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ABSTRACT

This paper presents the theoreti-
cal background of recent techniques to
predict extreme loads (and responses)
pertinent to ship (or marine system)
operation in a seaway. The magnitude
of extreme values, in general, can he
estimated through different approaches,
each based on a different principle,
This paper outlines the three different
approaches for predicting extreme
values which provide information useful
for design consideration of a marine
system. These are,

(1) The initial probability
distribution is known,; for example,
prediction of extreme responses of a
marine system in a seaway in the short-
term based on the linear superposition
principle. In this case, the extreme
values can be simply evaluated by
analytical formulation through applica-
tion of order statistics to the initial
probability distribution.

(2) The initial probability
distribution is unknown but observed
(or computed)} data are available; for
example, prediction of the extreme sea
state (significant wave height) or
prediction of the extreme responses of
a marine system in the long-term, etc.
Estimation of the extreme values is
carried out by approximate methods
through the use of the observed (or
computed) data.

(3) The initial probability
distribution is unknown but cbserved
data of the maxima only are available;
for example, prediction of lifetime
extreme responses of a marine system
from daily observed maximum values,etc.
In this case, the extreme values are
obtained from the asymptotic extreme
value distributions developed in order
statistics.

The difference in these three
prediction approaches are clearly
explained, and practical examples to
evaluate the extreme values following
each method are presented,
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INTROBDUCTION

This paper is prepared to provide
information necessary for understanding
the probabilistic prediction of extreme
values, specifically extreme responses
of a marine system in a seaway.

For the design of a marine system,
it is highly desirable to obtain the
magnitude of the system's responses in
various seas. Among others, the largest
response {extreme value) which the sys-
tem will experience in her lifetime is
necessary to assess possible structural
failure which may occur as sooh as a
single load exceeds the value critical
for the system’s structural strength.
This type of failure is called the §iust
excwision gaifwre in stochastic process
theory. The information on first
excursion failures is necessary together
with that on fatigue failures for
reliability analysis of the system under
random excitation.

The magnitude of extreme response
of a system which is associated with the
first excursion failure can be evaluated
through different approaches, each based
on a different principle. Hence, great
care has to be given in evaluating the
extreme responses depending on the pre-
diction method one may take.

The ¢xtreme value is defined, in
general, as the largest value expected
to occur in a certain number of observa-
tions or in a certain period of time.

It can be defined on a short-term basis
in which the sea environment is statis-
tiecally invariant {(usually from 30
minutes to several hours) as well as on
a long-term basis (usually for many
years). In either case, however, the
number of observations or a period of
time have to be specified in defining
the extreme value. For example, in
estimating the magnitude of the extreme
response of a marine system's lifetime,
the number of response cycles expected
in the lifetime has to be clearly .
specified. It is unfortunate that this



important issue of the extreme value
statistics has often been neglected in
estimating the extreme responses of a
marine system.

Prior to discussing the extreme
response of a marine system, let us
consider the response at every cycle
of encounter with waves irrespective
of its magnitude. Here, the response
is a random variable, denoted by X, and
it has its own probability density
function, f(x), and the cumulative
distribution function, F(x). These
functions are often called the .initiaf
probability density function and the
initial cumulative distribution function,
respectively, in discussing the extreme
value statistics.

The extreme response in n-wave
encounters, denoted by Y,, is also a
random variable and follows its own
probability law, which is different
from that applicable for the response
X. To avoid a possible confusion, let
us write the probability density func-
tion and cumulative distribution func-
tion of the extreme response as g(yp)
and G(yp), respectively. Here, the
probability functions, f(x), F(x),
g(yn), and G(yp) have mathematical
relationships as will be shown later.
Therefore, the extreme response can be
easily evaluated by applying the formu-
lation in extreme value statistics,
called order statistics, if the initial
distribution, f(x), is known.

However, this is not always the
case. If the initial distribution is
unknown, the extreme response can be
evaluated either through approximate
methods or by applying asymptotic
formulations. Consequently, the esti-
mation of the extreme values may be
categorized into three areas as shown
in Table 1. The details are as follows:

(1) The initial probability distribu-
tion is known
The estimation of extreme responses

of a marine system in the short-term is
a typical example of this case, since
the initial probability distribution is
usually considered to be the Rayleigh
probability distribution. In this case,
the probability function of the extreme
values can be precisely derived by
applying order statistics.

(2) The initial probability distribu-
tion is unknown

There are many practical cases of
evaluating extreme responses for which
the initial probability distribution is
not known. In this case, the extreme
responses can be evaluated either
through statistical estimation of the
initial distribution or by application
of the asymptotic extreme value statis-
tics. For the former approach, measured
(or computed) data of the response are
required, while data of the daily,
monthly, or yearly measured (or observed)
maxima are required for the latter
approach.

(a) Measured (or computed) data
are available

A typical example of this case is
the prediction of the extreme responses
in the lifetime of a marine system.

The initial distribution of the response
covering the lifetime of the system is
not precisely known, but accumulation of
some measured (or computed) data may be
available.

Another example is the estimation
of the most severe sea state (signifi-
cant wave height) in the long term.
Again, the probability distribution for
the long-term significant wave height
is not precisely known, and hence it is
estimated approximately through the use
of the observed data.

(b) Measured (or observed) data
of the maxima are available

It is often necessary to estimate
the extreme values in a specified
period of time from the accumulation of
daily, monthly, or yearly measured (or
observed) largest values, called the
maxima for brevity's sake. For example,

Table 1 Estimation of extreme values

CONDITION

ESTIMATION OF
EXTREME VALUES

INITIAL PROBABILITY DISTRIBUTION IS KNOWN

EXACT METHOD

INITIAL PROBABILITY

MEASURED {OR COMPUTED)
DATA ARE AVAILABLE

APPROXIMATE METHOD

DISTRIBUTION 1S
UNKNOWN

L

MEASURED (OR COMPUTED)
DATA OF THE MAXIMA ARE
AVAILABLE
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ASYMPTOTIC
FORMULATIONS




estimate the extreme ship response
expected in 30 years from the data of
the daily largest response measured over
3 years. In this case, the extreme
responses in 30 years, for example,
evaluated by the asymptotic extreme
value distributions which were origi-
nally developed by Fréchet and later
were systematized by Gumbel (1958).

are

EXACT EVALUATION OF EXTREME RESPONSES

As stated earlier, the initial
probability function of the response
and the extreme probability function
are mathematically related. That is,

Probability density function of
extreme value:

AlEGIFG I

=y €5

gly,) = ;

Cumulative distribution function
of extreme value:

_ n
6y = [FGI™, (2)

n

Various statistical properties of
the extreme values can be evaluated
from (1) and (2). For example, the
probable extreme value, Y,, defined as the
extreme value most likely to occur in
n-observations can be obtained as the
modal value of the probability density
function g(y,) as shown in Figure 1,

alyp)

|

Fig. 1 Explanatory sketch of initial
probability density function f(x) and
extreme value probability function g(yn)
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That is, Y, is given as the solution of

the following equation:

d -
g}zg(yn) =0 3
which yields,
; 2 _
f (yn)F(yn)+-(n-1){f(yn)} =0 (&)

The relationship of the probable
extreme value Y, to the initial proba-
bility density function, f(x), shown in
Figure 1 will be discussed in detail in
the next section.

It is often assumed that waves are
considered to be a narrow-band Gaussian
random prccess and that a marine system's
responses in waves are linear. Hence,
the magnitude of the response follows
the Rayleigh probability law which can
be written in the dimensionless form by,

2
&
£(E) = ge  ?
2 (5
£ )
FE) =1-e 2
where, £ = x//ﬁg
X = response (amplitude)
m, = area under the response
spectrum
Thus, for the Rayleigh probability
distribution, equation (4) becomes in

the dimensionless form,
2 2
Sn “n

2.1 -=o0

- 1) ~ (e

2
t (ne (6)

where, = yn//ﬁg

The second term in (6) may be
neglected for a large n, and this
results in the prebkable extreme response
as,

/2 £nn (Dimensionless form)

T =
_ (7)
Y =J/24nn JE%

(Amplitude)



In equation (7), the extreme
response is presented as a function of
the number of wave encounters, n. For
practical purposes, however, it may be
more meaningful to express the extreme
response in terms of time rather than
ag a function of number of wave encoun-
ters. This expression can be made by
using the formulation of the average
number of zero-crossing per unit time
given by,

1 [
n=—/-%2 (8)
2T II]2
where, my, = second moment of the
rasponge spectrum
Then,_the probable extreme
response, Yp, is expressed as a function
of time T:
2 m
- (6OY°T | 2
Yo T /2»&1; 2m m /m_o ®
2]
where, T = time in hours

In the foregoing derivation of the
probable response, Y,, the response is
assumed to be narrow-banded. If this
+hen it ig
extremely difficult to find a solution
of (4) since the response no longer
obeys the Rayleigh distribution;
instead, the probability density func-
tion of the response is given as a

funection of the hand-width narnmnfer

RIR T LGN B0 ) walld - k2

€. That is,
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where, £ = band-width parameter
m2
= 1 iz
- am
J o4
My = 4th moment of the spectrum
u u’
1 -5
(u) = -'-—J du
V2 e

The solution of equation (4) can be
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found approximately for the band-width
parameter less than 0.9. That is, for

e < 0.9, it is possible to use the
following approximation for a large num-
ber of observations, n (Ochi 1973):

).
o)

A 4

1-¢*

(11}

By neglecting terms of small order
of magnitude, (4) becomes,

E2
n
A= a+ il 7
2
Ef;
+ n(l-e2) e  + o(;n) =0 (12)

Then, the following sclution can be
cbtained as the dimensioconless probable
extreme response:

3 ==//2 £n
n

The dimensional probable extreme
response (amplitude), Y,, becomes,

(13)

2/1-¢2 n‘
1+ vV1-¢2

_ 7/ 3 =
7. =/2£,,1{L;:i n]/m
1 +/1 -2 o

The dimensionlegs

208 =200 2 pronable ehne

response calculated from (13) as a
function of the band-width parameter are
shown in Figure 2. As can be seen in
the figure, there is no significant
difference in the probable extreme
resgponse for up to £ = 0.9, and the
effect of e-value of the extreme
response is noticeable only for greater
than 0.980, irrespective of the number

of observations,

(13 a)

Qinece the range of

[ LA

ce-valueg of the

from the order of 0.35 to 0.80, it may
safely be concluded that the effect of
band-width parameter can be ignored as
far as the estimation of the extreme

rognonse iz concerned
Spense 15 coelcerned.

Next, let us express the probable
extreme response given in (13a) which

is applicable for any non-narrow-band
spectrum in terms of time instead of
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Fig. 2 Probable extreme value {_ (ampli-
tude) as a function of € "

number of observations, n. The expected
number of positive maxima per unit time
is given by,

1+ 1-—82 m
n“L — /2 (14)
41 l_-2 m
j1-¢

0
\ 7 o

Then, the probable extreme response
becomes,

2o fm
- oY " 1/72{ —

It is noted that the above equation
is exactly the same as that for narrow-
band spectra given in (9). This leads
to an important conclusion that the
magnitudes of the extreme responses in
a specified period of time are the same
irrespective of the band-width parameter
of a response spectrum. However, it
should be remembered that the number of
peaks for a non-narrow-band spectrum is
larger than that for a narrow-band
spectrum during the same period of time.

The probable extreme response, Yy,
may be interpreted as being most likely
to occur, since it is the value for
which the probability density function
of the extreme response, g(y,), has a
peak (see Figure 1). It should be
noted, however, that the chance of
occurrence of a response higher_than
the probable extreme response, Y,, is
rather high; hence it is not appropriate
to consider Y, for the design of marine
systems in a seaway.

In order to amplify the above
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statement, let us evaluate the proba-
bility that the extreme response (in
the dimensionless form) will exceed the
probable extreme value. Equations (2)
and (13), together with the approxima-
tion given in (1l1), yield,

£im Pr{ Extreme response > [ _} =1 - G(Z )
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Equation (16) implies that there is
a 63.2 percent chance_that the largest
response will exceed Y,. This proba-
bility is extremely high; hence, it is
ation to predict the extreme response
for which the probability of being
exceeded is very small. In other words,
choose a very small number, «, which
may be called the risk paramefpr, and
¢cbtain the extreme response L. (in dimen-
sionless form) for which the following
relationship holds (Ochi 1973);

A
Cn .
fs(c yag_ ={FE P =1 -a (17
J n n t n't
Q
Al
cIl.
s
where, F(Z,) = [f(;n>dcn
o

Considering that o is small and n
is large, we have,

1 5
F(z) = (1-o)f ~ 1-%+ o(a’) (18)

Then, with the aid of the assump-
tion given in (11), we have,

S 2
z ='/2£n 1-e” 20} e co0.9
o 1+/1-€2 ¢

(19)




For a narrow-band assumption
e =0, (19) is reduced to,

£ <fzenl (20)
n o1

The extreme response for design
consideration with a = 0.01 calculated
from (19) and (20) is shown in Figure 3
as a function of the vand-width para-
meter, As can be seen in the figure,
there is no appreciable difference in
the extreme wave amplitude for £ up to
0.9. The difference in the magnitude
of extreme response is noticeable for
€ greater than 0.90; however, the
e-value is usually less than 0.8 in
practice, as stated earlier in connec-
tion with Figure 2. Hence, the narrow-
band assumption is acceptable for the
extreme response for design considera-
tion of marine systems. Thus, analogous
to equation (15), the design exireme
response can be written as a function
of time by,

2 m
AL CIO A
*n _/2 EHJ 2o o ; /Eo (21)

for amplitude

The risk parameter, o, involved in
(21) is at the designer's discretion.
In choosing the a-value, it is noted

58

that the number of encounters for a
marine system with a particular sea
severity in the lifetime has to be con-
sidered even though the design extreme
value given in (21) is applied to the
short-term prediction. For example,
suppose we evaluate the design extreme
value in a particular sea severity with
99 percent confidence, i.e., a = 0.01.
If the system will encounter seas of
this severity 20 times in her lifetime,
then it is necessary to divide the risk
parametier o = 0.01 by 20 (i.e.

o =5 x 10~4) for evaluation in order to
maintain the 992 percent assurance in the
prediction.

The effect of the a-value on the
magnitude of design extreme values of
the midship bending moment of the
MARINER in seas of significant wave
height 4.6 m (15 ft) and 10.7 m (35 ft)
are shown in Figure 4. The family of
six-parameter wave spectra consisting of
eleven members in each sea severity
(Ochi 1976) is used 1n this computation,
and the largest values in each sea
severity are plotted in the figure. The
solid circles are plotted in the figure
are the extreme values evaluated with
o = 0.01 but taking into consideration
of the number of occurrences of each
sea state in the North Atlantic in 30
vears, The figure indicates that the
design extreme values do not increase
substantially with increasing a-value.

It is of interest to note the
effect of time duration on the magnitude
of extreme values. Figure 5 shows an
example of the effect of ship operation
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Fig. 3 Extreme wave ¢_(amplitude) for design considera-
tion as a function of number of observations for wvarious
band-width parameter £ (o = 0.01) (from Ochi 1973)
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Fig. & Design value of the midship
bending moment of the MARINER as a
function of coefficient oo (from Ochi
1977

time on extreme values. The figure per-
tains to a sea of significant wave
height of 35 ft (10.7 m), and the upper
bound values using the six-parameter
wave spectrum are plotted. As can be
seen in the figure, the magnitude of
extreme values, both probable as well as
the design extreme values, increase
significantly during the first several
hours and thereafter increase very
slowly with time. This is the general
trend of the extreme values in all sea
severities.

An example of the design extreme
values of the wave-induced bending
moment for various sea severities are
shown in Figure 6. The computations
are made on the MARINER, and the curves
shown in the figure are the upper bound
curves obtained by using the two-
parameter and six-parameter families of
wave spectra, As can be seen in the
figure, the results of the computation
using the two families of wave spectra
agree well up to seas of significant
height of 30 ft (2.2 m). Tor seas of
significant wave height over 30 ft
(2.2 m) , however, the design extreme
values evaluated using the two-
parameter spectrum are higher than those
using the six-parameter spectrum. It is
of interest to note here that Russo and
Sullivan (1953) gives the values of
hogging bending moment of 85.3 x 107
ft-1bs (116 x 169 m-tons) caiculated
fellowing the classic standard procedure
of assuming the ship to be statically
supported on a trochoidal wave equal in
length to the length of the ship and
having a height equal to one-twentieth
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of the length.

APPROXIMATE ESTIMATION OF
EXTREME RESPONSES

In the previous section, exact
information of the initial probability
distribution was necessary for estima-
ting the extreme response by applying
order statistics. In practice, however,
the information for the initial distri-
bution is oiten not precisely known.
For example, the probability distribu-
tion of the long-term response of a
marine system is not known. It may be
the Weibull distribution or the log-
normal distribution. However, there is
no scientifie basis for selecting any
specific probability distribution func-
tion to characterize the long-term
responses as contrasted to the short-
term responses. Ipn other words, we
have to estimate the extreme responses
from the accumulation of the observed
(or computed} data over a sufficiently
long period of time without precise
information of the initial probability
distribution,

One way to overcome this difficulty
is to evaluate the extreme response by
an approximate method that is applicable
for any probability distribution if
certain conditions are met.
nrincrinla Anf thie annravimot
principle of this appreoximat

is as follows:

Let the initial cumulative distri-

bution function, F(x), be in the form
of

F(x) = 1 - e 300 (22)
where, q(x)} is a positive real-valued

function that satisfies the conditions
required for F(x) being a cumulative

distribution function. Then, eguation
(4) becomes,
[
q'(yn) ; ) e—q(yn)t
' 2 ‘
fq' ¢y 2}
~q(y )
+ ne -1=0 (23)

Since the first term is small in
comparison with other terms for large
n, (23) yields,

—aly,) . 1 (26)

h o)

e
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_ Thus, the probable extreme response,
Yn, for large n is given by,

Y. = q lenn)

n (25)

where, q_l(
q(x).

} is the inverse function of

For evaluating the extreme response
in practice, however, it is not necessary
to know the function g(x) in (22). As
can be seen from (22) and (24), the
probable extreme response for large n
is given as the x-value in (22) for
which the probability of exceeding x is
equal to 1/n. That is,

— 1
1- F(yn) = o (26)

Equation (26) implies that the
probable extreme response expected to
occur in n-observations can be evaluated
from the initial cuomilative distribution
and the number of wave encounters
involved. Although the initial cumula-
tive distribution function is not
precisely known, the function can be
constructed from the observed (or com-
puted) data, For this, the data are
often fitted by some known distribution
such as a Weibull distribution or log-
normal distribution, ete., and the
extreme value in a desired period of
time is estimated based on this presumed
distribution. Sometimes, the extreme
value is determined by simply extending
the cumulative distribution function
without fitting the data to a particular
probability distribution function.

Although many examples are avail-
able for estimating the extreme responses
of marine systems by applying this
approximation method, let us consider
the estimation of the extreme sea
severity (significant wave height) using
the data presented in Table 2 (Bouws
1978). The table shows the frequency
of occurrence of significant wave height
measured in the North Sea. 4 total of
5,412 measurements were made in 3 years.

Figure 7 shows fhe cumulative dis-
tribution functicn of the significant
wave height plotted on the log-normal
provability paper, while Figure 8
shows the same data plotted on the
Weibull probabhility paper. It anhears
from comparison of Figures 7 and 8,
that the data are better represented by
the Weibull distribution, and hence the
estimation of the extreme significant
wave height in 50 years or 100 years
; - :
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Table 2 Significant wave height
data obtained from measurements
in the North Sea (53.5°N, 4°E)
(from Bouws 1978)

SIGNIFICANT NUMBER OF

WAVE HEIGHT (M) CBSERVATIONS
C —-05 1,280
05— 1.0 1,549
1.O= 1.5 1,088
.5 —20 628
2.0 - 2.5 402
25-30 |apg
3.0~ 35 115
35 - 40 63
4.0 -45 38
45 -50 18
50 -55 21
55 —-6.0 7
6.0-86.5 8
6.5-70 2
7.0-75 |

TOTAL 5,412 in 3 Years

straight line given in Figure B.

However, extreme care has to be

given in interpreting the data plotted

on the probability paper.

If we take

a close look at the data plotted in
Figures 7 and 8, the data are not
satisfactorily represented over the
entire range of significant wave
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Fig. 7 Cumulative distribution of
significant wave height plotted on
log-normal probability paper {data

from Bouws 1978)
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Fig. 8 Cumulative distribution
function of significant wave height
plotted on Weibull probability paper
(data from Bouws 1978)

height by either the log-normal proba-
bility distribution or the Weibull
probability distribution. That is
evident in Figure 9 in which the compar-
iscon between the histogram and the two
probability distribution functions are
shown.

As can be seen in Figure 9, the
extreme significant wave height may be
estimated from neither the log-normal
or Weibull distribution but from the
extension of data points by applying

o8 1 1 T 7T
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Fig. 9 Comparison between histogram
of significant wave height and log-
normal and Weibull probability density
functions (data from Bouws 1978)
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Fig, 10 Estimation of extreme signi-
ficant wave height from the extension
of data points (data from Bouws 1978)

equation (28). The extension of data
point is shown in Figure 10. The
vertical scale of the figure is the
inverse of the lefthand side of (26),
which is often called the refurn period,
in logarithmic form. Since the number
of measurements of sighnificant wave
height is 5,412 in three years, the
number of significant wave heights
expected in ten years will be 18,040.
By taking the logarithms of this num-
ber, it is obtained from the figure that
the extreme significant wave height

expected in 10 years will he 7.5 meters

el Loi 1 L al's Wilid < T uSih,

Similarly, the extreme significant wave
height expected in 50 years can be
estimated as 8.0 meters,

The approximate method presented
in the foregoing can be applicable for
any probability distribution; however,
the method has a drawback, That is,
the extreme wave height expected to
cccur in the future is determined by
extending the line, taking into
account the higher wave heights that
are extremely unreliable data. For a
more precise estimation, it is highly
desirable to extend the cumulative
distribution function representing the
data over the entire range of the
values. Emphasis should not be given
to the representation of data points
higher than the cumulative distribution
of ¢.99.

To achieve a precise representation

of the data, a function q(x) in (22) may
be expressed as a combination of an exX-
ponential and a power of the wave height
(Ochi and Whalen 1980):

k

m e—px (27)

q(x) = ax

The parameters in q{x) are deter-
mined numerically by a nonlinear least
squared fitting procedure. The form
used in this minimization procedure is
given by,

G = fni~tn (1—F)}= fna + mlnx -pxk

(28)

The parameters are optimized such
that the sum of the squared values of
the difference between G in (28) and
the corresponding data values becomes
minimal. ©Once the parameter values are
determined, the extreme wave height can
be evaluated from (26). This method is
applied to significant wave height data
shown in Table 2, For this example,
values of four parameters involved in
(27) are obtained as,
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The cumulative distribution func-
tion obtained by using these values are
plotted on log-normal probability paper
as shown in Figure 11, together with
data points. A similar presentation
plotted on Weibull paper is shown in
Figure 12, As can be seen in these
figures, this cumulative distribution
function represents very well the data
over the entire range of the values, and
therefore it can be used for estimating
the extreme significant wave height. The
result is shown in Figure 13. The com-
parison between the extreme significant
wave height thus estimated and those
estimated bhased on the log-normal and
the Weibull probability distributions
shows that the log-normal probability
distribution substantially overestimates
the extreme significant wave height,
while the Weibull probability distribu-
tion underestimates it on the order of
10 percent for this example.

For design consideration of a marine
system, a certain margin above the
probable extreme value is required, and
this can be obtained following the same
concept as was discussed in the develop-
ment of (20). That is, by choosing a
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tion based on Equation (27) plotted om
log~normal probability paper (data from
Bouws 1978)
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Fig, 12 Cumulative distribution func-
tion based on Equation (27) plotted on
Weibull probability paper (data from
Bouws 1978)

A
consideration, Yn’ can be obtained from

1-FG) = & (29)

As an application of the approxi-
mate methods discussed in this section,
let us evaluate the desigh extreme
values of the transverse wave-induced
force acting on the cross-beam bridge
structure on a semi-submersible off-
shore platform shown in Figure 14. For
evaluating the lifetime response of the
ocean platform, the following various
parameters have to be considered:

(i) Frequency of occurrence of
various sea severities, P,
(ii) Frequency of octurrence of
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Fig. 13 Prediction of extreme wave
height by using the probability func-
tion based on Equation (27)

(data from Bouws 1978)

various heading to waves, P;
(iii) Frequency of encoiunter with
various wave spectral shapes, Pk
(iv) Expected number of cycles of
response for each given sea, heading,
and wave spectral shape.

Then, the probability density
function for the long-term response can
be written as follows:

; Ej: }:k‘ 0y PP 4Py £,%)

2 2 L mkPyPyPy
i3 K

(30)

f(x) =

where, f (x) is the probability density
function for the short-term response,

n, is the average number of responses
per unit time of the short-term response,

The total number of responses
expected in the lifetime is given by,

n= LEY npippp, Tx (60y? (31)

i3k

where, T is the total exposure time to
sea,

Computation of the extreme response
given in (30) is carried ocut by using
the family of six-parsmeter wave spec—
tra with the risk parameter ¢ = 0.01.
Since the magnitude of the transverse
force acting on the cross-beam structure
is maximum in beam seas, it may be of
interest to see the difference, if any,
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Fig. 14 Semisubmersible-type ocean
platform used for computations

between the predicted long-term design
extreme values including all headings,
sea severities, and spectral shapes
and those predicted in various sea
severities and spectral shapes in beam
seas only. The significant difference
in these two long-term computations is
the number of responses expected in
the lifetime; 6.146 x 107 for all
headings versus 2,078 x 107 for beam
seas only in 20 years operation.

Figure 15 shows the design extreme
values evaluated for these two long-
terms (Ochi and Wang 1978). As can be
seen in the figure, the design extreme
value evaluated from the lifetime prob-
ability distribution including all
headings and that evaluated from the
beam seas only are both 4,800 tons, if
the difference in the number of encoun-
ters for each case is taken inteo
consideration.

Next, the extreme responses
evaluated through the long-term predic-
tion approach will be compared with
those evaluated through the short-term
prediction apprcach. It may appear that
estimation through the long-term predic-
tion approach is superior to that
through the short-term prediction ap-
proach, since it deals with the
accumulation of all responses. However,
im reality, the long-term estimation

includes a considerable percentage of
small responses in relatively mild seas,
which do not contribute to the extreme
design value., The results of computa-
tions have shown that the design extreme
value obtained through the short-term
approach is 4,700 tons (Ochi and Wang
1976) in seas of significant wave height
of 16 m (52.5 ft.), the value is very
close to that obtained through the long-
term approach. As this example shows
the predicted extreme values through

the long-term and short-term approaches
are nearly equal if the difference in
the number of encounter with waves for
each case is taken into consideration,
It is noted that the estimation proce-
dure of the extreme values through the
short-term prediction approach is
extremely simple in comparison with that
through the long-term approach. Hence,
the short-term prediction approach
appears to be adequate as far as esti-
mation of extreme values is concerned.

ESTIMA
BY ASYMPTOTIC FORMULAE

As was stated in the Introduction,
it is possible to predict the largest
responses expected to occur in the life-
time of a marine system from the mea-
sured (or observed) maxima. The mea-
sured {(or observed) maxima defined here
is the largest value that is measured
{or observed) during a certain period
of time; every 6 hours, every 12 hours,
a day, etc. The estimation is based on
the asymptotic distribution of the
extreme values developed by Gumbel
{(1958). The significant feature of the
asymptotic distribution is that the
probability function for the maxima
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Fig. 15 Comparison of design extreme
values of the transverse force com-
puted including all headings to waves
and that computed in beam seas only
(from Ochi and Wang, 1979)
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reduces to the same type irrespective

of the initial probhability distribution.

The underlying principle of the asymp-
totic distribution is as follows:

Let us assume that the initial
cumulative distribution function is in
the form given in (22). By using the
relationship given in (24), we can
write the initial cumulative distribu-
tion function as,

q9F.) - q(x}
F(x)=1—~11;e n (32)

Then, from the definition given in
(1), the cumulative distribution func-
tion of the extreme value for large n
hecomes,

1 9(.) - qlx)yn
G(yn)=f,£m{1—;e o }

n-+ o

- exp{q(§;) - alyy

(33)

Since the probability distribution
function of extreme values, Y_, is much
more concentrated around its modal
value, Y¥Yp, in comparison with the
initial probability density functiocn,
the term g{yy) - qf{yp) may be expanded
by the Taylor series. Then, by neglect-
ing higher order terms, (33) becomes

-exp i~ q' (v,) (v, - ¥ )}

Gly,) = e (34)

Here, neither q'(y,) nor y, are
known in reality; hence, let us express
(34) in the following form,

-exp{-z}
G(z) = e (35)

where,
2=q" 00, -7 (36)

The mean and variance of the
random variable Z can be cbtained from
(35) as,

Elz]

¥ (Euler's constant, 0.577)

w2/6

Var[z]
(37)
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Then, from (36) and (37), we can
derive the following relationship

_ w6
q'y) = ——=——
/Varly ]
(38)
- Y
v, = Ely 1 - :;?§;3

Since _the mean and variance, E(y,]
and Var[y,], respectively, can be
obtained from the data, the cumulative
distribution function of the extreme
value given in (34) can be evaluated
with the aid of (38).

In summary, the cumulative distri-
bution function of the extreme value
can be written in the following form:

_E-G(YH-U)
Gy ) = e o<y <
(39)
where,
B 6
/Var[yn]

6
u = E[yn] —[;; YJVar[an

Equation (39) is the so-called
Gumbel's Asymptotic extreme value distribution,

The method to estimate the extreme
responses expected in the lifetime of a
marine system from equation (39) is the
same procedure as discussed in connec-
tion with equations (26) and (29). Bince
the concept of the asymptetic distribu-
tion of the extreme value deals with the
maxima, Y, observed in certain period
of time, the cumulative distribution
function, G(yp), given in (39) can be
considered as the initial probability
distribution. Hence, the lifetime
probable extreme value is determined as
the ¥Yp-value which satisfies

1- c@n) = % (40)

where, n is the number of the maxima
expected to occur in the lifetime, and
it is estimated from the observed data
(see the example shown in Figure 18).
Similarly, the design value with the

7

P
—



risk parameter, o , can be evaluated as
the yp-value which satisfies

[+

1-6@) =4 (41)

The sample space of the distribu-
tion given in eguation (39) is
unlimited; however, there 1s another
distribution called Asymplofic extfreme
value distrnibution with upper Limit which may
also be applicable for the analysis of
observed maxima. The distribution is
given by (Gumbel 1958),

—wm < yn < w (42)

where, w = upper limit

k = positive constant linked
to the limit value, w

v = yp-value for which G(yp) =
el = 0.368.

The derivation of this asymptotic
distribution will not be given here;
however, it may suffice to state that
it is derived by applying the Taylor
series expansion to the initial proba-
bility distribution function in the
neighborhood of w.

The values of the two parameters,

w and k, can be determined from the
following two moments of Yn:

Ely,] = w - (w-v) [*(l-i- %)

w2 = 2w{w=-v} l‘(l+ %

fe-nir(ie o) @

E[yi]

The values of w and k can also be
determined graphically by choosing the
cumulative distribution function, G(yp),
for two different yp-values. It should
be noted that the upper limit value, w,
thus determined from the data is merely
the limit value of yp for n » «, which
ig unrealistically large value, and
hence it cannot be used for design con-
sideration.

The probable extreme value as well
as the extreme value for design should
be evaluated by the same procedure as
presented in connection with the
asymptotic extreme value distribution

28

with unlimited sample space,.

The method to estimate the lifetime
design value through the asymptotic
extreme value formulae is applied to the
results of extensive full scale trials
carried out on eight SL-7 vessels on
SEA-LLAND service (Fair and Booth 1979).
During these trials, the strain gage
recorder was installed at midship of
each ship, and the maximum peak to
maximum trough stresses which occurred
during every 4-hour sampling period were
recorded,

As an example of analysis which can
be made from these data, the extreme
responses expected in the lifetime of
the SL-7 will be estimated based on the
following two data:

{(a) One-year data obtained on
SEA-LAND MCLEAN in the Atlantic. A
total of 1,802 cobservations.

(b) TFive-data-years obtained in
the Atlantic. A total of 12,319 obser-
vations.

It is noted that the results of
analysis have shown that the responses
observed in the Atlantic service routes
are larger than those in the Pacific
service routes. Therefore, the design
extreme value may be estimated from
analysis of data in the Atlantic.

Figures 16 and 17 show the compari-
sons of the cumulative distribution
functions of these data and the asymp-
totic extreme value formulations given
in (39) and (42). TFigure 16 shows the
comparisons using the one-year data,
while Figure 17 shows those for the
five-data years.

The lifetime extreme responses can
be estimated from the relaticonship given
in eguation (40) together with the
information on the number of observa-
tions. The results are shown in Figures
183 and 19. As can be seen in these
figures, the lifetime extreme response
of the SL-7 estimated from the one-year
data is very close to that estimated
from the five-data-years (in which many
sister ships' data are involved), if the
difference in the number of observations

in each case is taken into consideration.

For instance, from equation (39),
the design extreme value (peak-to-trough
stress) in 30 years with the risk para-
meter a = 0,01 is 64,0 kpsi
(45.4 kg/mmz) from the one-year data as
compared with 60.0 kpsi (42.6 kg/mm2)
from the five-data-years.

It can also be seen in these
figures that the extreme design estimate
based on the asymptotic fermuiation with
upper bound is approximately 17 percent
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less than that estimated based on the
asymptotic formulation with unlimited
bound,

CONCLUSION

This paper presents the theoretical
background of recent technigues to
predict extreme values, specifically
extreme leoads and responses of marine
systems in a seaway. There are three
different approaches to evaluate extreme
values depending on the information

Ao

\u¢ua; available in the prediction.
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These are (a) the exact evaluation,
(b} the approximate estimation, and
(¢) the estimation by using the
asymptotic extreme value formulae. The
underlying principle and practical
application of each approach are dis-
cussed. From the results of numerical
examples, the following conclusions are
drawn:

One way to evaluate the design
extreme value o0f the responses of a
marine system is to c¢alculate the
extreme response through the short-term
approach by using the family of wave
spectra in each sea. The computations



should be made for the severest loading
and heading of the response, at the
attainable highest speed of the system,
if applicable, in each sea. From the
results of the largest response in each
sea severity, the design extreme value
can be cobtained with a specified risk
parameter, o,

In the short-term prediction, the
effect of the spectral band-width para-
meter on the magnitude of extreme values
appears to be negligibly small
irrespective of the number of observa-
tions.

The extreme values of the long-
term response of a marine system can
be evaluated through the approximate
estimation method. In this case, the
estimation can be made based on the
cunulative distribution function which
represents the data over the entire
range of values. Emphasis should not
be given to the representation of data
points higher than the cumulative
distribution of 0.99.

The extreme value through the

long-term and short-term approaches

are nearly egual if the difference in
the number of encounters with waves

for each case is taken into considera-
tion. It is noted that the estimation
procedure of the extreme values through
the short-term prediction approach is
extremely simple in comparison with
that through the long-term approach.

The lifetime extreme response of
a marine system can be estimated from
data of the observed maxima by applying
the asymptotic extreme value formulae.
The lifetime {30 years) extreme
response of the SL-7 estimated from the
one-year data is very c¢lose to that
estimated from the five-data-years
(in which many sister ships' data are
involved), if the difference in the
number of observations in each case is
taken into consideration.
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