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ABSTRACT
A fgrmula previou§ly developed for F(z) complex potential of flat
gaifulatlng propeller~induced vibratory strip
u surface forces is reorganized for ; th
improved computational efficiency. The Fin ETEEiE??e_ﬁfo,, E%EE?_fate
reorganized formula is simplified to force in directien i oo
several alternative forms which are more - ¥ Ofce in direction lth
readily usable by the designer. Speci- FoontFopn = nN+l components of n i cal
fically, for non-cavitating conditions, von® vbn géggﬁngaggrggrm°nlc vertica
a simple relation is derived by which F3g,F3gc amplitiddes of cavitating
thelvertlcgl hull surface force can be and non-cavitating vertical
estimated if the propeller bearing forces hull surface forces
are known. Data which pertains to the . I : '
stern surface shape is required in the G ;nf1:+te fluid Green's
fqrmula; this data for sterns represen- unction
ting the two characteristically different Gy vth harmonic of G in pro-
types 1s included in the paper. Two peller disk
simplified formulas for estimation of :
hull surface forces associated with Hin a@plltude oflba;e hull
cavitation are alsc derived. The V}biatory velocity poten-
accuracy of the several simplified for- t1a
mula p;oposed is judged on the basis of H.k kernel of hull contour
more rigorous computations performed on J source density equations
four different ships. , . .. .
i subscript defining direc-
NOMENCLATURE tion of excitation force:
also v=1
Ag = expanded area of propeller kS unit vector in axial direc-
Ap = mth harmonic of time vari- tion
ation of cavity cross-sec- v hull section contour inte-
tional area 1
gra
amsrbms = coefficients in Legendre j index on hull secticon con-
functieon expansion tour line segments
Ay = propeller disk area J number of hull section con-
B(r,,a) = surface area of propeller tour line segments per
blade guadrant
C(xg) = contour of hull section at k index on hull section con-
d station xe tour contreol points; also
. L ) propeller blade index
c.k = influence coefficient in .
J hull surface source den- Ky function related to hull
sity computation surface source distribution
>
D = propeller diameter Kn vector representing mth
. harmonic propeller blade
d = local draft of hull in loading and thickness
vertical plane of propeller . , ..
+ > . . . L half-width of infinite
€y reyg = unit vectors in radial and strip; also semi-beam of
tangential directions in hull in propeller plane;
propeller disk also length along propeller
EXT = maximum angular extent of blade section; also length

propeller blade cavitation

along hull section contour
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distances to forward and
aft ends of ship in hull
coordinate system

vector representing gth
propeller blade loading
harmonic

propeller section leading
edge

subscript denoting harmonic
order; also abbreviation
for meters

over length of hull

blade rate harmonic order;
also index on hull stations

unit normal vector on hull
surface

unit normal vector on pro-
peller blade pitch surface

number of propeller blades

= unit normal on hull section

segmented contour

control point in hull sur-
face source density compu-
tation

Propeller pitch distribu-
tion

propeller blade surfaces

propeller blade source
distribution

source point in hull sur-
face source density compu-
tation

= Legendre function of 1/2-

integer order

mth harmonie¢c of blade
cavity line scurce strength

radius to propeller blade
point in propeller coor-
dinate system

radius to hull surface
point in propeller coor-
dinate system

radius to jth hull contour
segment in propeller system

= propeller hub radius

propeller tip radius

denotes "real part" of
complex number

position vector to propel -
ler blade peint

position vector te hull
surface point

Position vector to blade
trailing edge

position vector to point
in sgpace

surface of "double" hull
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l"Sr:opeller system

= hull contour cocrdinates in

propeller blade operator
used in formula reorgani-
zation

blade skew angle

subscript used in Legendre
function expansions

time

propeller blade trailing
edge

nth plade rate harmonic of
alternating thrust

vector representing mth
propeller blade thickness
harmonic

ship forward speed

mean tangential inflow
velocity to propeller bLlade
section

vth harmonic of hull induced
velocity field in propeller
disk

=+ .
= components of vy, in

2-dimensional hull induced
velocity on hull section

= .
components of vk in hull
coordinate system

components of ij in con-
tour element codrdinate
system

= hull induced velocity har-

monics at .7 propeller
radius

slipstream integral invol-
ving hull-induced velocity

axial coordinate to pro-
peller point in propeller
system

axial coordinate to hull
point in propeller system;
also distance between pPro-
peller plane and waterline
ending

axial coordinate to nth
hull station

lateral distance between
hull and propeller vertical
centerplanes

hull contour coordinates

element system
argument of Legendre func-
tion

vertical distance hetween -
water surface and propeller
horizontal centerplane

propeller blade local cylin-
drical coordinate

blade projected leading
edge angle
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Oy = blade projected trailing ¢§B = hull-induced potential harmonic
edge angle at outer propeller radius

oo = cylindrical coordinate to w = angular velocity of propeller
hull surface point in hull
system HULL SURFACE FORCE FORMULA

o = unit wvector defining direc-

In reference [1],! a methed was
proposed for calculating the unsteady
B = an integer propeller-induced forces acting on the
surface of a ship stern. Formula (7) of

tion of excitation force

B(r,) = blade section geometric pitch s
1 angle that paper is:
m/Nuw
By = slope of kth hull contour N —inNwt > 3
segment Fin = 7;[ dt e JJGS[%U(Rl)ﬁ?;
r = Gamma function -1/ Nw P(ﬁl) (1)
Ay = length of jtB hull section -
p! contour segment n(Ry) inn%(xl—ﬁ) 3
e _1/2 wv=D + —TT——J dte e Hin(ﬁl)
o - 1 v>0 Fex P _
n:. = dummy variables for y and z 1
n' = dummy variables for y' in where F;i, is the amplitude of the total
hull contour element system unsteady hull sgrface force in direction
= i - i and at the nth harmonic of propeller
G| ziggiar position of propeller blade rate frequency.
Ag explained in [1], the right-hand
fe = propeller position angle at side of equation (1} involves an inte-
which cavitation growth at gration over the propeller blades and
r, commences slipstream. All of the variables on the
b = propeller position angle at right-hand side, except the last cne,

Hin+ are related to propeller blade

which cavitation collapse at geometry or loading. The hull is intro-

r 1 commences

‘ duced in equatign (1) through the funec-
Bt = propeller position angle at tion Hip. Hin(%)is the amplitude of the
which cavitation collapse at unsteady fluid velocity potential resul-

ry is completed. ting from the bare ship hull traveling

backwards with speed U across the water

= propeller blade rake angle surface and oscillating with unit ampli-

u = propeller blade dipole tude in the direction i, and at the fre-
strength related to lift quency harmonic n, of the excitation
= mth ; force of interest, Fjip.
Hm ™ harmonic of u This formula is exact within the
v = subscript denoting harmonic linear ideal fluid theory for given
order propeller characteristics. The hull and
= . water surface boundary conditions will
£ dummy variable for *1 be satisfied through the Hjpn function by

= water density solving the hydrodynamics problem de-

scribed in the previous paragraph.
Equation (1) is not completely

general, however. The dipole represen-

Po = radial coordinate to hull
point in hull system

Pik = distance between control tation of the propeller thickness effect,

J point and source point on c(ﬁl) in (1}, does not allow completely
hull section contour for the existence of propeller blade

. = propeller blade dipole cavitation, as explained in the Appendix.

Furthermore, the triple and quad-
ruple integrals in (1) imply a somewhat
Cog = hull surface source density laborious computation for a general ship

strength related to thickness

- th R hull if (1) is executed by purely numeri-
im m harmonic if o cal methods. As shown in the Appendix,
Tp = unit vector tangent to pro- the first integral in (1) can be per-
peller blade section pitch formed analytically, thus reducing the
line computaticnal effort.
= _ . . The generalized and reorganized
T gzgg:giagizgtz thickness at form of (l), which is developed in the N
1 Appendix, is the following:
¢i = hull induced potential field
in propeller disk
biy vt harmonic of ¢;

'Numbers in brackets denote references
at end of text. j
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Fin by (2) invelves an integration over

the radius of one propeller blade of

sums of products of functions which
pertain entirely to the propeller, Ky
and Qp, with functions which pertain
entirely to the bare hull, viy and ¢ivy.

Fiviry) and ¢ivi{ry) in (2} are the
wER harmonics of the fluid velocity and
fluid potential function, respectively,
at radius rj in the propeller disk due
to the bare hull moving with unit velo-
city in the direction, i, of the exci-
tation force of interest The Fourier
series of which wviy and ¢iv are compo-
nents is in the angular coordinate in the
propeller disk. viy and ¢iy can be com-
puted for a given hull as described in
the Appendix.

Omiry) in (2} is the mth harmonic
of the first time derivative of the blade
cross-sectional area at radius rj. The
blade is considered as a "pseudo-blade"
composed of the material blade plus any
attached cavitation. Therefore, the
blade cross-sectional area will be time
dependent only where unsteady cavitation
exists; Q in (2) will be zero for a non-
cavitating propeller.

The Kpl(ry) in (2)
E =

, > -
- pinNwTym T.. + L., n,.
i Ak E} L t’

is,

(3)
T (r1) and n (ry1) in (3} are unit vectors
ag the propegler blade section at radius
r{. T is the unit tangent wvector to the
blade pitch line at rj] and n, is the unit
normal vector to the blade pitch surface
at radius rj; refer to Figure 8 of the

Appendix. The Ty and Ly in (3) are,
o
t
Thn-v (1)1 = 1 J OhN v(rl,q) eiva
= - da
{;nn_v(rl) COSB_ Mo Ny (T r2) “
=0,
Xr
Ty-nn(r1)} . "1 J“t Oy-nN (r1,0) IEAL
Ly-nN (ry) cosg Wy-nN (X1, a)
a=a,

rTnJ.nM (rl_ﬂ rl fat rG\.;.m (1 ,Oi_h —ivg .
L 4 BA = — Vol 4 da

l?v+nN(r1[j cosE | Uv+nN(r1ruy
Q:Cll

{4)

The Tp and Ly functions are integrals
over the blade section at rj invelving
the mth harmonics of the strengths of
the blade tangential and normal dipoles,
o and U from (1) respectively. op
represents blade thickness effects and
Um represents blade lift. The relation-
ship between the op in (4) and the Qp

in (2) is described in the Appendix.
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AN EXACT ANALYTICAL EVALUATION

Egquation {2) will require numerical
evaluation for any case which is at all
general. However, for the very simple
case of a large flat plate above the
propeller, an analytic evaluation of {2)
is both easy and enlightening.

Consider the configuration shown on
Figure 1. The propeller axis lies at a
distance z, beneath and parallel to a
strip whose length is infinite and whose
width is 22. The vertical force on the
strip will be evaluated in the limit of
large L/z4.

s

Figure 1. Wide Flat Strip

The fluid velocity and potential
function required in (2) for vertical
force analysis (i=3) is that correspond-
ing to vertical translation of the strip
with unit downward velccity. The velo-
city potential, for z, negative (Figure

1), is,
¢3 = Rg FI(T) (5)
with
F(z) = i(g + /32-2%) (6}
and [ = y + iz
The velocity wvector is,
vy = U4y = V3y§ vy R
with components,
(7)

V., =RF'(Z), v, =-ImF' (L)
3y € 3z

where F'(7) is obtained from (6) by
differentiation,

F'(z} = (8)

5 s

i [1+?¢?%??}

The field points ¢ in {6}, (7}, and (8)
correspond to points in the propeller
disk centered at r=-zpi. For R>>|z],
(6) and (8) beccme,

lim F(g) = =%
t+large

lim F'{z) =1
L+large
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Therefore, in the limiting case of the
infinite flat plate, for which %+=, the
fluid potential and velocities over the
propeller disk are,
>

¢ = =%, vy =-K (9)
In the propeller coordinate system,
Figure 1,
kK = cose gr - sin® ge (10)
;3 and ¢3, are required in (2). By
de%initiOn,

m
-+ € ive

o J vy (8)e™t

V3y = % de {11)

-7
with
w0

€ £

o v=0

N

Combining (9}, (10), and (11),

™ ™
€ -1 £ -i
Vay=—-22, [cosse 1V038+-92 Tsinoe™1V0qp
3v T ™ e

-1 -

Integrating,

> 0 v#L
v = -+ . _ (12)
3v {—(er+1ee) v=1
Likewise, for b3y
c T
3y = —1?[¢3(e)e
-

—1v9de

Substituting (9},

- 0
$3y = {}n

Substitute (12) and (13) into {2},

V#£O

v=0 (13)

> - .
[(Kpn-1*V31—PinNwQny ¢44)
F17n

>
- — -
+ (Kl+nN'v3l—DinNanN ¢30)]drl (14)
The effects of blade cavitation are re-
presented in (14) both in the source
strength harmonics, Quy, and in the <
component of the Ky vectors by (3) and
(4). In fact, the Ty coefficients of
T, in (3) will involve only cavitation
effects at m=nN+1 and m=nN-1, (14},
since the thickness of the material blade
is time independent and therefore con-
tributes only to the m=0 term of Ty
Then, considering (12) and (13) and the
fact that % is large, the cavitation
effects will be dominated by the source
terms in (14). ({14} can therefore be

B

T

separated into cavitating (C) and non-
cavitating (NC) components as,

Tt >
NC_N > > > .3
Fin ‘EJ(LnN—lnp V31 iny+1tpt V3 dry  (15)
F15%h
and
Zrt
C__ipnN‘w =
F3n~ "‘7?‘“J QN (930730197, (16)
r,=ry,
Considering first the cavitating compo-
nent, (16},
¢30 = ¢30 = -4 by (13).
Therefore,
Tt
c _ . 2
F,. = ipnN wEJ QnN(rl)dr1 (17
*17Fn

But as previously stated, and as shown in
the Appendix, Qn is just the mth harmonic
of the 1lst time derivative of the cavity
cross-sectional area at ry. The integral
in {17) is therefore the mth blade-rate
harmonic of the first time derivative of
the total cavity volume on one blade,

Ty Tt
VnNEJAnN(rl)drl = JQnN(rl)drl
rl=rh r1=rh

(17) is therefore,

lad

= i 2,0
Finp = ipenN wlvnN (18)

{18) implies that the cavitation induced
vertical force on the infinite strip,
whose width, 2%, is large compared to the
propeller submergence, 2z, (Figure 1), is
simply proportional to the width of the
strip.

Consider pow the non-cavitating
force, (15). Dy from the Appendix, is,

> 2wr11-P§9

n —
P VanZr 2+ p?

where P is the blade geometric pitch at
ry. Blade rake has bgen ignored in the
above expression for n,.

Defining B(ry)_ as the geometric
piteh angle at ry, np can be written,

> + . -+

np = cosf 1 - sinB &g .
Then, with v3) defined by (12), (15)
becomes

Lt

NC_iN _ .

F3n _TTJ(LnN-l Loney) Sinf dry
17Th




Inserting the Ly functions from (4),

. ry Gt
F3EC=521—Q-J ltanBJ “nN—le dcxdrl
F Sry 0=0p (19)
Tt 2t .
—%?!rltanBjunN+le-l“dadr1

r1=rh d’ﬂk
But (19} is just the negative of the nth
blade rate harmonic of the vertical pro-
peller bearing force due to propeller
blade 1lift, [2]. The result, (19), is
therefore in agreement with Breslin's
condition, [3), that the net vertical
forece (bearing force plus surface force)
corresponding to a propeller operating
heneath an infinite flat plate is zero.
Equation (18) suggests on the other
hand, however, that Breslin's condition
does not hold for a cavitating propeller.
By (18), the vertical cavity induced
force on the infinite flat plate is it~
gelf infinite. But it is known that
while very large surface forces are
associated with moderate sheet cavita-
tion, there is nc corresponding large
effect on propeller bearing forces.
This seeming inconsistency was very
adequately explained by the late Pro-
fessor F.M. Lewis in a written discussion
of reference [1]:

By the Breslin copdition it is
evident that the total (net,
non-cavitating) force will be
the momentum force of the verti-
cal motion of the free water
surface outside the ship. If
the wave patterns on the free
surface produced by the pro-
peller could be determined, the
total force could be calculated
fxom this.

Por cavitating conditions,
either steady or intermittent,
the problem becomes enormously
more difficult. The Breslin
condition does not hold because
momentum forces are produced
by motion of the surface of the
cavities. T suspect that the
wertical force will be greatly
increased.

2B MMYROXIMATE EVALUATION

Pormalas (18) and (19) of the pre-
vions section, which apply to the verti-
=al foxce on an infinitely long strip
whoae width is large compared to the
Popeller dimensions, are simple and
cwwenient. However, even though the
wide strip can be physically related to
& w8e ship stern in a limiting sense,
19 amd {19) should not be expected to
feodoce very realistic force estimates
i amplied to a typical ship.

M alternative is to compute (2}
2:rectly, using the procedures described

in the Appendix. However, an approximate
reduction of (2), similar to that per-
formed for the strip in the previous
section, yet not so extreme, is possible.
The velocity wvector in (2), in the
propeller coordinate system, is written,

+* > + -+ - -+
Viv Vivxl Vivr®r ¥ Vivg®e
with
_ iw
Vivg T Ty ¢iv

For the flat plate, the Fourier series
in v, of which ¥iy and ¢iv are compo-
nents, are composed of single terms, as
shown by (12) and {13). For a general
Shlp stern, instead of a flat plate,
Fiy and ¢iy will, in general, be non-
zero for all v. However, for a ship
stern which is “flat-plate like," the
Fourier series on Viv and ¢iv w111 con-
verge rapidly from the leading terms.
For the vertical case, 1=3, the leading
terms in the series are v—O for viyx.
V3vr' and ¢3y, and v=1 for wvi3yg, Since
g30. For a ship whose stern is
cﬁaracterlzed as broad and flat, these
leading terms will be the dominant terms.
If only these leading terms are carried

in (2}, (2) reduces to,
ry
F3n=§fiﬁnN'V30x 1+ Roy-1°v31080
1%Th

. (20)
~pinNwOnNd30 + Kpn-Vigx 1

-+ - - ) -
+K1+nN'V319€e'plnNWQnN¢30)drl

The radial velocity component has not
been carried in (20) since the Ky, vectors
do not contain a radial component.

As in the case of the flat plate,
the dipole terms in the Ky in {(20) per-
taining to blade thickness are associated
entirely with unsteady cavitation at
m=nN-1l, nN, and nN+l. The force due to
cavitation should, as in the case of the
plate, be dominated by the source term,
Qn in {20), when the ship stern is breoad
and flat. Therefore, representing the
cavitation effects entirely by the source
terms, the vertical force separates inta
cavitation and non-cavitation parts as,

>
V30x(np L)drl

It

-+ +
J LnN-lv319t“p'e6)drl
ry=ry

N (21)

e
N - >
3 I Lone1Vaye (Mpregldry
r1=rh

+



and
It
F.C = —pinN%0| O .. 6., dr
3n P aN %30 973 (22)
I17%h
Advantage has been taken of the fact in
{21) and (22) that both v3gyx and ¢3p are
pure real so that
Viox T Viox
and
P30 = 39
It has been cobserved that the poten-
tial and velocity components in {21) and
(22) do not vary greatly over the pro-

peller radius. Therefore, replace these
fugctions by some fherage radial values:

%* .
Viox’ V319’ and ¢30 Typically,
*
iox = Vaox U | |
1 .7rt
: (ry)
v = v r
316 31671 .
rl—.7rt
o * = 434 (ry)
30 rl>.7rt

The suggestion that the potential be
evaluated at a larger radius than the
velocities is because cavitation, with
which ¢3¢0 is associated, is typically
distributed more toward the blade tip.
However, since these functions usually
vary slowly with radius, the selection
criterion should not be critical.

(21 and+(22) then become, with
np=cossz-sinsee,

NC *
Fa, = NJ LnN cosB dr1 V30x
F17Th
‘rt -
LT sinB dr,| v.. (23)
2 TnN-1 1 316 e
T1=T) ]
" e -
- |N L sinf dr v ¥
2} “nN+1 1 319
F17h i
and
[~ r; T
o 2 * *
F3n =|-pinN w{ QnN drl ¢30
_ rl=rh
or
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Fal = -pnN2w¥._ ., 24)
3n T TPRNTW¥ %30 (
F3g by (24) bears a strong resemblance
to (18), which was developed for the
wide strip of, width 28. (24) reduces
to (18) if ¢3p is replaced by -L. The

definition of & can be generalized to

apply to a ship as, say, the offset to
the design waterline at a station
corresponding to the vertical plane of
the propeller disk. With this defini-
tion, |¢39| should always be less than
2.

Formula (24) is equivalent to the
result obtained by Breslin in [4] when
specialized to a flat plate of infinite
length, but whose width, compared to
the propeller dimensions, is not neces-
sarily large. 1In that case, referring
to Figure 1,

* ——
¢30 = -(/2024.12_ ZO)

which can be obtained from (5) and (8)
by setting r=-izy. This is the same
as Breslin's potential Ap in [4}, ex-
cluding an erroneous factor of 2. An
improvement over (l1l83) for a flat plate
of finite width should therefore be,

Fao = oinN?w®_ (VZgT¥LZ - z4) (18a)

Turning to the non-cavitating
force, (23), and substituting the Ly
from (4}, -

o NC_

*
3n J Hnndadry | Vioy

1 *h £ i

r a

t t
+ -g J tanBJ

io
BoN-1© dadr

*
1| V31e

+
1

The second and third bracketed terms in
(25) can be related to the vertical
propeller bearing force by comparison
with (19). The vertical flat plate
force, (19), has been identified as the
negative of the propeller vertical
bearing force. Denoting the amplitude
of the nth plade rate harmonic of the
propeller vertical bearing force as,

Fvbn'
- +
+ Fvbn

where the two terms are the contribu-
tions of the nN-1 and nN+1 blade pres-
sure, or wake, harmonics, respectively.




o

- __in (€ t ia
Fobon™ 7 JrltanBJ“nN-le dodr;
rl=rh ﬂ-=0‘»2

(26)
r 1]
Ty t .
+ _1N -L10
Fvbn_'f_JrltanBJunN+le dadr,
r1=rh U'_-(X.JL

Recognizing additionally that the first

bracketed term in (25) is just the nega-
tive of the amplitude of the nth plade-

rate harmonic of the alternating thrust,
T,

%t

Tt
Th = =N I'rl [“nN da drl‘
ri=ry, a=o,

(25) can be written,
NC

* + - *
F3n ==Tn v30x -

- %
vaan3le+vabnv3le
27

If the alternating thrust and vertical
bearing force for a propeller operating
in a specified ship wake have been es-
timated, then (27) provides a means of
estimating the corresponding non-cavita-
ting vertical hull surface force, if the
velocity harmonics in (27) corresponding
to the particular bare-hull can be esti~
mated.

Note that (27) degenerates to (19)
in the case of an infinite flat plate.
Foy the infinite flat plate v3gy,=0 and
v31e=—1i, by (12).
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GEOMETRIC DAT?
Xo/%  1.047 D/L .450

Yo/ b .457 t/D .127
2o/ .457
a/4 .219

1 D CORRESPONDING TO PROP 1, TABLE I

Figure 2.

EVALUATION OF APPROXIMATE METHODS

The formula (2) has been applied
to a number of ships over the past
several years. The calculated data
corresponding to four of these applica-
tions is used to compare the approximate
formulas for the vertical hull surface
force, (24) and (27), and also (18),
(18a), and (19}, with the more accurate
evaluations by (2) directly.

The four ships chosen are two with
twin propellers and two with single
propellers. The twin-screw ships are a
large coastal ferry and a naval cruiser.
The single-.screw ships are a Great Lakes
ore-carrier and a containership. The
pertinent geometric characteristics of
the four ships, including the hull velo-
city and potential data required in (24)
and (27), is given on Figures 2, 3, 4,
and 5. Note that the sterns of three of
the ships would be characterized as flat-
plate-like, while one, that of the
containership, would not., The pertinent
propeller data for each of the four ships
is given in Tables I, III, VI, and VIII.
The calculated vertical surface forces
for each case are compared in Tables
I1, IV, V, VII and IX; the force ampli-
tudes are expressed as percentages of
steady thrust as indicated on the
tables,

Each of the four cases are
described individually as follows:

Ship I - Twin-Screw Ferry (Figure 2)

The blade rate harmonic, n=1,
of the bearing forces and vertical non-

=
L

HULL POTENTIAL AND VELOCITY DATA
(VERTICAL FORCE ANALYSIS)

V§0x . 316

V§16 -.423 -.5861
* -

¢30/1 .604

Coastal Ferry




cavitating surface force was calculated
for three different 5-bladed propellers.
The characteristics of the three pro-
pellers are given in Table I. The three
propellers, identified as 1, 2, and 3,
are all about the same diameter, with
propeller 1 being slightly larger than

2 and 3, which are the same diameter.
Propeller 1 is essentially unskewed and
delivers a lower power at a lower RPM
than propellers 2 and 3. Propeller 2
has moderate skew and propeller 3 is
unskewed.

PROP 1 PROP 2 prop 3'

NO OF BLADES ¥
DIAMETER. D (m 2.64 2,53 2.53
8.23 £t} (7.87 £} 11.87 2t)
% skew®
RPN

SHP

20.2
73
1330

55.9 ]
320 32p
4040 4080

1, PROP 3 IDENTICAL TG PROP 2 WITH SXEW = 0

2. X skew = (s7'N/360) x 100
St = SKEW ANGLE GF BLADE TIP IN PROJECTED PLANE (pEG)

TABLE I
Ship I - Twin-Screw Coastal Ferry
Propeller Data

Table II compares the blade rate
(n=1} wvertical surface forces calculated
by (2) versus the more approximate
predictions by (27) and the flat plate
formula (19).

Ship II - Single-Screw Great Lakes Ore
Carrier (Figure 3}

This ship is the subject of
reference [5]. The ship experienced bad
cavitation induced stern vibration on
the builder's sea trails.
stern tunnel was added above the pro-
peller (Figure 3) to improve the wake
in the propeller disk, and thereby
reduce the severity of the cavitation
and resultant vibration.

An abbreviated

T 43—

Force calculations were performed
for the "without" and "with" tunnel
configurations. Bearing forces and the
vertical component ©of the hull surface
force were calculated for both stern
configurations, Both blade-rate and
twice-blade rate harmonicg were cal-
culated, and the effects of cavitation
were included in the hull surface force
calculations.

Figure 3 shows the gecometric
characteristics of the ship stern. Two
sets of hull velocity and potential data,
for use in (24) and (27), are listed on
Figure 3; these correspond to the "with-
out” and "with" tunnel configurations,
as indicated.

Table III lists the pertinent pro-
peller characteristics.

NO OF BLADES., N 4t
DIAMETER, D (m} 6.42 (20 ft)
Ae/A0 .581
% SKEW 4.3
RPM 120
SHP 14,000
1, CONTROLLABLE PITCH, LEFT-HAND ROTATION
TABLE IIT
Ship II - Single-Sgrew Great Lakes Ore
Carrier

Propeller Data

Tables IV and V show the comparisons of
the vertical surface forces calculated
by (2), from [5], and by the approximate
formulas (18), {(18a), (19), (24), and
(27). The non-cavitating forces are
shown in Table IV and the corresponding
forces due to cavitation are shown in
Table V.

It can be noted in Table IV that
the same bearing force components are
listed for both the without and with

PROP 1 prROP 2 PROP 3
RE 1M AMP  PHASE RE IM  AMP  PHASE RE IM  AMP  PHASE

BEARTNG FORCE
COMPONENTS

Fv';l - 23 [ -1.1 .15 L1 -1.% | .03

Fooy 1| .16 -,21 | ,03 L1 | -1

T, -1.1 | -.41 11 | =.99 -.30( 1.2
Fyy bY {2) 1.2 1.3 | 1.8 -9,6 -3 | .65 | .73 -23 1.9 {-1.3 | 2.3 6.1

by {27} e | .56 ! 1.1 -6.1 061 510 (82 -17 1.1]-1.2 |16 9.5
31
~T1 Sox"1Fyp1 S1a

+
+iFop1 B16
F,, BY {19) L1z f .98 | .99 -17 063 {.079 | .10 -10. 1.8 .00 | 1.8 | -1

e
“Fyb1 Fubl

i. f!n(t) = AMP‘'COS nN (wt-PEASE): AMP PERCENT OF STEADY THRUST; PHASE
NEAREST TOP=DEAD-CENTER WHEN £({t} IS POSITIVE MAXIMUM.

= 57,3+ [TAN"! (=IM/RE) ] /nN (DEGREES) = POSITION OF BLADE

2. 16 Lm HARMOKICS (mw0 TO 15) AND 1 Tm RARMONIC (m=0} USED IN (2],

TABLE II

Ship I - Twin-Screw Coastal Ferry
Non-Cavitating Blade-Rate Vertical Surface Forces

1

{Refer to Figure 1 and Table I)
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GEOMETRIC DATA
%o/t  .237 D/t .526

HULL POTENTIAL AND VELOCITY DATA

{(VERTICAL FORCE ANALYSIS)

W/0 TUNNEL WITH TUNNEL
2o/%  .375 t/D  .113 /
v 752 .690
a’/% .053 30x 49
vx -. i -.491i
316 5851
b*_ .. —-.633 -.590
"30/1
Figure 3. Great Lakes Ore Carrier
BLADE-RATE (n=1} TWICE-BLADE-RATE (n=2)
w/0 TUNNEL \ WITH TUNNEL W/0 TUNNEL WiTH TUNNEL
RE IN_AMP  PHASE | RE 1M awe 1M AMP _ PHASE] RE 1M AMP _ PHASE
BEMRING FORCE
COMPOXENTS
Foon 1.4 .56 1.4 ] .56 .44 ~.005] ~. 44
Foon -1.6 | -.29 -1.6 {-.29 .14 16 .14
Tn =~2.5 2.1 =2.5 2.1 ~.086 1.4 -.088
E‘3n by (23" 1.4 .59 1.5 5.6 214 | .072 33 i.1 29 =1.90 «17 1.0 21.
Py BY (27) 2 | -7 2.7 | -te. 1.9 1.6 | 2. W24 | 1.2 2. |-10 | 21| 1a 21.
“n¥ioxiFupnvite
“Pv;n"'?la
Py, BY {18} 25 | =26 | .36 § -i2 25 |-.26 | .36 2. 31 f .34 15, [ =-35 ] .31 .34 15.
-Fvl;n-Fv;n
1, FORCES PERCENT OF STEADY THRUST
2. pHASE = -57.3* TaN"'{-IM/RE) /nN FOR LEFT=HAND ROTATION (SEE TABLE I1)
3. 16 Ln HarMoNICS (w=0 TO L5) AND 1 Tm HaRMONIC (=D} usep In (2),
TABLE IV Ship II - Single-Screw Great Lakes Ore Carrier
Non-Cavitating Vertical Surface Forces
(Refer to Figure 2 and Table III)
tunnel cases. The only model wake survey reference [5]. Specifically,
conducted was prior to the addition of
the stern tunnel. The bearing forces o _(r,, o)
; m1
were calculated from this wake survey T
and used for both stern configurations. _ im(0,-0.)/ w7
The difference in surface forces shown —_2UoTEXT e—imee l-e .
on Table IV is therefore due entirely maT (6 -0 )
to the differsnces in diffraction “
effects of the two stern configurations. im(8a=0y) a=of
In the cavitation force comparisons ¢ Uty "EXT

of Table V the volume variation ¥4 , as
well as the Qp and op used in (2), were
calculated by formulas proposed in

_e-imec l-e

(ec_et) z



BLADE RATE (n=1) TWICE-BLADE-RATE (n=2)
W/0 TUNNEL WITH TUNNEL /0 TUNNEL WITH TUNNEL
H
RE M AMP  PHASE | RE T AMP  PHASE| RE M AMP  PHASE{ RE 1M AMP  PHASE
Py BY (21} -1.5 | 21. 21. 24, (-8, 1.6 8.1 | 42, |-4.9 11. 12. 14. | .67 )|-.70 [ .97 | -5.8
CAVITY VOLUME
_VBRIATION §500. | 444, g0, | 1200, 1800. | B60. -110.) 150,
".'ni {in?/sec)
P by
Fan BY G241 -1.1 | 16. i6. 24, |=7.1] 1.1 7.2 | 43. [-4.3 3.0 10, 14, | .68 [-.52 | .36 [ -4.7
~odnNtu¥_ 4.2
Fin bfhlifll -1.1 | 26 26 24 -12 1.9 12 43. | =6.8 14 16 114 1.1 |-.88 | 1.4 | -4.7
P 2
.pu\N u\-’n‘!,
Fan bY f382) o | ree lae. Va2as el 1s | oean | wa s ] oane | a2} e oLer|-ee7 (201 -4
pin!!’m\'in‘(/nTnI—zu)

1 FORCES PERCENT DF STEADY THRUST
2 PHASE = -G7,3+ TAN"*{-IM/RE) /nN FOR LEFT HAND ROTATION (SEE TABLE I}
3 16 Tn AND om waRMONICS (M=) To 15) usep In (2).

TABLE V Ship IT - Single-Screw Great Lakes Ore Carrier
Vertical Surface Forces Due to Cavitation
{Refer to Figure 2 and Table III)

Qm(rl) = om(rl,ut) which cavity growth begins
and Bc(rl) = propeller position angle at
which cavity collapse begins
. It Bt{rl) = propeller position angle at
) = 0 L (ry)dr which cavity collapse is com-
niN nN'*"1 1
r=y } pleted . .
1l "h This data for the ore carrier was esti-
. . mated largely from photographs of model
where, as a function of radius, propeller cavitation tests as explained
U,(r,} = mean inflow velocity tangent in [5]. Separate cavitation tests were
- to pitch line at r3 performed with the two stern configura-
- - . . tions (with and without tunnel), provi-
T(rl) average cavity thickness ding separate sets of cavitation data
EXT(ry) = og-0p = maximum angular ex- for the two cases.
tent, in the projected plane,
of the cavity along the blade Ship IIT - Twin-Screw Naval Cruiser
section iFigure 4)
Be(rl) = propeller position angle at
l L -l

Xo o
l i } '

/
/
/
s
’

D
— |
_L A
GEOMETRIC DATA HULL POTENTIAL AND VELOCITY DATA

X0/ 4 1.483 D/% .75 (VERTICAL FOQRCE ANALYSIS)
Yo/t .567 t/D 292 Vi0x .146
zo/ R .769 Vgle -.325 - .3501
a/¢ .252 %o -.518

Figure 4. WNaval Cruiser

I-11

g



The blade-rate harmonic, n=1, of
the bearing forces and vertical non-
cavitating surface force was calculated
for two different propellers. The
characteristics of the two propellers
are given on Table VI. The two pro-
pellers are of the same diameter, RPM,
and power, but one is a 5-bladed pro-
peller with high skew, and the other
has 7-blades and zero skew.

PrOP 1 PROP 2
NO OF BLADES: N s H
DIAMETER, D (m} 5.78 (lB8ft) 5.78 (18ft)
T SKEW 76 0

1, RPM AND POWER SAME FOR BOTH PROPELLERS

TABLE VI
Ship IITI - Twin Screw Naval Cruiser
Propeller Data'l
Table VII compares the blade-rate
vertical surface forces calculated by
{2} versus the approximate formulas for
both propellers.

Ship IV - Single-Screw Containership
(Figure 5)

Figure 5 and Table VIII define the
stern/propeller configuration for ship
IV. The blade-rate and twice-blade-
rate non-cavitating vertical hull sur-
face forces calculated by the three
methods, (2), (19), and (27}, are com-

GEOMETRIC DATA

Xo/%  2.707  D/L  3.00
zo/%  2.556  t/D  .096
ass .767

Figure 5.

rroP 1 prop 2

RE L] AN PHASE RE ™ AHP PHASE

BEARINE FORCE
COMPONENTS

PVbI -.58 .18 +089 3%)
+

LA -3 24 A9 -.27

T -5 36 A2 L6

Ty, BY (217 13 (-4 | .1 1. =40 | =20 | .45 2.

rn b¥Y {27} .36 =-.31 A b.e =2 | =34 44 3.

T iex~tFup1 Yiae
+

*1yn1Vie

l”_ Br O

- +
Fonn~Frsu

1, FORCES PEACENT OF STEADY THRUST
2. 9 ia waknoNiCS CeeQ 70 8) AND 1 Tm waARMONIC (w0} uSED LN (2),
TABLE VII
Ship IITI - Twin- Screw Naval Cruiser
Non-Cavitating Blade Rate Vertical

------ TV =m0
LULeTo

{Refer to Figure 4 and Table VI)

NO OF BLADES, N 6
DIAMETER, D {(m) 7.55 (23.5 ft)
Ae/Ao .744
2 SKEw 39
RPM 108
SHP 27,800
TABLE VIII

Ship IV - Single-Screw Containership
Propeller Data

X

—_—r L

HULL POTENTIAL AND VELOCITY DATA
(VERTICAL FORCE ANALYSIS)

V§0x .153
Vﬁlﬁ -.0192i
¢§0/2 -.475
Containership
I-12
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pared on Table IX.

BLADC-RATE 2% HLADE-RATE
RE 1M AW PHASE RE N A PHASE

BEARING FORCE
COMPONENTS

rv;n 1s| . 77| L0kY

[ = GT [ i - B#3]-.051

T, .3 |-2.3 =18]-.008
ry, Y 2! “Ab | At [ 24 |16 wd6] .06 | s | e,
Py, BY (270 B I U I A Y ¥ arf ooy [e2s | -l

v

“Ta¥iux" vh-.lh
"L
Py BE (L) «8 | =50 | Lo 2.8 | ~ois|-02s |y M.
e
“Frwa i

b 2ORCEN PEASENT oF STEASY THAST
20 15 Ln wannonice (w=0.70 15) Axd 1 Ta wamonic (==0) wege in (20,

TABLE IX

Ship IV - Single-Screw Containership
Non-Cavitating Vertical Surface Forces
(Refer to Figure 5 and Table VIII}

In the comparison of the vertical
hull surface forces on Tables II, 1V,
V, VII, and IX, the predictions by (2)
should be taken as the standard. WNo
fewer than 9 terms on Km and Qm in (2)
were used; the precise number in each
case is indicated by footnotes on the
J.espectl‘v'e tables. The essential step
in reducing (2) to (24) and {27) was
truncating the series in (2) at its
leading terms in the hull-induced wvelo-
city and potential functions, {20).

The differences between (2) and (24)
and (27) are primarily a reflection
this truncation. The same propeller
blade pressure distributions, up, were
used in (2) and (27); nine-point Simp-
son's rule integration was used both
radially and chordwise in {(2) and (4},
as well as in the bearing force compo-
nents of (1%) and (27), which are given
by (26). Likewise' the same cavitation
data and cavity medel, from [5], were
used in op and Qp of (2) and in ¥py of
{18}, (18a), and (24). The hull- induced
velocity and potential data was the

same for (2) versus (24) and (27), but
with average radial values used in the
truncated series of the approximate
formulas (Figures 2 through 5). The
hull- flow data was calculated for all

| T .

procedures described in

P

oI

cases by the

the Appendix.
DISCUSSION OF COMPARISONS

Non-Cavitating Forces

First of all, there is no consis-
tent agreement at all between (2) and
the flat-plate formula (19), either in
an absolute or relative sense. Indeed,
none should be expected. (19) is the
negative of the vertical bearing force.
Consistent agreement between (19) and
(2) would therefore imply zero net
vertical vibratory force on ships. This
is, of course, not the case, in general.
(19) is of value in the comparisons in

establishing a lower bound on the capa-
bility of the theoretically more accurate
approximation (27}; the upper bound is
established by (2).

Considering {(27) versus (2), the
agreement ranges from very poor on the
single screw containership to very good
on the naval criuiser with the 7-bladed
propeller. The performance of (27)
should be expected to be poorest on the
conventional stern ship. The "narrow-
ness" of the counter of the container-
ship stern violates the "broadness"
assumption redquired in the reduction of
(2} to (27). As previously stated, the
Fourier series on the hull-induced flow
field converges more rapidly when the
stern is broad, relative to the pro-
peller disk, versus narrow. The series
truncation error in (27) is therefore
less for the broader stern, and (27)
should be more accurate for ships, I,
and ITII, than for ship IV. This
generality with regard to stern shape
is contradicted by the case of the ore-
carrier at blade-rate frequency; the
barge stern of this ship would certainly
be characterized as broad and flat. The
primary reason for the poor agreement of
(2) and (27) shown on Table IV is due to
an unusually large blade thickness con-
tribution, particularly in the "with
tunnel" case, which is excluded by the
truncation associated with (27). Note
that the comparison at twice blade-rate
frequency for the ore carrier shown on
Table IV is guite good.

IT1,

Cavitating Forces

While the comparisons are limited
(Table V), the approximate evaluations
of the vertical surface forces due to
cavitation by (18a) and (24), both com-
pare favorably to the more accurate
evaluations by (2}. 'The comparisons on
Table V are probably indicative of the
capability of the approximate formulas
when applied to ships with broad flat
sterns like that of the ore-carrier,
Both {18a) and (24), and particularly
the flat-plate formula (18a), would be
expected to be considerably poorer if
applied to a more conventional stern
such as that of the containership, Figure
5.

For a conventional stern the zeroth
harmonic potential in the propeller disk
may not be the dominant flow harmonic
that it is in the case of the broad flat
open stern; compare the velocity and
potential data tabulated on Figure 5
versus Figure 3. It is the dominance of
¢3% over other harmonics of either the
potential or velocity components in the
case of the barge stern which produces
the good agreement between (24) and (2)
shown on Table V. Specifically, the
dipole terms in (2), by way of the hull-
induced velocity field, should play a
much more important role in the cavita-
ting hull- surface force on conventional
stern ships.




Hull-Induced Flow Data

The hull  induced velocity and
potential data of Figures 2 through 5 is
interesting in itself. It provides in-
sight into the influence of certain
characteristics of stern configuration
on the vertical hull surface forces, at
least for the broad flat stern type of
Figures 2, 3, and 4. This is through
the approximate formulas (24) and (27),
which have been shown to be reasonably
accurate, at least in a relative sense,
for the broad flat stern type.

For the non-cavitating force, for
example, {27) shows that the alternating
thrust multiplies the zeroth harmonic of
the axial hull-induced velocity in the
disk, and sums with products of the
vertical bearing force components and
the first harmonic of the tangential
hull flow wvelocity in the disk. For an
infinite flat plate the tangential velo-
city approaches a limiting maximum abso-
lute value of 1, (12). Therefore the
magnitude of the tangential velocity,
v3lg, for a particular hull, is indica-
tive of the magnitude of a component of
the vertical surface force relative to
the vertical bearing force. That is,
for a given vertical bearing force, the
smaller v}y, the smaller should be the
bearing force related component of the
surface force. In general, the narrower
the waterplane aft, the smaller should
be v3jg; this is confirmed by the data
on Figures 2 through 5.

The axial velocity induced by an
infinite flat plate or by any cylindri-
. cal body of infinite length is zero, and
the alternating thrust does not contri-
bute to the vertical surface force for
such cases, by (27). If however, the
body surface is terminated aft of the
propeller disk, typically like the water-
plane ending of a broad flat stern, an
axial velocity will be induced which in-
creases as the waterplane end is
approached. This increasing axial velo-
city with decreasing inset, xpo/%, is
clearly shown on Figures 2, 3, and 4.
Therefore, for a given alternating
thrust, the closer is the propeller to
the waterplane ending, the larger is
the axrial induced velocity, and the
larger is the thrust contribution to the
vertical surface force. [6]. Of course
cancellation between the three compo-
nents of (27) can occur, and usually
does to some degree. Nevertheless, some
useful rules of thumb are believed to be
provided by the formula (27).

With regard to the cavitating hull-
surface force, the zeroth harmonic of
the hull inducegd potential in the pro-
peller disk, ¢3p, is the dominant hull
effect, according to (24), for the broad
flat stern. The potential approaches
the negative of the waterplane half
breadth as an upper limit, {13}, and
decreases with decreasing waterplane
breadth, Figures 2, 3, and 4. The

e e da o

- T a3 -1 = - e [P Ty
potential will also decrease on approach-

ing the waterplane ending aft, but the
decrease should t{gically be rather
abrupt. The zero harmonic of the
potential should be somewhat insensitive
to the location of the disk relative to
the waterplane ending for typical stern
configurations. This is supported by
the data on Figures 2, 3, and 4. There-
fore, in converse to the non-cavitating
force, the force due to cavitation, for
given propeller cavitation characteris-
tics, will be reduced on reducing the
distance between the waterplane ending
and the propeller disk, x,/% on the
Figures. However, the controlling
characteristic in the cavitating force
should be the breadth of the waterplane

aft.
CONCLUSION

The approximate formulas developed
for calculating propeller-induced verti-
cal hull-surface forces are reasonably
valid, at least in a relative sense, for
sterns which are broad and flat aft,
typical of open strut or transom stern
ships. The formulas are not valid for
ships whose counter is narrow relative
to the propeller diameter.

The hull-flow data required in the
approximate formulas is in itself use-
ful in qualitatively evaluating the
relative merit of sterns with different
but similar characteristics, independent
of any particular propeller design.

The hull -flow data presented for
the particular ships studied in this
paper should be useful to the reader
interested in approximating the hull-
surface forces on similar sterns, for
which propeller-bearing forces and/or
propeller cavitation data is available.
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APPENDIX

GENERALIZATION AND COMPUTATIONAL IMPROVE-
MENT OF THE HULL SURFACE FORCE FORMULA

FORMULA GENERALIZATION

A formula for calculating the
complex amplitude of the nth blade-rate
harmonic of the propeller-induced hull
surface force in direction 1 was origi=~
nally derived in reference [7] as,

T/Nw -( ) 0 "
Nol _—inWut{[ (BB} inNE{xq-E)>
Fln FJ e le_ U Je e np
./ Nw

P(Rl) g=x;

. vnin(ﬁl)dg-pq(ﬁl)nin(ﬁl):|d5dt (28)

Here the propeller is represented in
terms f s;ngu%arlty distributions u(Rl)
and q( (R1) is a distribution of
normal dlpoles over the blade pitch
surfaces and their helicoidal extensions
downstream; u(R]) represents the un-
steady 11ft§ng effects of the propeller
blades. (R]) is a distribution of
sources over the blade pitch surfaces
and represents the thickness effects of
the propeller blades.

The source representation for blade
thickness is disadvantagecus from a
computational point of view. Chordwise
rates of change of blade thickness are
required in the construction of q(Rl)
While the blade thicknegs distribution
is always specified on the propeller
drawing, its chordwise rates of change
are troublesome to estimate, particular-
ly near the chordwise extremities. More
impertantly, when blade cavitation
occurs, it is useful to simply consider
the blade as having a time-dependent
thickness distribution composed of the
thickness of the blade proper plus that
of the attached cavitation. While an
approximate cavity thickness distribu-
tion might be estimated from, say,
obhservations or photographs of cavita-
tion tests, it is unlikely that such
could lead to usefully accurate esti-
mates of the rates of change of cavity
thickpess required in the construction
of g{Ry) in (28).

These problems asscciated with the
rate of change of hlade thickness can
be overcome by using a tangential dipole
distribution, instead of a source dis-
tribution, to represent the effects of

-blade thickness in the hull surface

force calculation. The tangential
dipole singularity, being of higher
order than the source, requires the
thickness distribution itself, rather
than the distribution of thickness
derivative, in its construction. In
view of the advantage of tangential
dipoles over sources, the hull- surface
force formula, (28), was rederived in
terms of tangential dipoles directly in
both references [1] and [6]. However,
the tangential dipole form of references
[l] and [6] is not completely genaral.
That is, in the case of a time-dependent
blade thickness, which corresponds to a
cavitating propeller, tangential dipoles
alone are not sufficient to completely
represent the thickness effect; a line
source along the blade trailing edge,
whose strength at any radius is egqual to
the instantaneous time rate of change of
the blade cross-sectional area at that
radius, is required additionally.

A form ot the hull-surface force
formula which properly allows for blade
cavitation, while taking advantage of a
tangential dipole distribution for thick-
ness, can be manipulated from (28). Write




Fin in (28) as, Fin=Fin&+Fint where sub-

scripts £ and t dencte "1ift" and "thick-
ness." The thickness part is isclated
as, m/Nw
—_pNw ~inNwt x >
Fint _F_J e JI q(Rl)Hin(Rl)det
- -+
/N P(R;) (29)

The surface integral in (29) is an in-
tegral over all propeller blades; Rj,

the position vector to a blade point,

is time-dependent. Write the surface

integral in (29) as,

JJQ(ﬁl)Hin(ﬁl)dS
-
P (R))
TE(rl)
= I J q(ﬁ;rl,t)Hin(ﬁ,rl,t)dEdrl
radially LE(rl)
over N
blades

The inner line integral in % is along
the blade section at radius ry; refer
to Figure 6. Write,

TE({r
I(r;.t) =

1)
Q(R-rl.t)Hin(ﬂ,rl,t)dl

LE(rl) (30)

Figure 6. Propeller Geometry

and integrate by parts along the section;
the positive & direction is identified by
the unit vector 1, on Figure 6, which is
tangent to the settion pitch-line at
radius ri.

u = Hin dv = gdi
L

du=VH, -7.d% v=Jq(c,rl,t)dc

in 'p

Write v(l,rl,t) as,

V(l;rl;t)=V(LE,rl,t)+ Q(Crrlft)dﬁ

| ~—r=

z=LE

and define,
2
c(ﬂ,rl.t)=Jq(c,r1,t)d: (31)
L=LE
Then I, from (30), is,
TE
I=Hin(2,rl,t)v(LE,rl,t)|
LE
TE
+Hin(£'rl’t)c(2'rl't)l (32)

LE
TE TE
- -+
~Jv(LE,rl,t)3Hin-1pdz-Jg(z,rl,t)VHin-Tpdn
LE LE
The first and third terms in (32) cancel

identically. o(LE,r;,t)=0 by {(31).
{32) then becomes,

I= Hin(TE,rl,t)U(TE,rl,t)

TE
> +
- Jc(k,rl,t)VHin-TPdL
=LE
By (31),
TE
U(TE,rl,t) = Jq(c,rl,t)di (31.1)

=LE

which is just the net source strength of
the blade section at r;, at time t. De-
note, ¢(TE,r1,t)=Q(r1,t). The surface
force due to blade thickness is then
obtained by substitution back in (29},
m/Nw _
_pNw| _-inNwt * F YR
ing=ow J e I_qu(al)ﬁnin(nl) 1,48

—m/Nu p (&)

- J Q(ﬁTE)Hin(ﬁTE)d%] at
TE (.ﬁTE)

i GO



Here, R is vector position to the
blade trailing edges.

The complete force, corresponding
to {28}, is therefore,

/Hw 1(§ )7 w
_Nu|_-inNwt 1 inN=(x.=-£) 9
Fin— = Ie {JJ ] Jdge U 1 BTP;
-7 /Nw P(ﬁi- €=xl
=3 3J
+po(Rl E?;]Hin(Rl)ds (33}

-0 J Q(iTE)Hin(ﬁTE)ds:} dt
TE (Ryp)

The first two terms in (33) correspond
to the formula derived in [1] and [8].
o(ﬁl) represents a distribution of
tangential dipoles over the blade pitgh
surfaces; the axis of the dipoles is T1,.
The third term in (33} represents the
contribution from a line source along
the blade trailing edges; the strength
of the line source is equal to the
dipole density at the trailing edge,
o{Rpg), by (31.1). o(Rpgr), and there-
fore the third term in (33), will be
zero when the blade thickness ig time
invariant (non-cavitating blades). For
the cavitating blade, the line-source
will contribute,.

Formula (33) can be reorganized
for computational advantage. First
make the change of variable,

6 = wt

8 is the positive counterclockwise
locking forward (so that, for right hand
rotation, w is negative). Also write,
Hin(R7)=inNwéji (R1) so that, in view of
the definition of Hip, ¢i becomes the
potential due to the hull moving
steadily with unit wvelocity in direction
i through the fluid (the subscript i
denotes direction; the factor i=v/-1).
{33} can be rewritten as,

/N
_inN%w! _~inNe
s e |

-r/N *
P{Ry)

- +
fO(Rl)Tp

1

. _
+Uu(§1)an geindg (x) E{]'§¢i(§l)ds
£=x,

X

-0 [ Q(ﬁTE)¢i(§TE)dsi} ds (34)
TE(ﬁTE)

In this form the slip-stream integral in
% is+to be interpretgd as an operator on
¢i (R1) with x; and R; replaced by ¢£.
The position vector Ry te a point on the

kth blade, k=0,...N-1, can be written

-+

R1 = xlf + rl;r + r, 126
in a coordinate system fixed in space at
the propeller hub; see Figure 7.

By inspection of the limits on the

6 integral in (34), 8 is the position
angle to the generator line of the blade

nasvroactr kran—Aoasdarnantar =01 [ 1) SN
NEAYEST TLP=GSaQ~CalTel (A=v). LOSTE
fore, if R; is a point on the kth blade,
61, in 17 is
21k
=8 + £ 4
91 ) N o {35)

where o is the posi%ion angle in the
projected plane to R; relative to the
kth blade generator line, as indicated
on Figure 7.

Figure 7.

Propeller Coordinates




Now write o, u, i, and $¢i as
Fourier series in the angular coordi-
nates as follows:

u(rl.a,xlrerk)
E im(8+a%£
= Re W (r.,08)e {36)
m=g 1
o(rl,a,xl,e,k)
o im(e+3§E
= Re § Oplryrale (37)
m=0
§¢i(rl'a,xlfafk) = 31 (rl,a,xl,ﬁ,k)
- . 21k
_ > iv{B+=—=+q)
= Reuzoviv(rl,xl)e N (38)
¢i (rl.ralxlre.rk)
o iv(e+2TK 4 oy
= Re ] b;,(ryx;0e (39)

v=0

x) is deleted from the argument lists
in py and oy since, on the blade, x;
is a function of a.

Now substitute (36) through (39)
into (34) and replace the N-blade inte-
gration over P(ﬁl) by an integration
over the index blade (k=0) and a sum-
mation over k. The result is,

inNzt.oTT/N ~inne™31 [ e
=____-jd9e ) II Re § L

in m
k=0 m=0
~T/N B(rl,a)

= w . 2Tk
> inNg(x-E) | im(9+=38)
Jd P A Je N

+Eumnp
E=x,;
o iv(e+3§5+a)
~Rev£0viv(rl,xl)e as
Tt im(e+22%)
-0 f Remzoqm(rl)e
T1%Th
'Rev£0¢iv(rl’x1t)
iv(e+‘3g—k+at)
‘e drl (40)

In (40),

Omiry)=og(ry,or) by (31.1), where
ar=0t{r1} is the projected trailing edge
argle of the index (k=0) blade at radius
ry1  Also, x1.=xj(rj,o¢) in the last
term in (40). Temporarily define,

I-18

Snlrye@) = ooy (r),0% (2y)

+ i (2 0F () Jdge

-
lnNﬁ(xlhi)

E=x1

geeping in mind that the £ integral in
m 18 an operator on Viv(ry,x1) with

N)]

x1=E. (40} can then be written,
/N - . 2tk
inN?w( ~inne| (M 1 @ 3 im(0+5—
i = {e I 5 Z Spe
in k=0 \2p=o -
—1[/“ -
B(rl,q)
2 —im(e+EET Lo T su(e+iTR Ly,
+8 e NOLT (R e N
m 2 iv
v=0|_
> —iv(9+2—;}£+u)
+vive ds (41}
TeNi ) e im(e+3§5 _ -im(g+2Tk
“DJ ) {32 ’Qme *ope
. =rE=0\ "m=0"
1
12 dveeElEag
‘7 ! %58
v=0 =

. 2nk
+5, e viBr——+ “t’] }er ae

iv

where the "barred" terms in (41) repre-—
sent the respective complex conjugates.

Performing the multiplications and

interchanging the order of summation in
(41) gives,

Fy

. {é-';_ eivueia(v+m)NEl
m

-p
ry

n

+ s i oy N1 o —mt 20k
43 %, e iva, i6 (v-m) z g~1(v-m) N

m

Tt

/N . -
_ inN%y J —inNSI—JI
==—— e )
m - - m=0 v=0
-r/ B(r,,a)

2Tk

i{v+m)
e N

k=0

21k
N

. : g V=1 i(v-m)
elvuele(v m) Z e
k=0

2wk

v k=0

(42)
. . N-1 . 2tk
e 1vue—1e(v+m) Z o 1(v+m)—ﬁ— das
k=0
o o . . N-1 i{v+m)
Z X 0 4. elvatele(v+m) z e

m=0 v=0 M iV k=0

=rh

271k
N



. 2rk
. . N-1 i{v-m)=——
- Vo 6 (v- N
+Qm¢i\)e1 tel ( m) kzo €

. s ey N1 L 2Tk
e l““te 10 (v=-m) E e i(v m)—ﬁ—

k=0

+Qm$iv

| e iveg -i6 (vim)
m’iv

N-1 . 2Tk
. E e 1 (vim} N }dr]:| Aase

If the integration order is likewise
interchanged in (42), four terms of the
following type will occur,

/N N-1 2miRk
l6{B-NN) .. 7 e N
—n/N k=0

where B represents the linear combina-
tions of v and m. Since v and m are
both integers, B is an integer. There-
fore,

T/N 2T
. _ — E:nN
eJ.B(B nN)dB — N

-r/N 1] B # nN

Then, for B=nN

Nol o onink
] emink

k=0

N

The four B expressions then define four
relationships between the m and v. For
the first and fifth in (42),

B = v+m = nN implies m = nN-v

Then, since m>0 and v>0,

v=20,1,...nN

Likewise for the other three R's:

B = v-m = nN m = v-nN>0
v =nN,...»

B = =v+m = nN m = nN+v
v=0,...®

In the fourth and last terms, B=-v-m.
With m and v>0, -v-m#nN unless n=0 and
v=m=0. But n>(} because of the unsteadi-
ness, so the fourth and eighth terms in
{(42) are zero for all v and m.

Making these substitutions, {(42)
reduces to:

. P - " nN .
in=1n§ - | IJ I gnN—v'$ive e
_ v=0
B(rl,a)

T o= ivag
* 1 Qv-nN¢i\)e +

CeTivor | g
iv 1

The blade integral in (43) can be
written explicitly as,

+
ilte~18
10
R

v=0 v+nN

I, @y (rqy)
J = J "1 dad
I ds = m J {41 rl
B(rl,a) ro=r, u=u£(rl)

where ry and ry are the hub and tip
radii, respectively and oy and ot are
the projected leading and trailing edge
angles, relative to the generator line
of the blade section at r] {see Figure
8). B(ry) is the geometric pitch angle.
Also referring to Figure 8,

| rlat rl(il_..-.
I [ rloc I
| —Kkr
P

Figure 8. Propeller Blade Geometry




> +> >
N 2wr11-2ﬂrlKer-Pee
n._ = (44)
P InIr 2 (1+kZ)+P2
and
pi + 27r.e
i Tr
_'E“ = _____i_e (45)
= ¢4n2r12+P2

where P{ry)} is the secticn geometric
pitch.

An approximation can be made at
point which substantially simpli-
{43). Note that viy, and the inte-
operator on Vlv in §m, depend on o
through Xq.

this
fies
gral
only

®.=x- {r.,0) r. [k+atanB (r,)]
L L 1S 1 1L

Referring to Figure 8, k is the blade
rake angle and 8{(r;) is the section
pitch angle. B is small, at least near
the blade tip; the blade tip region is
predominately influential in the vibra-
tory force. Therefore, %] can be
replaced approximately by its value at
the generator line.

Xy {r ,a} = x,{ry} kr, also small.
ke e A i oL

(46)
The product §m-$iv then becomes,

> =+ =+
sm-vlv—pcm(rl,u)Tp(rl)-viv(rl)

I NG -3 (e prae

1
+5um(r ,a)n (r ).

E=xl(rl)

and likewise for the respective con-
jugate combinations. The only depen=-
dency on o in any of these terms is
through the oy and up. Define the

following:
o
r t .
- 1 iva
TnN—v(rl)‘cosB J UnN—v(rl'a)e do.
a=0
%
r t ;
i S iva
To-nn (1 )= “cosg J Uv-nN(rl'O‘)e da
a=a,
(47)
a
r t .
- -ivo
To+nn (17 75 cosg f U\J+nl\1(rl’°‘je da
=0
£
also,
a
r t .
- iva
Lon-y (F1) 5 5 JunN_v(rl,u)e do
a=a

1-20

T .
= iva
Lv~nN(rl)—cosB da

t
JunN,v(rl,a)e

a=o
. (48)

&
r

-iva

L {r da

t
yE—— {1
v+nN'" 1" "cosf | v+nN(r,,ale

cx=ot.2

Furthermore, define,

w w
N 1 inNg(x-£)
Viy (T1) =5 f ©

nxl(rl)

T (r (49)
iv

AL

Then, Fin from {(43), using (47), (48),

and (49} becomes,
+ ~nN

[ I (L

r -v=0
17 h

>
n
v p

:I.IIN [f]

5
F, 'V

+pT
in P

70
iv nN-v'p iv

r

-anN-v¢iv

(50) is the basic form desired.

While a substantial rearrangement
of (33) has been accomplished in (50),
it is not immediately obvious that (50)
is any better suited for computations
than (33).

The predominant expenditure in
comgutin with (33} is the evaluation

Hin (R1)=inNwvi (R1} at all the gquad-

rature points involved in the triple
(thickness) and guadruple {lifting)
integrals. If the Fourier analysis of
> - .
vi, to produce the viy in {50), was
carried out numerically, then the doubkle

and Frinla intasralse nlne +ha gummatinn
ALy LLJ.EIJ.C: J.llLC‘jJ-aJ.D tJJ.I.Aa LY A=Y o WALIULLG AW d L

in {50) would replace the triple and
quadruple integrals in (33}; the two
would probably be marginally different
from the point of view of computational
effort. Forgungtely, the Fourier
analysis of Vl(Rl) does not have to he
performed numerlcally.

The major advantage of (50) over
{33) is that thg Fourier analysis of vj
to produce the viy, can be accomplished
analytically. Therefore, (50) becomes N
an improvement over (33) by the equiva-
lent of one integral order, more, or less,
when the analytically evaluated vi, are
inserted.

et -



FOURIER ANALYSIS OF THE HULL - INDUCED
VELOCITY FIELD

The hyll- induced velocity potential
field, ¢i(§), in a coordinate system
moving steadily with the hull at unit
velocity in direction i, through the
ideal fluid, can be written,

> - > >
¢i(R) J J ci(Ro) G (R;R,}dS {51)

s* (Rg)

Here oi(ﬁo) ig a source density distri-
bution on the "double hull" surface,

8* (Rg): U4 corresponds to the mode of
hull motion, i {direction of force).
S*(ﬁo) is the wetted surface of the bare
hull, plus its image in the upper half-

space; Ry is the position vector to
points of the "double-hull" surface.
G(ﬁ,ﬁo == —1  the infinite fluid
m (> >
|R'Ro‘

Green's function.

The "double hull" and infinite
fluid Green's function representations
are permitted by the condition of zero
potential on the water free-surface,
{71, {11, and [6]. >

The evaluatign of ¢i(R)+on the
propeller blades =§l=xll+rler+rlelee
can be expanded in a Fourier series in
the anqular coordinate §; (see (39) and
Figure 9).

> _ = ivel
¢i(R)_¢i(xlrrlrel)—Rev£0 ¢i\) (xl,rl)e
(52)
with x1=xry by (46).
The hull-induced velocity is,
+> > > >
vi(Rl) = V¢i(Rl)
. 3 > 3 > 1 3 >
with ¥=-"— 1 + =23 _ + L 9 e (53)
Bxl Brl r ¥, ] 1 &
Therefore, by (52),
T By = I iveg
Vi(R)) = Re | Ty (xy,r e "1
v=0
Applying (53) gives,
w [3¢.. . 86, ) .
> o2 iy iv> iv > ivé
v, (R,)=R ——it—Ye i, o |etVY1
il e,=0 _Bxl arl rry'iv ?}
(54)

with 61=0+27K 4o from (35) and Figure 7,

the Fourier series of v; from (38) can
be written,

ivel

3i‘§1’=3evzo¢iv‘r1'x1)e (55)

Comparison of (54} and (55) implies,
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> iy ¢iy » iv +>

Viv x sr. S Y 7 %i.,% (56)
1 1 1

With R, and T, in (50) given as (34) and

(35), ghe dot” product is clear; it is

only necessary to determine the
(52) implies,

biy.

m

_Eo -ivey
%u(xl:rl)njr J ¢i(x1,rl,61)e del
Bl=—ﬂ (57)
"1
v =0
where EO = 2
1 v >0

Let ﬁ=ﬁl in (51) and substitute into
(57}

03, (xy,1y)

E I3
_Fo = T o -ivf;
T s (R,)
0 B
Interchanging the order of integration,

b5, (%101
c m
- T 0 * —ivel
J J Gl(Ro) = IG(Rl,Ro)e dBldS
—
S*(RO) 61=—w

Figure 9. Hull/Propeller Coordinates




Define,
T

£o -ive;
G (xllrer) -TT— G(xlrrlreer )e dB
8

1 (58)
which is just the vth rourier coeffi-
cient of G. Then,

{ = R R
¢i\) Xl,rl)— O'i(Ro)G\}(xl.rrlr O)ds
> (59)
S*(RO)
Now, considering (58), let ﬁo be,

R = X I + r 3 + r 6 g
o "o o°"r oo 8

where (x,,rg,85) is a point on the
"double hull" surface in the coordinate
system fixed a the propeller hub (see
Figure 9). G(R1;R,) in this coordinate
system can be written,

G(R17R0)=

AT e R 3 Tiro it
1%

This function has the following repre-
sentation in terms of the Legendre
function of the second kind of half-
integer order,

1 1
G{R,JR) = —— .
170 L e—
1o
o _(xlﬁx }24r_ 24r 2] (87-6..)
. ) O m{gy=-
! Q172 TE: J °
m==co 170

(60)

Substitute (60) intc (58) and inter-
change the order of summation and
integration

£ o
o 1 (x,-x ) %4r, %+r T}
G, =-q T o 1 1
M w? Yr.x m=-wm 1/2 2r.r
1o i 1o J
. m
o~iméo j el(m“V)Bl a8, | (61)
51=-'n'
But
T
. 0 m#v
[el(m—V)ﬂl ae, = J’
iﬂ ka m=v

{61) therefore becomes,

€
1
G, {x,,r ;R ) = - 7£L .
vite " vrr

170

2 2 2
X - + +
{ 1 X_} rl r

—i\JBo
Q Zrlr0

(62) substituted into (59), and
with this result substltuted into (56),
gives the ¢jy and the Vlu for use in
(50). The hull source density, oj(Rgp)
and the propeller dipole strength
harmenics, opiry,a) and up({ri,a), only
remain to be specified.

HIGH FREQUENCY APPROXIMATION

One further approximation with
regard to (50) will be valid in most
cases. Reconsider (49),

z inNE(x E)
=g [0 NEINALT:

E_:—-X (rl) (49)

If the oscillating»exponential varies
more rapidly than vi, in &, then the
argument of the exponential can be
considered as "large," and Vl can be
expanded in an asymptotic series.
Assuming this to be the case, the asymp-
totic expansion of Vi, is obtained from
(49} by integration by parts in £. Inte-
grating by parts once gives,

=2 _1 -
Viv'o

u f inN?—J(Xl'E) 3+ h
e [0 )

For the conditions stated, the remaining
integral term is small. Then, to one

term,
V., (ry) = ——L—-v (r,,xy)
vl inNw AV IR Tt |
R S
T inNw Viv(rl]

since x1=xj(r1)=kry by (46).
Now before substituting back into
Fin: (50), define,

> -+
Km = planTth + Lmnp (63}

With Ty and Ly defined by (47) and (48),
{50) may now be written,

elvor,

- -+ .
K Viv planQnN_»¢iv

I —



iv
3, Sy

lv-plnNmQ

v-nN" v-nN¢ive

+
[y
=

iv—planQ

- —ivat
U+nN¢i\Je )}drl
{64)

(64) will be the preferred form for most
all computations of Fjip.

NUMERICAL ANALYSIS
The potential and velocity in-~

duced by the bare hull in the propeller
disk are given by (592) and (56) as,

b,

1U(xl,rl)=J Jci(Ro)Gv(xl.rl:ﬁo)ds {59)

s*(ﬁo)

- -
viv(xl,rl)=J Jcitﬁo)VGv(xl,rl;Ro)ds

{65)
S*(RD)
where, by (53},
3G 3G > i
VG =2 1 4 &+ g 2 (66)
\Y Bxl arl rr, 9
Gy is given by (62},
Gv(xl,rl;xo,ro,eoi
e .
o 1 -ivo,
= 5= Q. (=) {62)
272 /-le— w-1/2
o
with, 5 ) .
_ (xl—xo) +r1 +rO
z = 2r. r
1 o
Refer to Figure 9 for notation. The
derivatives in (66) are,
3G
v Jdz
= = G'y(z) ==
Bxl v Bxl
Gy 3z 1
am— = G'y(2) 7=/ - 57— Gyiz}
Brl 3rl 2rl
where,
E: .
' __ ‘o 1 =ivigas
G'y(z)= ST — e Qv_l/z(z) (67)
10
and
Qy-1/2 @) =52o7120Q,-1 45 (2) -0, _3 5 (2) ]
{88}
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Surface Integration

The double integrals, (59) and
(65), must be evaluated over the hull
surface. The integral for the potential,
(59), will be explicitly considered in
the following, but (65) can be handled
identically.

Referring to Figure 9,
written,

{59) can he

¢iv(x1'r1) =
2T

La
JKi(xo,ao)Gv(xl,rl,xo,ao)daodxo

]

Xo=Lg 0,=0 (69)
where
9PaY2(3ps) 2
1 [s] Q
K.dx_,a Y=g.{x_ ,0 }p /{; — ———]+[———J
i‘*torto iYoo' Mo Pq Bao on
(70}

Po and og are cylindrical coordinates

in the hull system located at the inter-
section of the design waterline and the

vertical centerplane. On the hull sur-

face,

For the hull system located in the same
vertical plane with the propeller, the
limits -Lf and Lg on the xXg integral in
(69) correspond to the forward and aft
ends of the hull waterplane, respec-
tively.

Over the submerged surface of typi-
cal ship hulls the derivative 3pg/dxg in
(70} will be small relative to 1, even
near the ends. Therefore, (70) can be
approximated by,

1 2po

2
Ki(xo,ao)=0i(x0,ao)po l+(po EE;] (11}

(69) then can be written,
¢iv(x1'r1) =

La

Joi(xo,k)Gv(xl,rl;xo,i)didxo (72)
X ==L¢ C(xg)

where, in (72) the inner line integral
is around the hull section contour, C{xg),
at the axial station x,; L is length along
the contour, Figure 10.

The approximation, (71}, allows
the double integration in (72) to be
conveniently performed. With 3p,/9%g
discarded in (71) the contour integrals
over the hull sections are independent
of one another. This independence of
the hull sections furthermore suggests
a "strip-wise" determination of the
source densities oj, which is consistent




2 )
J C(Xon) =Cn

. Poj /(J ¥
L - A%Qﬁk >
__.'__%’/ Nj

Figure 10. Hull Section Contour

with the "slenderness" assumption of
(71). Determination of the o; will be
considered further on.

vDenote the contour integral in (72)
as 17,

La
[ .
¢iv(xl’rl) = J I (xl,rl,xo)dx0
Xo':"'Lf

{73}

{73) will be executed using some guad-
rature rule; the trapezoidal rule has
been found to be convenient,

M 1 U
¢1u(xl’r )_f 2 n. +I )(x on+1 xcn)
(74)

where IV —I {x r'yiXgn)

M in (74? is t e total number of axial

stations over the ship length. Con-
sidering IV ,
N_ .
I,°= Jc n(z)Gu(xl,rl,xon,l)di {75}
Cn

Cy, denotes the contour of the hull sec-
tion at station n.

Referring to Figure 10, the contour
Cn is that of the "double-hull" by
definition of Q*(RU} in (51). The
contour is therefore doubly symmetric
with respect to the waterplane and the
vertical centerplane. Divide the con-
tour into 4J segments each of length
ARJ, arranged with J segments per quad—
such that the double symmetry is
retained in the segmented contour. De-
noting rg4 and 854 as the coordinates
to the mi%point o% the jth segment in
the propeller system, (75) can be
evaluated approximately by the rectangle

rule as,

rant such that

I Ve

4
I jélginj G“(xl'rl;xon’r 6 LYAR,

o] J
(76)

oj
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Sinj is the source density at the mid-
point of the j segment.

In order to satisfy the condition
of zero potential on the water surface,
a negative image source density is
required on the image hull. The hull
surface forces of primary interest are
the vertical and athwartship, i=3 and 2,
respectively., For unit vertical wvelo-
city of the hull (i=3) the source density
will be symmetric about the vertical
centerplane; for unit athwartship velo-
city the source density will be asym-
metric about the vertical centerplane.
Exploiting these symmetry considerations,
(76} can be written,

lr s O )

vV =
T Z 033

[G\)(X y rx
n j=1 inj 1

AL K R NN L T P TR Y,

(77)

+1

Gv(xlrrl;xon,r02J+j1902J+j)

i+

B )]AE

Guixyrryix, 03T+j

n'“o33+j"
where for the * in (77), the upper sign
corresponds to vertical analysis and the
lower sign corresponds to athwartship

analy51s. The Gy in (77) is, from (62),

G\’(xl'rl”{on'roj'aoj
Eo 1
T2

) {78)

l/rorl

with )
(xquon) +rl

ol

2 2
+r .
ol

zZ .
nj 2r,r
- &L

{78) , substituted into (77}, along with

the 0jpy on the 1/4-contour, with the

result substituted into (74), gives the

vEh harmeric of the hull induced poten-

%ia; at propeller radius rj. X]=Kr] by
6).

The identical scheme can be used to
evaluate the velocity, viy., from (65);
the G, in (77) are merely replaced by
the VG,, from (66), (67), and (68).

With regard to the actual computa-
tion, given the Oings M in (74) will
normally be on the order of 50 for con-
vergent results, and J in {77) should
seldom need bhe larger than 10. The 50
M stations should be concentrated in way
of the propeller since $3iy and viy
require evaluvation in the propeller
plane. Distributions typical of that
shown on Figure 11 have been used,
although representation of the forebody
is actually unnecessary.

With 50 axial stations and 10
segments per quadrant per axial station,
around 2,000 Gy evaluations are required
for evaluating the potential harmonic at
one propeller radius, For a maximum of
9 propeller radii used in the force cal-

culation by (64), approximately 20,000

-
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Figure 11. Longitudinal Distribution
of Ship Stations

evaluations of (78} are required. For
single-screw ships, the number of re-
quired Qy-1/2 evaluations in (78) will
be one-half of the above value since,
with the symmetry, only two different
zpy are involved in (77).

Computation of Legendre Functions

The Legendre function of the second
kind, of half-integer order, Qy-1/2 {2},
has the following series representations
for small and large values of the argu-
ment z, [B8],

Foxr small z—+1,

Qu-1/2(2)

Zoavs(z—l)5+[2n{z—l)] Zobvs(z—l)s (79)
S= s:
with

vz—%—:s(s+l)

b FICTORE:

ve+l = VS

Uz-%-s(s+l)

qys+l ays- Z{s+1yz

2(v2-%)+(s+1)

Vs 2(s+1)3
and
. 1
bvo -7
v
_ 5 _ 1
avo—fﬂnz 2£m

Aa=1
J=41

For large z>>1,

Q (z)=1 °f T?(v+s+1/2) (2 v+a+l/2
=172 zs=o-§TT§5$§TT_ ]
(80)

It has been found that the two
above asymptotic forms can be overlapped
to compute Qy-1/2(2) to three place

accuracy for 1l<z<e« and for v=0 to 11
with the number of terms in neither
series, {(79) or (80), exceeding 15.

Evaluation of Hull.Surface Source Density

The underwater portion of a typical
ship hull can be characterized as slender,
implying that rates of change of surface
geometry in the axial direction are
small. For such a slender body in
lateral motion the 3-dimensional source
density, 0i{Ra), required in (59) and
(65) can be approximated by a an axial
distribution of 2-dimensional "strip"
source densities evaluated on hull sec-
tion contours. This is consistent with
the reduction of (69) to (72).

The one-dimensional integral equa-
tion which determines the source density
on the hull contour at Xo 1is,

g. (x _,P)
- - 1 O 1 s
ﬁ,i'N(PJ—‘-—'E-“-—— + ﬁ Gi(xolQ)N(P) *
C(xo)
« ¥ an(p,Q) ds (81)

ﬁ is the gontou; outward ncrmal, Figure
10. For j and k being unit vectors in
the ¥ and z directions, respectively, on
Figure 10,

§3=K for vertical analysis and
-
- fﬁ jJ on hull contour proper
o=
2

N
-j on image hull contour

for athwartship analysis. The P and Q
in (8l) denote "field point" and "source
point," respectively, on the contour and
(P,Q) denotes the Descartes distance
between points P and Q on the contour.

Equation (81} can be solved for oy
by representing the contour approximately
by straight line segments, with the
source density taken as a constant over
each line segment. This is the approach
employed by Frank, [9]1, for a 2-dimen-
sional body oscillating in a free-
surface, as well as by Hess and Smith,
{101, for 3-dimensional infinite fluid
problems, where patches of constant
source density are used.

As explained in the development of
(77), symmetry implies that the source
density over only one quadrant of the
complete contour of Figure 10 is unique;
the source density distributions corre-
sponding to the remaining three guadrants
are positive and negative reflections of
the first, the sign depending on the
direction of motion (i=2 or 3).

Exploiting the symmetry conditions
similarly to (77), (81) can be written
as the system of J simultaneous equa-
tions,

A J
+ o _Gl‘n! s
Ol.i Nj-’ ] +k£ Gink ij J_]-IJ (82)
2
7

1
A

1
i




#ere, the l/4-contour has been segmented
into J segments as shown on Figure 12.
Oiny in {82) corresponds to the constant
source density of segment j on contour
Cnr which is precisely the data required

=3 p— YN
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Figure 12, Contour Geometry

in the potential evaluation by (77).

i is (82) is,

ﬁj = cosSj k + sin Bj |

where B4 is the slope of the j segment
on Figu¥re 12,

N_s,1=N_.
COSB- = __O_J_E;:—-El
3 i (83)
L .= .
inR. = 9] "oj+l
SlnBJ A
]
. = R E = .
By = 654176312 (8051178057 2
ij in (82) is,
H_'|_=C-1 1,_C_-_ ‘r-\_lc,‘ f\-u.-|,+CJ L AR
Jr 1 JerdTK Jydd+K= ], 3JTK

where the upper sign corresponds to

vertical analysis and the lower sign
corresponds to athwartship analysis,
just as in (77).

By sz

c., = Nj-ﬁj in oj(z)az (84)

1
jk ~ 27
~A%y g

with,

pj 2y = \/(Yj—ﬁ) 2+(zj_c) 2

pj(i) being the distance between the
midpoint of the jth gegment and the
peint (n,z)} on the kth gegment. The
gradient is taken with respect to
(¥j.24).

%34) can be integrated exactly.
The integration is most readily accom-
plished in a coordinate system located
in the kth element as shown on Figure
13, Write Cjk as

= §.-9v. (85)

z,C

Pigure 13. Contour Coordinate Systems

midpoint of the jth element by the kth
element. Write ij as,

> _ > +
Vik T Wk K vy d
with
W., = w'.,cosf, -vl, sin@
Jn an Y Jn Y
(86)
= ] s +y!
ij W ijlan vjkcossk

w'4k and V'jk are the velocity components
at j in the local coordinate system of k,
Figure 13; By is given by (83).

In the local system,

LI .a_§.| L gi)_'
w - azl r v ayl
where,
lAEk/z
r = TPy 2 ¥ ]
T J /Ty AT T an
n =-A2k/2
and,
' ¥ Y ] 2i-2
y.' = ==% 2, = Ak
J COBkL J L.U:lpk



Then, by exact integration,

! =
wiig | l By /2
1 - [ ] -1 yj—n
L3 _sgn(n yj)sgn(zj)tan —!z_!_
n =-A2k/’2
{(87)
and
AL
' = - 1 Ity 2 v 2 k/z
v 3k I £n[(yj n") +zj ].
n'==biy so

If the distance between elements
is sufficiently large pj(l) ¢can be

i =41 - -
approximated by pjk /‘Yj yk75+(zj szh
so that (84) becomes,

., =i

—
sk T Nj-'v’j n o 8%, (88)

Use of (88) is equivalent to placing a
point source of strength Q=0;nkld2%x at
the midpoint of the kth line seqment,
or simply evaluating the integral (81),
in terms of the unknown 0ip, by the
rectangle rule.

It has been found that (88) should
not be used when pjk<2.34kk; for
elements in close proximity the exact
integration by way of (85), (86), and
(87} should be used.

" (82) represents a system of J
simultaneous linear eqguations in J
unknown ¥in5 . This system must be
sclved for h=1 to M stations along the
hull. For J=10 and M=50 as proposed in
the discussion of (77) and {78), the
approximation to the complete hull
surface source density required in
computing the hull induced potential by
{74) therefore requires solving 50
independent sets of 10x10 systems of
simultaneous linear equations.
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