steadily with unit “elocity in direction
i through the fluid (the subscript i
denotes direction; the factor i==) .
(33) can be rewritten as,

-P
J )
Q(fiTE)$i(<E)dS de (34)

TE (~TE)

1-17

In this form the slip-stream integral in

~,~~: ~ interpreted as an operator on
~th XI and 51 replaced by ~.

The position vector R~ to a point on the
kth blade, k=O, ...N-1, can be written

in a coordinate system fixed in space at
the propeller hub; see Figure 7.

BY inSPectlOn of the limits On the
O integral in (34) , 9 is the position
angle to the generator line of the blade
nearest t p-dead-center (k=O) .

fore, i~l~~i;s a point 0. the kt~h~~e,

611 ln

.B+2nk+u
B1 N

[35)

projected plane tog; relati”e to the
where a is the posi Ion angle in the

kth blade generator line, as indicated
on Figure 7

Figure 7. Propeller

Xl=xl (r,l,cd

Coordinates



Now write O, U, $i, and $.$ias
Fourier series in the angular coordi-
nates as follows,

(36)

(37)

(38)

(39)

:1 1s deleted from the argument lists
:n h and am since, on the blade, Xl
1s a function of a.

Now substitute (36) through (39)
into (34) and replace the N-blade inte-
gration over P (~1) by an integration
over the index blade (k=O) and a sum-
mation over k. The result is,

r-in=*~e-inNe~j~(jf ‘em~o~om:P

-T/N
B(rl, a)

‘&#p jjceinN;(xl-’) im(e+~,
1
e N

6=X1

‘Rev~o+iv (rl,xl)e
iv(e+~+a)

dS

‘o jtRem~oQ#,l),im(e+%)

‘l=rh

.
.Re ~ $. (r ,x )

~=~ J.v 1 lt

iv(e+~+ at)
.e drl

1
(40]

In (40),

Qm[rl)=Gm(rl, at) by (31.1), where
Qt=at (rl) is the projected trailing edge
algle of the index (k=O) blade at radius

rl AISO, xlt~xl (r~,Ut) in the laSt
term in (40). Temporarily define,

i!m(rl,a) ~ Pam(rl, a)?p(rl)

F“

inN~(xl-~)
+ ~vm(rl, a);p(rl)

<=X1

~ing In mind that $be C integral in
~ IS an operator on viv (r~,XI) with

xl=< . (4O) can then be written,

F ‘*~inNe_j~?(; f ~ ,im(e+%)m
k=O

m
-T/N m=o -

‘B(rl,a)

+

1-im (fJ+~)
.+v~o ;i”e

iv(e+~+a)
+;me

+ -iv(e+~+ ~)
+Give 1}dS (41)

-0 ~ ‘~’(; ~ ~Neim(e+%) - -im(e+~)l+Qme
k-O ~=cl-

‘l=rh

‘+v~o~ive
iv(e+~+ at)

1) 1

+~, ~-iv (e+%+ at)
1“ drl de

where the “barred” terms in (41) repre-
sent the respective complex conj“gates.

Performing the multiplications and
interchanging the order of summation in
(41) gives,

~ ~-inNe[jj ; ~Fin = &

-n/N - m=o V=(l
B(rl,a)

(

i ~“+m)~
. 3m.Give’~vaeie ‘v+m)~~~ e N

2nk
+: .;, ~ivueie (“-m)N-l i (V-m)~
m lV }e

k=o

+
-ivae-ie (v-m)N-1+3m .Vive

k;o=
-i (u-m)%

(42)
++,

)
+~ ‘~ e-’vae-ie ‘v+m)~~~e-i (V+m)w dsm lV

‘Pr ! ~ Qm+iveivateie(v+m) N~l~(v+m)y ~.1~l=r:-o u-o k=O
I
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i(v-m)+
+&@ive

iva~ei’?(v-m)’11e

k=O

+Q ~. e-i”ate-ie ‘v-m)~~~e-i ‘“-m)*m IV

+6 ~, e-ivate-ie (U+III).
m lV

N-1 2nk
.k:o e

)]
‘1 ‘“+m)~ drl dE

If the integration order is likewise
interchanged in (42) , four terms of the
following type will occur,

n/N

_~;ie(B-nN).e. ~j~,*

where B represents the linear combina-
tions of v and m. Since v and m are
both integers, 6 is an integer. There-
fore,

[

_~ie(’-nN)~,. % d= IIN
o 5+nN

Then, for B=nN

‘;l .*”ink=N
k=O

The four 6 expressions then define four
relationships between the m and v. For
the first and fifth in (42),

B=v+m=nN implies m = nN-”

Then, since m>O and v~O,

V = 0,1, ...nN

Likewise for the other three 6,s:

6=v-m=nN m = “.nN~O
v =nN, ...-

B = -“+m = nN m = nN+v
v= o,...-

ln the fOurth and last terms, E=-v-m.
With m and v~o, -v-m#nN unless n=O and
V=nl=o. But n>O because of the Unsteadi.
ness, So the fourth and eighth terms in
(42) are zero for all v and m.

Making these substitutions, (42)
reduces to:

“W ~~j [J: 3nN_v.+i”e-ivam

B(rl,a)

.+ . +
+1=+’ ‘va+v~o~”+nN”vive )-iva ds
“=nN “-nN””ive

- “ly~NQ“=0 nN-v@ivelvat

‘l=rh

(43)

+1- iva~
@e+

~=nNQv-nN IV

.

‘“~oQv+nN+i”e
)1

-ivat dr
1

The blade integral
written explicitly as,

H’4t-
B(rl,a) ‘l=rh

in (43) can be

at (rl)

J1
dadr

a=ut (rl)

where rh and rt are the h“b and tip
radii, respectively and ai and at are
the pro j ected leading and trailing edge
angles, relative to the generator line
of the blade section at rl (see Figure

8) . B (rl) is the geometric pitch angle.
Also referring to Figure 8,

!
K

— — —

‘h

Figure 8. Propeller Blade Geometry
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and
+

pl + 2mr1e8
:=
P i’4r,rls+P,

where P (r~) is the
pitch.

(45)

section geometric

?+napproximation can he made at
this point which subst~ntially simpli-
fies (43). Note ~hat vi , and the inte-
gral operator on Viv in ~m, depend on a
only through xl.

~l=xl(rl, a) = r1[K+Utan6(r~)]

Referring to Figure 8, K is the blade
rake angle and @ (rl) is the section
pitch angle. @ is small, at least near
the blade tip; the blade tip region is
predominately influential in the vibra-
tory force. Therefore, XI can be
replaced approximately by its value at
the generator 1ine.

~l~rl,a) . xl (=1) s Krl also small.

(46)
+

The product ~m..?iv then become s.,

lim.;iv=pom(rl,u);p(rl).;iv(rl)

C=xl (rl)

and likewise for the respective con-
jugate combinations. The only depen-
dency on a in any of these terms is
through the am and um. Define the
following:

T
nN-v(rl)E~ ~t”nN-(r17”)ei”ada

a.a

T.-nN(rl)=~ ~t;v-nN(r~#a)ei’’”da
~=cl.

at
T“+nN (rl)~~

f ~ -ivad~ (47)
“+nN(rl, a]e

~=afi

also,

‘1 %
L

~ ‘ivadu
“+nN(rl)’~ ‘v+nN(rl, u)e

~.a
&

Furthermore, define,

Then, Fin from (43), using (47), (48),
and (49) becomes,

F ‘- ]t[~/LnN-$P$iv+QTnN_v~P.;ivm

‘l=rh

-PQnN_v$i Ve
ivat)+

~ (Lv_nNip .$iv
v=nN

7 .+‘PTv-nN p viv-PQv_nN4 ive1vat) (50)

. + +

+ ! (Lv+nN~P”~iv+DTv+nN:P ”Gi
“=0

(5o) is the basic form desired.
While a substantial rearrangement

of (33) has been accomplished in (50),
it is not immediately obvious that (50)
is any better suited for computations
than (33).

The predominant expenditure in

of fHin(~~)=inN@Vi (R~) at all the quad-
Cornutin with (>3)~is the evaluation

rature points involved in the triple
(thickness) and quadruple (lifting)
:nteqrals. If the gourier analysis of
vi, to produce the viv in (5o), “as
carried out numerically, then the double
and triple integrals plus the summation
in (50) would replace tbe triple and
quadruple integrals in (33); the two
would probably be marginally different
from the point of view of computational
effort. For~un~tely, the Fourier
analysis of vi (RI) does not have to be
performed numerically.

The major advantage of (50) ove$
(33) is that th~ Fourier analysis of vi
to produce the viv can be accomplished
analytically. Therefore, (50) becomes &
an improvement over (33) by the equiva-
lent of one integral order, more+or less,
when the analytically evaluated vlv are
inserted.
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FOURIER ANALYSIS OF THE HULL INDUCED
VELOCITY FIELD

The hull. induced velocity potential
field, $i (~) , in a coordinate system

moving steadily with the hull at unit
velocity in direction i, through the

ideal fluid, can be written,

‘i(i) = J J ‘i’io) G ‘i;io)ds (51)

s* (Ko)

+
Here ~i (Ro) is a source density distri-
but’on on the ,,doublehull,, surface,
s*(&) , 01 corresponds to the mode of
hull motion, i (direction of force) .
S* (fro)is the wetted surface of the bare
hull, p us Its image in the upper half-
space; i~ 1s the position vector to
points of the “double-hull,, surface.

++ 1
— , the infinite fluidG(R,Ro)=-+ ,i_iol

Green’s function.
The “double h“llq, and infinite

fluid Greens s function representations
are permitted by the condition of zero
potential on the water free-surface,
[71, [11, and [61.

prope:KreHM’%a::x:!;!::y=:y:o
can be expanded in a Fourier serms in
the angulir coordinate 91 (see (39) and
Figure 9).

.
+

$i(R)=@i (x1,rl,t31)=Re ~ $iv(xL,r1)eiv61
“=Q

with xl=Kr~ by (46).
The hul1-induced velocity is,

(52)

(53)

Therefore, by (52),

.
;i(il)= Re ~ ~[$iv(xl, rl)eive~l

“=11

Applying (53) gives,

(54)

With 61=8+% +CIfrom (35) and Figure 7,

the Fourier series of vi from (38) can
be written,

‘.
;i(fil)=Re ~ viv(rl, xl)eivel (55)

“=Q

Comparison of (54) and (55) implies,

+ a+iv
-— , +*:, + :,$,”:,

‘iv– xl (56)

With ~ and ~p in (5o) given as (34) and
(35), ~he dot product is clear; it is
only necessary to determine the @iv.
(52) implies,

~V(xlrrl)=~ ~“$i(xlrrlel)e-i”’l “I
el=-n

(57)

,.

{

;
U=Q

where co =
lV>O

++-
Let R=R1 in (51) and substitute into
(57)

oiv(xlrrl)

-ns*(iio)

Interchanging

‘iv(xl’rl)

tbe order of integration,

.
/“ ,,

—

-%q

—— __

\

~

“O’’O’8.) \ 0. .a

s.(i&) 7?=O ‘ \ ‘-~
fio

ke.

\

“ ;
‘<r’ “,(t)

4
/%,’l,@l \

P(i?ll

Figure 9. Hull/Propeller Coordinates
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Define,

e l=-T
(58)

which is just the vth Fourier coeffi-
cient of G. Then,

~iv(xlrl)=J Jai(~O)G(xl,rl’~~)dS

s* (6.)
(59)

Now, considering (58), let ~. be,

where (Xo,ro,O.) is a point on the
“double hull” surface in the coordinate

~~~~ ~~d a~ ‘~e PrOPe~~~r hub (seeG ( I;~ ) in this coordinate
system can be written,

G(R1:RO)=

1 1
-G

~%-xo) ‘+=12+r0*-2rlro ‘Os (~1-eo)
This function has the following repre-
sentation in terms of the Legendre
function of the second kind of half-
integer order,

11
G(R1:RO) = ‘4T ~_.— .

‘1=0

1

2+r-2+r 2
(X1-xo) o ~im(.gl-eo)

“; Qm-1/2~.-m Zrl=o
(60)

Substitute (60) into (58) and inter-
change the order of summation and
integration

(61) therefore becomes,

1(X1-xo)Z+rlz+roz

e-=veOQv-1,2 (62)
~rl=o

(62) substituted into (59), and
with this result substituted into (56),
gives the @iv and the viv for use in
(50). The hull source density, Oi [~)
and the propeller dipole strength
harmonics, om(rl, a) and vm(rl, a) , only
remain to be specified.

HIGH FREQUENCY APPROX1WATION

One further approximation with
regard to (50) will be valid in most
cases. Reconsider (49),

m inN~(xl-E)+
Viv (rl)=~

[e
viv(rl, E)dE

C=xl (rl) (49)

If the oscillating+exponential varies
more rapidly than Viv in E, then the
argument of the exponent ial+can be
considered as “large, ‘Sand Viv can be
expanded in an asymptotic serIes.
Assuming this to be+the case, the asymp-
totic expansion of Viv is obtained from
(49) by integration by parts in <. Inte-
grating by parts once gives,

For the conditions stated, the remaining
inte.aral term is small. Then, to one
term;

+ (rl)= & vi”

since x~.x~(r~)=Kr~ by (46).
Now before substituting back into

Fin, (50), define,

i?m= PinN,uTm<p + L ~
mp

(63)

With Tm and ~ defined by (47) and (48),
(50) may now be written,

‘in=; ]’[f$.N-.-vipinNnQnNnv$iue
,.

‘l=rh
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+ .~n~gv-nN-;i.-pinNwQv_ nN$ivei’at)

1+j.‘zv+nN”;iv-pinN~Q”+nN$ive-i”at) drl

(64)

(64) will be the preferred form for most
all computations of Fin.

NUMERICAL ANALYSIS

The potential and velocity in-
duced by the bare hull in the propeller
disk are given by (59) and (56) as,

~ixlrl)=J Jai(~O)G(xlrl;~o)ds (59)
s* (Q

~iv(xl,rl)=J jai(fio)~G”(xlr,:~o)ds

S* (Ro) (65)

where, by (53),

~Gv=~ ~ +% ~=+$ G“~e (66)
1 1 1

Gv is given by (62),

G“(x L*rl; xOtrO# 80)

‘D 1. -— — e-iv00Qv_l,2 (z)
2“2 ~

(62)

with,
(X1-xo)j+rl’+rol

z=
Z=lro

Refer to Figure 9 for notation. The
derivatives in (66) are,

aG
~= G’”(z) @-

1 axl

aG”
arl—= G’”(z) ~- ~Gv(z)

1 1

where,

so 1 -iv80Q,G’u(z)=-W7e
“-1/2 (2) (6’)

‘1=0

and

v-;
Q;_l/2 (Z)=~[ZQv_1,2 (Z)-Q”_3/2 (z) 1

(68)

Surface Integration

The double integrals, (59) and
(65], must be evaluated over the hull
surface. The integral for the potential,
(59), Will be explicitly considered in
the following, but (65) can be handled
identically.

Referring to Fiq”re 9, (59) can be
written,

= T l;i(xOaO)Gv(xl, rlfxOaO)daOdxO
xo=-Lf ao=O

(69)

where

.i(xoao)=,i(xorflo)pox

(70)

pO and GO are cylindrical cOOrdinates
in the hull system located at the inter-
section of th~ design waterline and the
vertical centerplane. On the hull sur-
face,

P. = Po(xo, ao)

For the hull system located in the same
vertical plane with the propeller, the
limits -Lf and La cm the X. integral in
(69) correspond to the forward and aft
ends of the bull waterplane, respec-
tively.

Over the submerged surface of typi-
cal ship hulls the derivative apo/axo in
(70) will be small relative to 1, even
near tbe ends. Therefore, (70) can be
approximated by,

Ki(xo, Q =Oi [Xo,clo)PO % (71)

(69) then can be written,

$iv (xl,rl) =

where, in (72) the inner line integral
is around the hull section contour, C [xo),
at the axial station Xo; i is length along
tbe contour, Figure 10.

The approximation, (71), allows
the double integration in (72) to be
conveniently performed. With aOo/axo
discarded in (71) the contour integrals
over the hull sections are independent
of one another. This independence of
tbe hull sections furthermore suggests
a “strip-wise” determination of the
source densities Di, which is consistent
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Figure 10. Hull Section Contour

with the “slenderness,, assumption of
(71). Determination of the ai will be
considered further on.

Denote the contour integral in (72)
as 1“,

(73) wi11 be executed using some quad-
rature rule; the trapezoidal rule has
been found to be convenient,

where IV=lV(X ,rl;xon)
M in (74? is t~e total nutier of axial
stations over the ship length. Con-
sidering IX ,

J
Inv= oin(L)Gv (xl,rl;xon, l.)dE (75)

Cn

Cn denotes the contour of the hull sec-
tion at station n.

Referring to Figure 10, the contour
Cn is that of tbe “double-hull,, by
definition of S* (Ro) in (51). The
contour is therefore doubly symmetric
with respect to the waterplane and the
vertical centerplane. Divide the con-
tour into 4J segments each of length
A9. j , arranged with J segments per quad-
rant such that the double symmetry is
retained in the segmented contour. De-
noting r., and 00. as the coordinates
to the midpoint o~ the jth segment in
the propeller system, (75) can be
evaluated approximately by the rectangle
rule as,

Inv= ~~Uinj%(xl,rl,xon,roj ,eoj)A8j

(76)

I-24

Ginj is the source density at the mid-
point of the jth seqment.

In order to sa~isfy the condition
of zero potential on the water surface,
a negative image source density is
required on the image h“l1. The hull
surface forces of primary interest are
the vertical and athwartship, i=3 and 2,
respectively. For unit vertical velo-
city of the hull (i=3) the source density
will be symmetria about the vertical
centerpl.ane; for unit athwartship “elo-
city the source density will be asym-
metric about the vertical centerplane.
Exploiting these symmetry considerations,
(76) can be written,

Inv = j~l’’inj[Gv(xl,rl;xon,roj #eoj)

- Gv (X1,1_l:Xon, KoJ+3 ,eoJ+j )
(77)

e~ Gv(xl, rl:xon, ro2J+j ‘ 02J+l)

t GV(X1, rl; Xon, ro3J+j te03 J+j)]A’j

where for the + in (77), the upper sign
corresponds to vertical analysis and the
lower sign corresponds to athwart ship
analysis. The Gv in (77) is, from (62),

GV(X1, rl:Xon, roi, Eoi) =

1
-ijeoj

=-2% ~ e Qv-1/2(znj) (78)

with
(xl-xOn)‘+rlz+ro. ‘

‘nj = 2rr.
1 0]

(78), substituted into (77), along with
the ~inj on the l/4-contour, with the
result substituted into (74) , gives the
vth ha~Orii~ of the hull induced poten-
tial at propeller radius rI. X~=Kr~ by
(46) .

The identical scheye can be used to
evaluate the velocity, viv, from (65);

:k $Gv from (66),
“ in (77) are merely replaced by

(67), and (68).
With regard to the actual computa-

tion, given the Oinj , M in (74) will
normally be on the order of 50 for con-
vergent results, and J in (77) should
seldom need be larger than 10. The 50
M stations should be concentrated in way
of the propeller since $iv and viv
require evaluation in the propeller
plane. Distributions typical of that
shown on Fiqure 11 have been used,
although representation of the forebody
is actually unnecessary.

With 50 axial stations and 10
segments per quadrant per axial station,
around 2,000 GV evaluations axe required
for evaluating the potential harmonic at
one propeller radius. For a maxinuxn of
9 propeller radii used in the force cal-
culation by (64), approxin’at:’y20’0001---
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evaluations of (78) are required. For
single -screw ships, tbe number of Fe.
quired Qv_~/~ evaluations in (78) will
be one-half of the above value since,
with the symmetry, only two different
znj are involved in (77).

Computation of Legendre Functions

Tbe Legendre function of the second

kind, Of half-integer order, Qv-I/2 (z),
has the following series representations
for small and large values of the argu-
ment z, [8],

Z+l ,For smal

Qv_1,2 (Z) =

~ av, (z-l)s+
s= 0

with

.
tn(z-1)] ~ b (Z-1)5 (79)

~=o Vs

“2_>_,~(~+1)

b 4
Us+l = bvs 2(s+1)2

U’-: -s(s+l)

avs+l = =Vs 2(5+1) 2

2(V2-+)+(S+l)
- bv~

2(s+1)3

and

b 1
Vo ‘ -=2

For large z>>l,

- r2(v+S+l/2)
Q.wz(z)=+)o S!(2”+S)! [av+s+l/2

acmr.acy for l<z<’=and for u=O to 11
with the n“rnber of terms in neither
series, (79) cm (80), exceeding 15.

Evaluation of Hull. Surface Source Density

The underwater portion of a typical
ship hull can be characterized as slender,
implying that rates of change of surface
geometry in the axial direction are
small. For such a slender body in
lateral motion the 3-dimensional source
density, Oi (~), required in (59) and
(65) can be approximated by a an axial
distrib”ticm of 2-dimensional ‘,strip,s
source densities evaluated on hull sec-
tion omtOu*S. This is consistent with
the reduction of (69) to (72).

The one-dimensional integral eq”a-
tion “hich determines the source density
on the hull contour at X. is,

‘“(X2 ‘p) + ~ ~ ‘i(xOQ)fi(p) “
ii.fi(P).~

c (Xo)

- ~ 9m(P,Q) d! (81)

~ is the $ontou$ outward normal, Figure
10. For j and k being unit vectors in
the y and z directions, re.specti”ely, on
Figure 10,

;3=2 for “ertical analysis and

{

.
j on hull contour proper

;2= *
-1 on image hull contour

\
for athwartship analysis. The P and Q
in (81) denote ,,field point” and ,,sou=ce
point, “ respectively, on the contour and
(P,Q) denotes the Descartes distance
between points P and Q on the contour.

Equation (81) can be solved fOr Oi
by representing the contour approximately
by straight line se’qme”ts, “ith the
source density taken as a constant o“er
each line segment. This is the approach

ernPIOYed by Frank, [91 , fm a 2-dimen-
sxonal body oscillating in a free-
surface, as well as by Hess and Smith,
[101 , for 3-dimensional infinite fluid
problems, where patches of constant
source density are used.

As explained in the development of
(77), symmetry implies that the SOUIKe

density o“er only one quadrant of the
complete contour of Figure 10 is unique;
tbe source density distributions corre-
sponding to the remaining three quadxants
are positi”e and negative reflections of
the first, the sign depending on the
direction of motion (i=2 or 3).

Exploiting the symmetry conditions
similarly to (77), (81) can be written
as the system of J simultaneous equa-
tions,

(80) <

It has been found that the two
zi.hj=~+ ; u,above asymptotic forms can be overlapped j=l,J (82)

to compute Qv-I/z (z) to three place
~=1 mk ‘jk

k+j
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:-:ere,the 114-contour has been segmented
,nto J segments as shown on Figure 12.
Oinj in (82) corresponds to the constant
source density of segment j on contour

cn, which is Precisely the data required

7
YJll

,’ (no)co)J+~

11
(no#co)J

(Y#z)j (no#<o)j+l

/--% -

(llo,<~)j

1 (llo<co)z
.

z,<

Figure 12. Contour Geometry

@ the potential evaluation by (77).
Nj is (82) is,

fij = cosf3jk + sin Bj j

where Bj is tbe slope of the j segment
on Figure 12,

c0s6j =

sin6j =

Alj =

rlo.+I-no

Aij (83)

‘oj-<oj+l

AA
1

4(rloj+1- ~3+1-<oj)2noj)z+(<

in (82) is,
Hjk

H, =C. :Cj ,2J+k~cj ,~J+k
ok ],k-cj, J+k

where the upper sign corresponds to
vertical analysis and the lower sign
corresponds to athwartship analysis,
just as in (77).

with,

Pj (P.)= /(Yj-m). +(zj-L)2

PI (i) being the distance bet”een the
nudpoxnt of the jth segment and the
point (n,C) on the kth segment. The
qradient is taken with respect to
lYjr Z.).

~84) can be integrated exactly.
The integration is most readily accom-
plished in a coordinate system located
in the kth element as shown on Figure
13. Write C,k as

.;
Cjk = ‘jovjk (85)

where ~jk is the VeloCitY induced at the

—yfn
r

jl

[

I itj
.!

Pjk

‘4 ,,n’
,$

k –. ~ _@k

z’

Figure 13. Contour Coordinate Systems

midpoint of the jth element by the kth
element. Write +‘jk as’

;. c+ ”,;
]k = ‘jk ,k

with

Wjk = “’ jRcos8k-”jksin6k

(86)

‘jk
= w’jksin6 +v’ c0s6kk jk

w Vjk and v’ jk are the velocity components
at j in the local coordinate system of k,
Figure 13; bk is given by (83).

In the local system,

W’=g: , “, . ~’
ay’

where,

‘l;k = +AP’in~(yj’-’’’)’+z’j2‘n’ -
n‘=-ALk/2

and,

_ Yi-yk
Yj’ –—c0s6k ‘ “j = ~ ~~

I
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Then, by exact integration,

‘jk=

1

‘ik/2

+ ~gn(n,-y;)sgn(z! )tan-’~1 1.;1

“=-AL k/2

(87)

and

,=- * in[(y;-n!) z+z!z ‘kk/2
v jk 3’

n ‘=-AEk/2

If the distance between elements
is sufficiently large Pj (1) can be

approximated by Pjk=/(Yj-Yk) Z+(z .-z )2
~k

so that (84) becomes,

c, s&itj. ?j h p, At
]k ]k k

(88)

Use of (88) is equivalent to placing a
point source of strength Q=oinkALk at
the midpoint of the kth line seqment,
or simply evaluating the integral (81),
in terms of the unknown Oin, by the
rectangle rule.

It has been found that (88) should
not be used “hen Pjk<z . 5Akk; fOr

elements in close proximity the exact
integration by way of (85), (86), and
[87) should be used.

(82) represents a system of J
simultaneous linear equations in J

unknOwn ‘inj . This system must be
solved for n=l to M stations along the
hull. For J=1O and M=50 as proposed in
the discussion of (77) and (78), the
approximation to the complete hull
surface source density required in
computing the hull induced potential by
[74) therefore requires sol”ing 50
independent sets of 10x1O systems of
simultaneous linear equations.
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