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ABSTRACT

This paper presents the theoreti-
cal background of recent techniques to
predict extreme loads (and responses)
pertinent to ship (or marine system)
operation in a seaway. The magnitude
of extTeme values, in general , can be
estimated through different approaches,
each based on a different principle
This paper outlines the three different
approaches for predicting extreme
values vihicb provide information useful
for design consideration of a marine
system. These are,

(1) The initial probability
distribution is known; for example,
prediction of extreme responses of a
marine system in a seaway in the short-
term based on the linear superposition
principle. In this case, the extreme
values can be sinmlv evaluated b“
analytical formul~t;on thr&h rifiplica–
tion of order statistics to the initial
probability distrih”tion.

(2) The initial Drobabilitv
distribution is unknow; but obse;ved
(or computed) data are available; for
example, prediction of the extreme sea
state (significant wane height) or
prediction of the extreme responses of
a marine system in the long-term, etc.
Estimation of tbe extreme values is
carried out by approximate methods
through tbe use of the observed (or
computed) data.

(3) The initial probability
distribution is unknown but observed
data of the maxima only are available;
for example, prediction of lifetime
extreme responses of a marine system
from daily observed tna.xim”mvalues ,etc.
1“ this case, the extreme values are
obtained from tbe asvmvtotic extreme
value distributions &~eloped in order
statistics.

The difference in these three
prediction approaches are clearly
explained, and practical examples to
evalwite the extreme values following
each method are presented.

INTRODUCTION

This paper is prepared to provide
information necessary for understanding
the probabilistic prediction of extreme
values, specifically extreme responses
of a marine system in a seaway.

For the design of a marine system,
it is highly desirable to obtain the
magnitude of the system, s responses in
various seas. Among others, the largest
response (extreme value) which tbe sys-
tem will experience in her lifetime is
necessary to assess possible structural
failure which may occur as soon as a
single load exceeds the value critical
for the system, s structural strength.
This type of failure is called the @&t
txctii.an@&ULE in stochastic process
theory. The information on first
excursion failures is necessEYy togetbt?r
with that on fatigue failures for
reliability analysis of the system under
random excitation.

The magnitude of extreme response
of a system which is associated with tbe
first excursion failure can be evaluated
through different approaches, each based
on a different principle. Hence, great
care has to be given in evaluating the
extreme responses depending on the pre-
diction method one may take.

The CXtiUW w.&e is defined, in
general, as the largest value expected
to occur in a certain number of observa-
tions or in a certain period of time,
It can be defined on a short-term basis
in which the sea environment is statis.
tically invariant (usually from 30
M1nUte S to several hours ) as well as on
a long-term basis (usually for many
years ) In either case, however, the
number of observations or a period of
time have to be specified in defining
the extreme value. For example, in
estime.ting the magnitude of tbe extreme
response of a marine sy~temr~ lifetime,
the number of response cycles expected
in the lifetime ba.sto be clearly
specified. It is unfortunate that this
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important issue of the extreme value
statistics has often been neglected in
estimating the extreme responses of a
marine system.

Prior to discussing the extreme
response 0? a marine system, let us
consider the response at every cycle
of encounter with waves irrespective
of its magnitude. Here,theresponse
is a random variable, denoted by X, and
it has its own probability density
function, f(x), and the cumulative
distribution function, F(x). These
functions are often called the ~~
pmbubdl-itg datiity &.utcZionandthe
-&&iduundtivtdhtibtion @m.t.ion,
respectively,indiscussingtheextreme
valuestatistics.

Theextremeresponseinn-wave
encounters,denotedbyYn,isalsoa
randomvariableandfollowsitsown
probabilitylaw,whichisdifferent
fromthatapplicablefortheresponse
x. Toavoida possibleconfusion,let
uswritetheprobabilitydensityfunc–
tionandcumulativedistributionfunc–
tionoftheextremeresponseasg(yn)
andG(yn),respectively.Here,the
probabilityfunctions,f(x),F(x),
g(Yn),andG(yn)havemathematical
relationshipsiswillbeshownlater.
Therefore,theextremeresponsecanbe
easilyevaluatedbyapplyingtheformu–
lationinextremevaluestatistics,
calledofidtiAttiticb,iftheinitial
distribution,f(x),isknown.

However,thisisnotalwaysthe
case. Iftheinitialdistributionis
unknown,theextremeresponsecanbe
evaluatedeitherthroughapproximate
methodsorbyapplyingasymptotic
formulations.Consequently,theesti-
mationoftheextremevaluesmaybe
categorizedintothreeareasasshown
inTable1. Thedetailsareasfollows

(1) Theinitialprobabilitydistribu-
tionisknown

Theestimationofextremeresponses

ofa marinesystemintheshort–termis
a typicalexampleofthiscase,since
theinitialprobabilitydistributionis
usuallyconsideredtobetheRayleigh
probabilitydistribution.Inthiscase,
theprobabilityfunctionoftheextreme
valuescanbepreciselyderivedby
applyingorderstatistics.

(2) Theinitialprobabilitydistribu-
tionisunknown

Therearemanypracticalcasesof
evaluatingextremeresponsesforwhich
theinitialprobabilitydistributionis
notknown.Inthiscase,theextreme
responsescanbeevaluatedeither
throughstatisticalestimationofthe
initialdistributionorbyapplication
oftheasymptoticextremevaluestatis–
tics.Fortheformerapproach,measured
(orcomputed)dataoftheresponseare
required,whiledataofthedaily,
monthly,oryearlymeasured(orobserve
maximaarerequiredforthelatter
approach.

(a) Measured(orcomputed)data
areavailable

A typicalexampleofthiscaseis
thepredictionoftheextremeresponses
inthelifetimeofa marinesystem.
Theinitialdistributionoftherespons
coveringthelifetimeofthesystemis
notpreciselyknown,butaccumulationof
somemeasured(orcomputed)datamaybe
available.

Anotherexampleistheestimation
ofthemostsevereseastate(signifi-
cantwaveheight)inthelongterm.
Again,theprobabilitydistributionfor
thelong-termsignificantwaveheight
isnotpreciselyknown,andhenceitis
estimatedapproximatelythroughtheuse
oftheobserveddata.

(b) Measured(orobserved)data
ofthemaximaareavailable

Itisoftennecessarytoestimate
theextremevaluesina specified
periodoftimefromtheaccumulationof
daily,monthly,oryearlymeasured(or
observed)largestvalues,calledthe
maximaforbrevity’ssake.Forexample

Table1 Estimationofextremevalues

1=-:2’:N:’E3
INITIALPROBABILITYDISTRIBUTION1SKNOWN

INITIALPROBABIL
DISTRIBUTIONIS
UNKNOWN
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estimatetheextremeshipresponse
expectedin30yearsfromthedataof
thedailylargestresponsemeasuredover
3 years.Inthiscase,theextreme
responsesin30years,forexample,are
evaluatedby theasymptoticextreme
valuedistributionsw~ichwereorigi-
nallydevelopedbyFrechetandlater
weresystematizedbyGumbel(1958).

EXACTEVALUATIONOFEXTREMERESPONSES

Asstatedearlier,theinitial
probabilityfunctionof theresponse
andtheextremeprobabilityfunction
aremathematicallyrelated.Thatis,

Probabilitydensityfunctionof
extremevalue:

g(yn)=n[f(x){F(x))n-l]wy(1)
n

Cumulativedistributionfunction
ofextremevalue:

G(yn) = [{F(x)}n]x=y
n

(2)

Variousstatisticalpropertiesof
theextremevaluescanbe evaluated
from(1)and(2). F~rexample,the
pkobablczOWIWJTW value, Yn, definedasthe
extremevaluemostlikelytooccurin
n–observationscanbeobtainedasthe
modalvalueoftheprobabilitydensity
mctiong(yn)asshowninFigure1.

kII 9(Y”
I
I

Thatis,~n isgivenasthesolutionof
thefollowingequation:

+dYn)= o
n

whichyields,

f’(yn)F(yn)+ (n-l){f(yn)]z= O

(3)

(4)

Therelationshipoftheprobable
extremevalue~n totheinitialproba-
bilitydensityfunction,f(x),shownin
Figure1 willbediscussedindetailin
thenextsection.

ltisoftenassumedthatwavesare
consideredtobea narrow-bandGaussian
randomprocessandthata marinesystem’s
responsesin waves arelinear.Hence,
themagnitudeoftheresponsefollows
theRayleighprobabilitylawwhichcan
bewritteninthedimensionlessformby,

_ +2
f(~)=~e

(2-—
F(~)=l-e2

(5)

where, ~ = x/Jiiio

x = response(amplitude)

mo = areaundertheresponse
spectrum

Thus, fortheRayleighprobability
distribution,equation(4)becomesin
thedimensionlessform,

~2
n c:

2 —— .—
Ln(ne2 -1)-(e2 -1)=0 (6)

where, <n= YnlG-

Thesecondtermin(6)maybe
neglectedfora largen,andthis
resultsintheprobableextremeresponse
as,

~n=J= (Dimensionlessform)
(7)

Fig.1 Explanatorysketchofinitial Yn=mfio (Amplitude)‘“
probabilitydensityfunctionf(x)and
extremevalueprobabilityfunctiong(yn)
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In equat ion (7), the extreme
response is presented as a function of
the number of wave encounters, n. For
practical purposes, however, it may be
more meaningful to express the extreme
response in terms of time rather than
as a function of number of wave encoun-
ters. This expression can be made by
using the formulation of the average
number of zero–crossing per unit time
given by,

where, m2 = second moment of the
response spectrum

Then. the urobable extreme

(8)

response, Yn, i; expressed as a function
T:of time

?“ =

where,

In

T = time in hours

the foregoiEg derivation of the
probable response, Yn, the response is
assumed to be narrow-banded. If this
assumption is removed, then it is
extremely difficult to find a solution
of (4) since the response no longer
obevs the Ravleieh distribution:
ins~ead, the”pro~abi lity density func-
tion of the response is given as a
function of the band–width parameter,
E. That is,

where, E = band–width parameter

found approximately for the band-width
parameter less than O.9. That is, for
c < 0.9, it is possible to use the
following approximation for a large nun-
ber of observations, n (Ochi 1973) :

()1-s2*-T< -o
“

()4+’-1
(11)

“1
2

‘2
l-—

‘o%

= 4th moment of the spectrum
‘0

The sol”t ion of equat ion (4) can be

By neglecting terms of small order
of magnitude, (4) becomes,

E;
+ “(1-.2)e + .(cn) = o (12)

Then, the following solution can he
obtained as the dimensionless probable
extreme response:

Tbe dimensional p~obable extreme
response (amplitude ), I’n,becomes,

The dimensionless probable extreme
response calculated from (13) as a
function of tbe hand-width parameter are
shown in Figure 2. As can be seen in
the figure, there is no significant
difference in the probable extreme
response for up to E = 0.9, and the
effect of ~–value of the extreme
response is noticeable only for greater
than 0.90, irrespective of the number
of observations.

Since the range of c-values of tbe
marine system’s response spectra spans
from the order of 0.35 to 0.80, it may
safely be concluded that tbe effect of
band-width parameter can be ignored as
far as tbe estimation of tbe extreme
response is concerned.

Next, let us express the probable
extreme response given in (13a) which
is applicable for any non-narrow-band
spectrum in terms of time instead of
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NUMBER N

Fig. 2 ProbableextremevalueY~ (ampli-
tude)a,.a functionof E

number of observations. n. The exDected
number of posit ~.vemaxima per uni; time
is given by,

Then, the probable extreme response
becomes,

It is noted that the above equation
is exactly the same as that for narrow-
band spectra given in (9) This leads
to an important conclusion that the
magnitudes of tbe extreme responses i“
a specified period of time are the same
irrespective of the band-width parameter
of a response spectrum. However, it
should be remembered that the number of
peaks for a non-narrow-band spectrum is
larger than that for a narrow-band
spectrum during the same period of time,

Tbe probable extreme response! ~n,
Q&Yo:~unterpreted as being most l~kely

, since it is the value for
which the probability dens<.ty function

Of the extreme respOnse, g(yn), has a
peak (see Figure 1) It should be
noted, however, that the chance of
occurrence of a response higber_than
tbe probable extreme response, Yn, is
rather high ;_hence it is not appropriate
to consider Yn for the design of marine
systems in a seaway.

statement, let us evaluate the proba-
bility that the extreme response (i”
the dimensionless form) will exceed the
probable extreme value. Equat ions (2)
and (13), together with the approxima-
tion given in (11), yield,

h Pr{ ExtremeresPor,se> Tn} = I - G(~m)
“+=

= 1 - ,-1 = 0.632 (16)

Equation (16) implies that there is
a 63.2 percent cha”ce_that the largest
response will exceed Yn. This proba-
bility is extremely high; hence, it is
highly desirable fro” a design consider-
ation to predict the extreme response
for which the probability of being
exceeded is very small In other words j
choose a very small number, a, which
may be called the &h @zhIII@A, and
obtain the extreme response C“, (in dimen-
sionless form) for which the rollowi”g
relationship holds (Ochi 1973) ;

J
en
g(c”)dcn= {F($n))n- 1 -u (17)

o

J
(n

where ,
F($n)= f(c”)dc“

o

Considering that a is small and n
is large, we have,

F(<n)- (1-~):- l-:+od) (18)

Then, with tbe aid of the assump-
tion given in (11), we have,

(19)

.

In order to amplify the above
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For a narrow–band assumption
c = O, (19) is reduced to,

(20)

The extreme response for design
consideration with a = 0.01 calculated
from (19) and (20) is shown in Figure 3
as a function of the band-width para-
meter, As can be seen in the fi~ure,
there is no appreciable difference in
the extreme wave amplitude for E up to
O.9. The difference in the magnitude
of extreme response is noticeable for
E greater than 0.90; however, the
c-value is usually less than 0.8 i“
practice, as stated earlier in connec-
tion with Figure 2, Hence, the narrow-
band assumption is acceptable for the
extreme response for design considera–
tion of marine systems. Thus j analogous
to equation (15), the design extreme
response can be written as a function
of time by,

for amplitude

(21)

The risk parameter, m, involved in
(21) is at the designers discretion,
In choosing the a-value, it is noted

that the number of encounters for a
marine system with a particular sea
severity in the lifetime has to be con-
sidered even though the design extreme
value given in (21) is applied to the
short-term prediction. For example,
suppose ve evaluate the design extreme
“alue in a particul~r se% se~erity with
99 percent confidence, i.e. , e = 0,01.
If the system will encounter seas of
this severity 20 times in her lifetime,
then it is necessary to divide the risk
parameter a = 0.01 by 20 (i.e.
(i= 5 X 10-4) for evaluation in order to
maintain the 99 percent assurance in the
prediction.

The effsct of the a-value m the
magnitude of design extreme values of
the midship bending moment of the
MARINER i“ seas of significant w’aw
height 4.6 m (15 ft) and 10.7 m (35 ft)
are shown in Figure 4, The family of
six-parameter wave spectra consisting of
eleven members in each sea severity
(Ocbi 1976) is used in this computation,
and the largest values in each sea
severity are plotted in the figure. The
solid circles are plotted in the figure
are the extreme values evaluated with
E = o.01 but taking into consideration
of the nwnber of occurrences of each
sea state in tbe North Atlantic in 30
years. The figure indicates that the
design extreme values do not increase
substantially with increasing m-value.

It is of interest to note the
effect of time duration o“ the magnitude
of extreme values, Figure 5 shows an
example of the effect of ship operation
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Fig. 3 Extremewave ~n (amplitude)for designconsidera-
ticm as a functionof “umberof observationsfor various
band-widthparameterE (c!= 0.01) (fromOchi 1973)
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Fig. 4 Designvalue of the midship
bendingmomentof the NARINERas a
functionof coefficienta (fromOchi
1977)

time on extreme values. The figure per-
tains to a sea of significant wave
height of 35 ft (10.7 m) , and the uppe~
bound values using the six-parameter
wave spectrum are plotted. As can be
seen in the figure, the magnitude of
extreme values, both probable as ~eIl ~S
the design extreme values, i“crea.se
significantly during the first several
hours and thereafter increase “cry
slowly with time. This is the general
trend of the extreme values in all sea
severities.

An example of the design extreme
values of the wave-induced bending
moment for various sea severities are
shown in Figure 6, The computations
are made on the MARINER, and the curves
shown in the figure are the upper bound
curves obtained by using the two-
parameter and six-parameter families of
wave spectra, As can be seen in the
figure, the results of the comp”ta.tion
using the two families of wave spectra
agree well up to seas of significant
height of 30 ft (9.2 m), For seas of
significant wave height ovsr 30 ft
(9.2 m) , however, the design extreme
values evaluated using the two–
parameter spectrum xre higher than those
using the six-parameter spectrum. It is
of interest to note here that Russo and
Sullivan (1953) gives the values of
hogging bending moment of 85.3 x 107
ft–lbs (116 x 103 m-tons) calculated
following the classic standard procedure
of assuming the ship to be statically
supported on a trochoidal wave equal in
length to the length of the ship and
having a height equal to one-twentieth
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Fig. 5 Probableextremewalue and
design.Jalneof the midshipbending
momentof the MARINERin sea of
significantwave height35 ft (10.7M)
as a functionof ship operationtime
(fromOchi 1977)

Fig, 6 Desifmvalueof the midship
bending nwmentof the NARINER(fran
Ochi 1977)
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of the length.

APPROXIMATE ESTIMATION OF
EXTREME RESPONSES

In the previous sect ion, exact
information of the initial probability
distribution was necessary for estima-
ting the extreme response by applying
order statistics. In practice, however,
the information for the initial distri–
bution is often not precisely know”.
For example, the probability distribu-
tion of the long-term response of a
marine system is not know”. It may be
tbe Weibull distribution or the log-
normal distribution. However, there is
no scientific basis for selecting any
specific probability distribution func-
tion to characterize the long-term
responses as contrasted to the short-
term responses. In other words, we
have to estimate tbe extreme responses
from the accumulation of the observed
(or computed) data over a sufficiently
long period of time without precise
information of the initial probability
distribution.

One way to overcome this difficulty
is to evaluate the extreme response hy
au approximate method that is applicable
for rmy probability distribution if
certain conditions are met. The
principle of this approximation method
is as follows:

Let the initial curmlative distri-
bution function, F(x), be in the form
of

,(X) ., _ ,-q(x) (22)

where, q(x) is a positive real-valued
function that satisfies the conditions
required for F(x) being a c“m”lative
distribution function, Then , equation
(4) becomes,

q“(Yn) I -q(Y )

{q’(y”))’
,,-, q

-q (Y”)
+“, -1=0 (23)

Since tbe first term is small in
comparison with other terms for large
n, (23) yields,

-q (Y”) 1
e=— (24)

n

22

Thus , the probable extreme response,
Y“ , for large n is given by,

?n=q -1(LR“)

-1where, q ( ) is tbe inverse
q(x).

(25)

function of

For evaluating the extreme response
in practice, however, it is not necessary
to know tbe f“”ction q(x) in (22), As
can be seen from (22) a“d (24), the
probable extreme response for large n
is given as the x-value in (22) for
which tbe probability of exceeding x is
equal to lln. That is,

1 - F(~n) = ; (26)

Equation (26) implies that the
probable extreme response expected to
occur in n–observations can be evaluated
from tbe initial cumulative distribution
and the number of wave enco””ters
in”olved. Although tbe initial cumula-
tive distribution function is mt
precisely known, the function can be
constructed from the observed (or com-
puted) data, For this, the data are
often fitted by some known distribution
such as a Weibull distribution or log-
normal distribution; etc. , a“d the
extreme value in a desired period of
time is estimated based on this presumed
distribution, Sometimes, the extreme
value is determined by simply extending
the cumulative distribution function
without fitting the data to a particular
probabilityy distribut ion function.

Although many examples are avail-
able for estimating the extreme responses
of marine systems by applying this
approximate On method, let us consider
the estimation of the extreme sea
severity (significant wave height ) “sing
the data presented in Table 2 (Bouws
1978). Tbe table shows the frequency
of occurrence of significant wave height
measured in the North Sea. A total of
5,412 measurements were made in 3 years.

Figure 7 shows fhe cumulative dis–
tribution function of tbe significant
wave height plotted on the log-normal
probability paper, while Figure 8
shows tbe same data plotted on the
Weibull probability paper. It appears
from comparison of Figures 7 and 8,
that tbe data are better represented by
the Weibull distribut ion, and hence the
estimation of the extreme significant
wave height in 50 years or 100 years
is made most commonly by extending the
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Table2 Significantwave height
data obtainedfrommeasurements
in the North Sea (53.5°N, 4°E)
(fromBouws 1978)

SIGNIFICANT NUMBER OF
WAVE KIGHT (M) OBSERVATIONS

o –0.5 1,280
0.5– 1.0 1,549
lo- 1,5 1,088
l.5–2. o 628

2.0- 2.5 402
2.5– 3.o I92
3.0- 3,5 115
3.5-4.0 63

4.0 -4,5
4.5 – 5.0
5.0– 5.5

5.5-6,0
6.0 – 6.5
6.5- 7.o
7.0– 7.5 I

TOTAL 5,4I2 in3 YeWS

straight line given in Figure 8,

However, extreme care has to be
given in interpreting the data plotted
on the probability paper. If we take
a close look at the data plotted in
Figures 7 and 8, the data are not
satisfactorily represented over the
entire range of significant wave
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./ ‘
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LOQ-Nan!alDlstrhtim
Q95

0,93

Om /

0.60

040 / r

02L-

alo / — —
0.5 6 80
SIGNIFl~ANTWA2W HEIG;T(M)

Fig. 7 Cumulativedistributionof
.i&nificantwane heightplottedon
log-nom.mlprobabilitypaper (data
fzomBou.,m1978)

5
+
$

~
E

SIGNIFICANTwAvE HEIGHT (M)

Fig. 8 Cumulativedistribution
functionof significantwave height
plottedon Weibullprobabilitypaper
(datafrom Bows 1978)

height by either the log-normal proba–
bility distribution or the Weibull
probability distribution, That is
evident in Figure 9 in which the compar-
ison between the histogram a“d the two
probability distribution functions are
shown.

As can be see” in Figure 9, the
extreme significant wave height may be
estimated from neither the log-normal
or Weib”ll distribution b“t from the
extension of data points by applying

SIGNIFICANTWAVE HEIGHT IN METERS

Fig. 9 Comparisonbetweenhistogram
of significantwane heightand log-
normaland Wefbullprobabilitydensity
functions(datafrom Bouws197S)
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Fig. 10 Estimationof extremesigni–
ficantwave heightfrom the extension
of data points (datafran Bmnrs 1978)

equat ion (26) The extension of data
Doint is shown in Fie’ure 10. The
&ertical scale of th~ figure is the
inverse of the lefthand side of (26) ,
which is often called the k@LULnpex,iod,
in logarithmic form. Since the number
of measurements of significant wave
height is 5,412 in three years, the
number of significant wave heights
expected in ten yea?s will be 16,040,
By taking tbe logarithms of this n“m-
ber, it is obtained from the figure that
the extreme significant wave height
expected in 10 years will be 7.5 meters,
Similarly, the extreme significant wave
height expected in 50 years ca” be
estimated as 8,0 meters

The approximate method presented
in the foregoing can be applicable for
any probabilityy distribut ion; however,
the method has a drawback. That is,
tbe extreme wzve height expected to
occur in the future is determined by
extending the line, taking into
account the higher wave heights that
are extremely unreliable data, For a
more precise estimation, it is highly
desirable to extend the cumulative
distribution function representing the
data over the - range of the
values, Emphasis should not be given
to the representation of data points
higher than the cumulative distribution
of 0.99.

To achieve a precise representation

of the data, a function q(x) in (22) may
be expressed as a combination of an ex-
ponential and a power of the wave height
(Ochi and Whalen 1980):

k
q(x) = axm e-px (27)

The parameters in q(x) are deter-
mined numerically by a nonlinear least
squared fitting procedure. The form
used in this minimization procedure is
gi”en by,

G = &\-&l (l-F)}= I?na+.n!nx -pxk

(28)

The parameters are optimized such
that the sum of the squared values of
the difference between G in (28) and
the corresponding data values becomes
minimal Once the parameter values are
determined, the extreme wave height can
be evaluated from (26) This method is
applied to significant wave height d&ta
shown in Table 2. For this example,
values of four parameters involved i“
(27) are obtained as,

a = 0,980

m = 1.101

P = 0,161

k =-1.328

The cumulative distribution func-
tion obtained by using these values are
plotted o“ log-normal probabil;{ty paper
as shown in Figure 11, together with
data points. .4similar presentation
plotted on Weibull paper is shown in
Figure 12. As can be seen in these
figures , this cumulative distribution
function represents very well the data
over the entire range of the values, and
therefore it can be used for estimating
the extreme significant wave height The
result is shown in Figure 13, The com-
parison between tbe extreme significant
wave height thus estimated and those
estimated based on the log–normal and
the Weib”ll probability distributions
shows that the log-normal probability
distribution substantially overestimates
the extreme significant wave height j
while the Weib”ll probability distribu–
tiOn underestimates it on the order of
10 percent for this example.

For design consideration of a marine
system, a certain margin above the
probable extreme value is required, and
this can be obtained following the same
concept as was discussed in the develop-
ment of (20) That is, by choosing a
small ., tbe extreme value for design
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SIGNIFICANTWAVE HEIGHT(M)

Fig. 11 cumulativedistributionfunc-
tionbasedon Equation(27)plottedon
log-normalprobabilitypaper (datafrom
Bouwi 197S)

z
Q

:

~

z

SIGNIFICANTwAVE HEIGHT(M)

15-
1 I

10 IOYEARS

8

6 4

—4 “!
;

—r
—

:2 /
. I328

1401-0.1ax
q (X)= O.908x e

I

0$
2 4 681015

SIGNIFICANTWAVE HEIGHT IN METERS
Fig. 13 Predictionof extremewave
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tio~bas~d on &mti& (27) “
(datafrom Bouws 1978)

various heading to waves, Pj
(iii) Frequency of encounter with

v=iy)wave spectral shapes, ‘k
Expected number of cycles of

response for each given sea, heading,
and wave spectral shape.

Then, the probability density
function for the long–term response ca”
be written as follows:,

Fig. 12 Cumnlati”edistributionfu”c-
tionbased on Equation(27)plottedon
Weibullprobabilitypaper (datafrom
Bouws 1978)

consideration, $n , can be obtained from

1 - F($n)= + (29)

As a“ application of the approxi-
mate methods discussed in this sect ion,
let us evaluate the design extreme
values of the transverse wave-induced
force acting on the cross-beam bridge
structure on a semi-submersible off-
shore platform shown i“ Fig”m 14, For
evaluating the lifetime response of tbe
ocean platform, the following various
parameters have to be considered:

(i) Frequency of occurrence of
various sea severities, P.

(ii) Frequency of occurrence of

where, f*(x) is tbe probability density
funct ion for the short-term response,
n* is the average number of responses
per unit time of the short–term response.

The total number of responses
expected in the lifetime is given by,

where, T is the total exposure time to
sea.

Computation of the extreme response
given i“ (30) is carried out by using
the family of six-parameter wave spec-
tra with the risk parameter m = 0.01.
Since the magnitude of the transverse
force acting o“ tbe cross–beam Structure
is maximom i“ beam seas, it may be of
interest to see the difference, if any,
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between the predicted long-term design
extreme values includins all headings,
sea severities, and spectral shapes
and those predicted in various sea
severities and spectral shapes in beam
seas only. The significant difference
in these two long-term computations is
the number of responses expected in
the lifetime; 6.146 x 107 for all
headings versus 2,078 x 107 for beam
seas only in 20 years operation.

Figure 15 shows the design extreme
values evaluated for these two long–
terms (Ochi and Wang 1979) As can be
seen in the figure, the design extreme
value evaluated from the lifetime prob-
ability distribution including all
headings and that evaluated from the
beam seas only are both 4,800 tons, if
the difference in the number of encoun–
ters for each case is taken into
consideration.

Next, the extreme responses
evaluated through the long–term predic–
tion approach will be compared with
those evaluated through the short-term
predict ion approach. It may appear that
estimation through the long-term predic-
tion approach is superior to that
through the short-term prediction ap-
proach, since it deals with the
ac-lat ion of all responses. However,
im rnlity, the long-term estimation
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includes a considerable percentage of
small responses in relatively mild seas,
which do not contribute to the extreme
design value. Tbe results of computa-
tions have shown that the design extreme
value obtained through the short-term
apprOach is 4,700 tons (Ochi and Wang
1976 ) in seas of significant wave height
of 16 m (52.5 ft.), the value is very
close to that obtained through the long-
term approach. As this example shows
the predicted extreme values through
the long-term and short-term approaches
are nearly equal if the difference in
the number of e“cou”ter with waves for
each case is taken into considerateion.
It is noted that the estimation proce-
dure of the extreme values through the
short–term prediction approach is
extremely simple in comparison with that
through the long-term approach. SIence,
the short-term prediction approach
aPPears to be adequate as far as esti-
mation of extreme values is concerned.

ESTIMATION OF EXTREME RESPONSES
BY ASYMPTOTIC FORMULAE

As was stated in the Introduct ion,
it is possible to predict the largest
responses expected to occur in the life-
time of a marine system from the me&–
sured (or observed) maxima. The mea-
sured (or observed) maxima defined here
is the largest “alue that is measured
(or observed) during a certain period
of time; every 6 hours, every 12 hours,
a day, etc. Tbe estimation is based on
the asymptotic distribution of the
extreme values developed by Gumbel
(1958) The significant feature of the
asymptotic distribution is that the
probability function for the maxima

F6RCE1#TONSx103
Fig. 15 Comparisonof designextreme
val.eeof the transverseforcecom-
puted includingall headingsto waves
and that computedin beam seas only
(fromOchi and Wang, 1979)
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reduces to the same type irrespective
of the initial probability distribution.
The underlying principle of the asymp-
totic distribution is as follows:

Let us assume that the initial
cumulative distribution function is in
the form given in (22). By using the
relationship given in (24), we ca”
write the initial cumulative distribu-
tion function as,

q(;”)- q(x)
F(x) =l-$e (32)

Then, from the defi”itio” given in
(1), the mmn”lative distribution f“nc.
t,io”of the ext~eme value for large n
becomes,

- .w{q(Fn) - q(yn}}
=. (33)

Since the probability distribution
function of extreme values, I’n, is much
nm;:ecogcentrated around its modal

Yn, in cOmP&ri SOn with the
initial pro~ability density function,
the term q(yn) - q(y”) may be expanded
by the Taylor series. Then jby neglect-
ing higher order terms, (33) becomes

-w {-q’(jn)(yn -~”)}
G(y”)= e (34)

Here, neither q’(Y”) nor y“ are
known in reality; hence, let us express
(34) i“ tbe following form,

–exp{-z}
G(z) = e (35)

where,

z = q’(Jn)(y”-;”) (36)

The mean and variance of the
random variable Z ca” be obtained from
(35) as,

EIz]= Y (Eulertsco”.sta”t,0.577)

Var[z]= ?r216
(37)

Then , from (36) a“d (37), we can
derive the following relationship

;n=E[y].L
II q’ (;”)

(38)

since the mean and variance, EIY”l
and Var[yn] , respect ively, can be
obtained from the data, the cumulative
distribution function of the extreme
value given in (34) can be evaluated
with tbe aid of (38)

In summary, the cumulative distri–
bution function of the extreme value
can be written in tbe following form:

-~ (Yn–u)
-e

G(Y”) = e _m<y<m
“

(39)

where,

Equation (39) is the so-called
Gumbel’s L4fmp.totict@@mt WI&e L&tkibu.tion.

The method to estimate the extreme
responses expected in the lifetime of a
marine system from equation (39) is tbe
same procedure as discussed in connec-
tion with equations (26) and (29). Since
the concept of the asymptotic distribu-
tion of tbe extreme value deals with the
maxima, Yn, observed in certain period
of time, the cumulative distribution
functiOn, G(Yn), given in (39) can be
considered as the initial probability
distribution. Hence, the lifetime
prob~ble extreme value is determined as
tbe yn-value which satisfies

1- G(;).~ (40)n“

where, n is tbe number of the maxima
expected to occur in the lifetime, and
it is estimated from the observed data
(see the example shown in Figure 18).
Similarly, the design value with the

!-- —
j\,
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risk.parameter, a , can be evaluated as
the yn-value which satisfies

1 - G(4n)= : (41)

The sample space of tbe distribu-
tion given in equat ion (39) is
unlimited; however, there is another
distribution called A4ynp.toticalhtnw
w&t dL&tzibu.tionw&k uppm &mi.t which may
also be applicable for the analysis of
observed maxima. The distribution is
given by (Gumbel 1958) ,

k

-(–)

w-y”

w–v
G(Yn)= e --< yn <w (42)

where, w = upper limit

k = positive constant linked
to the limit value, w

“ = y“_”aI”e for wbicb G(Y”) =

e-l = 0.368.

Tbe derivation of tbj.s asymptotic
distribut ion will not be given here;
however, it may suffice to state that
it is derived by applying the Taylor
series exvansion to the initial proba-
bility di&ribution function in ~he
neighborhood of w.

The values of the two parameters j
w and k, can be determined from the
following two moments of Yn:

E[yn]= “ - (“-V) ~(2+ +)

EIY~l= W2-2W (W-V) ~(1+~

+ (W-V)2 r(l+~) (43)

Tbe values of w and k can also be
determined eraDbicallv bv choosine the
cumulative ~isiributi; n ;unction, ‘G(yn) ,
for two diffei-e”tyn-values. It should
be noted that the upper limit value, w,
thus determined from the data is merely
the limit value of Yn for n + ‘-,which
is unrealist ically large value, and
hence it cannot be used for design con-

Tbe probable extreme value as well
as the extreme va.l”e for design should
be evalu~ted by the same procedure as
presented i“ con”t?ction with the
asymptotic extreme value distribution

with unlimited sample space.

The method to estimate the lifetime
design value through the asymptotic
extreme value formulae is applied to the
results of extensive full scale trials
carried out on eight SL–7 vessels on
SEA-LAND service (Fair and Booth 1979)
During these trials, the strain gage
recorder was installed at midship of
each ship, and the maximum peak to
maximum trough stresses which occurred
during every 4-hour sampling period were
recorded.

As an example of analysis which can
be made from these data, tbe extreme
responses expected in the lifetime of
the SL-7 will be estimated based on the
following two data:

(a) One-year data obtained on
SEA–LAND MCLEAN in tbe Atlantic. A
total of 1,802 observations.

(b) Five-data-years obtained in
the Atlantic. A total of 12,319 obser–
nations.

It is noted that the results of
analysis have shown that the responses
observed in the Atlantic service routes
are larger than those in tbe Pacific
service routes. Therefore, the design
extreme value may be estimat<?d from
analysis of data in tbe Atlantic.

Figures 16 and 17 show the compari-
sons of the cumulative distribution
functions of these data and the asymp–
totic extreme value formulations given
in (39) and (42). Figure 16 shows the
comparisons using tbe one–year data,
while Figure 17 shows those for the
five–data years.

The lifetime extreme responses can
be estimated from the relationship given
in equation (40) together with tbe
information on the number of observa-
tions, The results are shown in Figures
18 and 19. As can be seen in these
figures , the lifetime extreme response
of the SL–7 estimated from the one-year
data is very close to that estimated
from the five-data-years (in which many
sister sbipsc data are involved) , if the
difference in tbe number of observations
in each case is take” into consideration.

For instance, from equation (39),
the design extreme value (peak-to-trough
stress) in 30 years with the risk Para–
meter a = 0,01 is 64,0 kpsi
(45.4 kglmmz) from the one-year data as
compared with 60.0 kpsi (42.6 kglnunz)
from tbe five-data-years.

It can also be seen in these
figures that tbe extreme design estimate
based on the asymptotic formulation with
upper bound is approximately 17 percent
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Fig.16 Comparisonbetweenasymptotic
distributionwith unlimitedboundsand
thatwith upperboundusing SL-7mm-year
data
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upper bound
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PEAK TO TROUGH STRESS (KPSI )

Fig. 18 Evaluationof tbe SL-7lifetime
(30years)probableextremevalue and
designextremev.I.. basedon the .ne.
year data

less than that estimated based on the
asymptotic formulation with unlimited
bound,

CONCLUSION

This paper presents the theoretical
background of recent techniques to
predict extreme values., specifically
extreme loads and responses of marine
systems in a seaway. There are three
different approaches to evaluate extreme
values depending on the information
(data) available in the prediction,
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p

s
~ + -–+($trwht line)—~.——

%% 9392
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Fig. 17 comparisonbetweena.ymptoti.
di.tributicmwith unlimitedboundsand
thatwith upperbound for SL-7 five-data
years
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Y i

Designextreme~
15— ‘— (q= 0.01)

Asymptoticwith
unlimltedtmucds

5
20 40 60 80

PEAK TO TROUGH sTREss (KpsI)

Fig. 19 Evaluationof the SL-7 lifetime
(3OYear.) probableextreme“ale ba$ed
on the five-data-year$

These are (a) the exact evaluation ,
(b) tbe approximate estimation, and
(c) the estimation by “sing the
asymptotic extreme value formulae The
underlying principle and practical
application of each approach are dis–
cussed. From the results of numerical
examples, the following conclusions are
drawn:

One way to evaluate tbe design
extreme value of the responses of a
marine system is to calculate the
extreme response through the short-term
apPrOach by using the family of wave
spectra in each sea. Tbe computations “L-.
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should be made for the severest loading
and heading of the response, at the
attainable highest speed of the system,
if applicable, in each sea. From the
results of the largest response in each
sea severity, the design extreme value
can be obtained with a specified risk
parameter, a.

In the short-term prediction, the
effect of the spectral band-width para–
meter on the magnitude of extreme values
appears to be negligibly small
irrespective of the number of observa-.
tions.

The extreme values of the long-
term response of a marine system can
be evaluated through the approximate
estimation method. In this ease, the
estimation can be made based on the
cumulative distribution function which
represents the data over the entire
range of values. Emphasis should not
be given to the representation of data
points higher than the cumulative
distribution of 0.99.

The extreme value through the
long-term and short-term approaches
are nearly equal if the difference in
tbe number of encounters with waves
for each ease is taken into considera–
tion. It is noted that the estimation
procedure of the extreme values through
the short–term prediction approach is
extremely simple in comparison with
that through the long–term approach.

The lifetime extreme response of
a marine system ca” be estimated from
data of the observed maxima by applying
tbe asymptotic extreme value formulae.
Tbe lifetime (30 years) extreme
response of the SL-7 estimated from tbe
one-year data is very close to that
estimated from the five-data-years
(in which many sister ships, data are
involved), if the difference in the
number of observations in each case is
taken into consideration.
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