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1. The slow propagation of a crack has been theoretically examined by

A. A. Griffith (1) (2), A. Smekal (3), K. Wolf (~) and L. Prandtl (S).

The rapid propagation of a crack !xasbeen theoretically examined by E. R.

Yoffe (6), who lists further references. The investigation is based on

the assumption already made by A. A. Griffith that the initial crack can

be

an

of

comidered as a slit in an infinite plate; the slit has the shape of

ellipse, the shorter semi-axis of which is parallel to the direction

the stress at infinity and approaches zero. Furthermore, it is assumed

that this slit does not change its length when moving with the velocity

v in the General direction of the lonSer semi-axis. ‘Withboth assumptions,

it has been found, that tlhecrack propagates in a direction normal to the

maximum tensile stress up to a.critical velocity v “ ‘“6VSH ‘- ‘here ‘SR

designates the velocity of propagation of shear waves -- at W-IiC.hthe crack

tends to become curved. This trend is cor.fiz-nwdby experiments according

to a

with

statement of 3. H. Yoffe.

!;.R. ‘H.Schardjn (7) I’oundby experiments that a crack propagates

c!mstant velocity if sudde:l~~a loai of very short duration (& see). .--
w ,‘U(JU

is applied to the test specinen. A. %ekal (8)(9) (10) concluded frOm

experiments that the prop gation of a cracl:immediately after the starting

of the Crac!{cannot be examined by means of the mechanics of the continu~

lTke result= presented in this paper were

spo~.sored ty the Department of the Navy,
1!0.Nobs 65917,

obtained in the course of research
Bureau of Shipsj under Contract

2Professor of Engineering, I?rownUniversity, Fruvidence 12, R. I,

j]~mhers in parentheses refer to the P.iblicgrapivat the end Of the PaPer,
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but must be explained as a thermal effect. ‘Jhenthe crack has reached a

certain length, the velocity of the propagation of the crack grows very

rapidly up to approximately 60% of the velocity of propagation of the shear

waves and thereafter remains constant.

In the papers of A. Smekal (9)(10) further references are listed.

2. In the fallowing pages, an attempt will be described to apply the

mechanics of the continuum to the problem of the propagation of a crack

in a plate being in a one-dimensional state of stress by static external

loads. Of cnurse, it is necessary to assume that the crack has already

reached the point where the rapid increase of velocity of propagation

begins.

For this purpose, the concept.of L. Prandtl (5) will be used,

Fig. 1 shows the plate and the system of coordinates to be employed. It

is assumed that the initial crack is right at the center of the plate and

that it consists of a slit perpendicular to the direction of the extermal

load p; the length of the crack is ‘2%(t) at the time t. The actual

plate is replaced by a model consisting of two beams that are tonnected

by strings perpendicular to the axes of the be?ms from x =“~~ to the

edges of the plate. The length of these strings is equal to the gap of

the initial crack so long as no load is au,olied.

This corresponds exacthY to th.~co!?ccpt of Prandtl (5’). ?Ioreover,

a second system of strings should be assumed pc~cndicular to the first ones

so that our concept comes closer to the co]cept of an isotrcpic material.

A system o.fcoordinates x,y cr X,U is l.]sed,the x-axis of

which coincides with,the axis of the be,m,:and ‘he y-axis or w-axis, re-

spectively, passes throu~h t!lemiddle of the crack. The symbol w denotes

the deflection of the axis of the beam at any time t while the symbol y

NObs-65917/l
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is used for quantities which are independent of the time as, for instance,

the amplitudes of an oscillatory motion in case of vibrations.

3. The following notation will be used!

E=

G=

v=

F=

Fs .

o=

modulus of elasticity In tension

modulus of elasticity in shear (G u &)

Poisson!s ratio

area of the cress section of the beam

equivalent area of the cross section ti shear

mass density

M = PF mass per unit length

I = moment,of inertia of the cross sectional area

The differential equation of the elastic lj.neof a beam reads

L

)
L

aw
EI~-@.fi+PI +

a x2at2

so iong as the beam is not supported by an

extemai static loads. It is assumed here

L 2

P~a$+*Q# - 0. (3.1)
o

elastic foundation and carries no

that there are no masses attached

to the beam which would contribute to the mass inertia but not to the stiffness.

Et?equating the rotational mass mo.:nt of inertia pI to zero, a

simplified equation can be obtained

(3.2)

en the othar hand, if the shear deformation is neglected by equating GF~ =

co, we shall have another simplified equation

,& “L
E+p5’4Jt2’Q5=o.

dx

Next, we assume that a periodical disturber,ce yosir tit is

introduced at the point x = O. In this case tb.esolution of tt,eabove

NObs-65917/l
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three equations is of the form

W(x,t) -

where v is the velocity of wave

-y. sino (~- t)

propagatjon.

Substitution of the solution (3,h) into Eq. (3.2) yields

The velocity v has a maximum for co = cm which is given by

Substitution of the solution (3.~) into equation

$=
+:?~~~

Again, there is a maximum velocity for u . w which is

.~

‘L tlp

II

(3*&)

(3,5)

(3.6)

(393 ) yields

(3.7)

(3.8)

‘SH
and v~ are the velocities of propagation of shear waves and of longi-

tudinal waves, respectively.

Substitution of the solution (3.4) into the Eq. (3.1) yieldst

In view of Eqs. (3.5’)and (3.7), Eq. (3.8) can be written, if (0=03

(3.9)

(

‘ith G“ * and abbreviating the ratio F/F~ by the symbol q, we

NObs-65917/l



fInd

2cf(l+v)
—=

2

@&:i)
(<O(l+V) + 1)2

I

Thence with u = m

1 “ ~{ [2q41+v) + 11: 2q9(l+v)-
~

With the use of the upper sign in the parenthesis,

11—R—
2

‘1 ‘SH2

11]

(3,11)

(3,12)

it follows that

(3.13)

while with the use of the lower sign in the parenthesis, it follows that

~. If the beem is connected with a second beam as shown in Fig, 1 by

elastic strings of the elastic constant c, the

a% ~.must be added to the d!Alembert force w ~

at
certain abscissa x ticreases by the amount ~

ax

abscissa x to the abscissa x + d%. Consequently

external load cwdx

The shear force Q at

dx ss we proceed from

Q&=++cwti
at

Equilibrium of the element dx is established if

(3.3L)

a

the

(L.1)

(li.z)
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Let the angular rotation of a cress section be denoted by .+. So long as

the deformation in shear is neglected, + can be put equal to ~ ,ax

If the shear deformation is taken into account, the ~gle ~ is no longer

equal to @; thus, the strese-str~in relations are
ax

and

Differentiating

Introducing Eq.

M = -EI g (1+*3)

Q - GF~ @! - II)),

Eq, (4.I.J)with respect to x yields

@= GF~(~- #),
ax

(b.s) fito Eq. (&.1), we obtain

2 2,

~~
+CW=GF~(a~ -&.

The solution of Zq. (i.6) for ~ gives

(4.6)

(L.7)

Differentiating Eq. (4.3) with respec~ to x) substitut@ the result into

Eq, (4.2) and, finally, comparing with Eq. (k.~$),we find

Elimination of the variable $ and its derj.vativesfrom Eqs. (h.7) and

(4,8) yields, finally,

or
b abw ,d-y-+——————
axJ s ax2at2 ‘9+ CI-%$$””

(4.9)

(4.10)

NObs-6S917/l
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If it is desired to also t.”.kethe rotational inertia into account,

Eq. (.~.2)must be replaced by

By proceeding as previously, the differential equation of the elastic line

is obtained as

“5-(’%+’’)-+%!2+

The solution Of Eq. (b.lz) is

W(x,t) = -y. sinw ($-t,) ,

of wave propagation is given by

lC
-~q 1

and

In the special case u . co, it follo~!sthat

‘1 = ‘SH

‘2 = ‘L

In the special case c = Ww2, it follows that

V1 = cc

>.,= v
L

and

NObs-65917/l
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In the general case c = apm’ -- where a is a dimensionless

parameter, it follows after a lengthy transformation with q = F/F~

hH8H2 +x[2,(,-:);:”)+,1:

that

(L*15)

1

whore h is the beam depth and x =
~?E

~“
Let us assume that

cc= 1010 ‘~ , as obsened by SMEKAL (10)

E = 2.1 x 106 kg cm-2

-6
P= O*8X1O kg cm-11 2

sec \

h = 1 cm (x O.I!Iinch)(arbitrary)

steel

Then, the factor ..& @ ~ equals 1,26 x 10-6. It can.easily be seen
Q< ~~ P

that the velocity of wave propagation is ve~ close to that of the special

case u = m.

Let us guess for a moment that the crack propagates after reaching

its maximum and constant value with the same velocity as the wave propagates

given by Eq, (4.15), then we conclude that there must be a.frequency

which is much lower thm the frequency m observed by Smekal.

Fi&, 2 the ratio of v/v
L

is plott~d IS ? function of the parameter

for three different values of the n:~ramct.r x . It can be seen

ti,at tit -hmust be lower than 10 L or than
~06 1

~ . However, it

can not be proved th~.tsuch low frequencies exist. Thus, the guess men-

tioned above is net justified. The difference between crack propagation and

wave propagation seems tc be caus.cdb ? the time needed for the delive~ of

stored elastical energy to the endpoint of’the cr2ck and for the transfor-

mation of this energy ir.toth. energy of the surface tension at the crack,

as explained by Smekal (10).

Nobs-65’917/l
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5. The strings parallel’to the x-axis cause only a slight increase of

the moment of inertia I of the beem i.Pthe region where the strings

perpendicular to the x-axis are not yet ruptured. The tensile str=s in

the x-direction must be zere at the end of the strings. Thus, these

strings parallel to the x-axis participate in the general state of stress

only at abscissae x larger than the abscissa of the instantaneous end of

the crack. They are straineclby the shear forces acting at the boundary

between the beams preper and the networ!cof the strines. It can be con-

cluded that the shear stresses at this boundary are very hi~h in the

immediate vicinity of the end of the crack.

6. After these general

elastic lines of beams,

represented in Fig. 1.

considerateions on the

let us co hack to the

d.ifferential equations of the

concept of Prandt1 as

The beam must be subdivided into two branches, the

first one from x - 0 to x = ~ (where 2~ is the instantaneous length

of the crack) and the second one from x = ~, to x . co.

If the effect of the shear forces on the defomnation and if the

rotational inertia is neglected, the differential equation for the first

branch is simply

(6.1)

and for the second branch

44
2

8 ‘II
EI~= P-p>-

where p is the extew.al lateral load and

c(b + w )
II

(6.2)

2b t:lelen~th of the strings.

If p - cb is abbreviated by pll, Zq. (6.2) can be written in the form

5’%1 &
‘~=~l-U#- CWII“ (6.3)

NObs-6S917/l



The deflection w

It can be writtan

10

is a fumtion of the abscissa x and of the time t,

as

w = y(x) q(t) (6.4)

where y is a function of the abscissa x and ~ a function of the time.

Substitution of solution ( 6,1J) into MS. (6.1) md (6,3 ] yields

and

Using the abbreviations

‘II -b
EI~l II

we obtain

and

The solltion of Eqs, (6.8) and (6.9) cm, be taker.in the fO~

(6.5}

(6.6)

I

i

(6,7)

)

(6.5)

(6.9)

(6.10)

NObs-6S917/l



and

where

\ “ :.(1: i)

7. If the influence of the shear stresses

small, the differential equations are

11

(6.11)

(i = @) (6.12)

does not seem to be negligibly

(7,1)

and

Sbbs&ituti.ngsolution (6.IJ)again and using the abbreviations

A
EIW

*1
d2cp1

——
GFS 9-J &*

“ 412

P - cb
EI&l

.6
11

(7.3)

we obtain similarly

(701J)

NObs-65917/l



The solution of this equation can be taken as

where the exponents Ln are given by

12

(7.5)

(7.6)

Usually x is much larger than ~; thus, to a first approximation

comparison of Eqs. (6.12) and (7.7) shows that the numerical values of

the exponents kn are a little clifferent and thus, the constants of

integration An must differ from the constants ~, but nothing is changed

in principle.

It is also nossible to

if it seems to be desirable. It

8, The constants of inte~r~~iol-.

that t:~ebou~.dary comti~tions at

satisfied. They arc as follows:

take the rotational inertia into account

can be done in the same manner as above,

.4nI and Anll can te determined such

X=o, x=%andx= mare

At X=O, the shear fOrc~ Q ~Ilstwnish ant the deflection

line must have a imrizontal tangent.

At X=8, the deflectiOn Y1 must be equal to the deflection yll

the slope

the second

of branch

‘YI dyl~

x mx+t be equal to the slope _
dx

and t.he thj.rd derivative of the deflection

I and branch II must be equal to each

other whereby the equilibrium of the bending moments

at the end,of both branches and of the shear forces,

respectively, is established.

NObs-65917/l



At x = m, the bending moment and the shear

A system of eight linear equations can be derived from

13

force must be zero.

these bounda~

conditionswhich can be solved for the eight unkown

Atil. AS soon as the constants of inte.qrationA1lT

the deflection line can be drawn.

quantities Anl and

and ~11 are Imown,

9. It can be shown that the inflection point of these bending lines

is very close to the abscissa x - %, i.e., to the end of the crack,

This observation suggests a further simplification since as the bending

moment is zero at the inflection point. This means that the shear force

Q at the abscissa x = $ csn be determined from the condition of

equilibrium in the y-direction alone, It follows that

(9.1)

where m is the mass (variable with time = pa and

‘Y
is the velocity with which the point x = % travels in the

Q&’y-direction or Vy = at .

The velocitjjof propagation cf t!?ecrack will be ckncted by

d~
Vx ‘z” In order to find the relation between

‘Y
and v~> let us

consider a point ab the distance dx from the end of the crack. If the

stress in the string at x . $ is d~, then the stress in the string at

x-%+ dxis

(9.2)

The crack travels

the stress at the

~ d.xmust occ,.>r

the distance &x in Lhc time dt, At the time t + dt,

noint x . ~ + dx will again equal ISO, Thus, the increase

durir!gt1-:2timc dt, Since o = c(b + y), we have

NObs-65917/l
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on the other hand

This relation has already been derived by L. Prsndtl (5).

The following calculations wi11 be simplar if the origin

of the system of coordinates is assumed to coincide wi,ththe endpoint

the crack, The subscript II m~ also be omitted, AccordinC to Eq,

the bending line is given by

+L&>n’
4% 1

or in omier to avoid the complex functions

Y . -&+ Ille-wCOWX +D2e-xsin .x + .,e+’x cos xx + l)~e+nxsinxx

(9*b)

(9.5)

of

(6.11)

(9.6)

Using the

be zero.

boundary conditions at x = m we see that D
3

and D4 must

The bending mc!nentat x = O is assumed to be zero as pointed

out at the beginning of this section. This condition is satisfied by taking

D2 =0 (9.7)

The fourth boundary condition is

NObs-65917/l
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and is satisfied

Thus, we have

if

Q
D ‘-
1 2EIx

b+
-%

- %x
e C05 xx

‘“P 2ElM

(909)

(9.10)

It must be mentioned that it has been tacitkf asaumed

that the tem ~ ~ in the abbreviation x - se. E.. (6.’7) is a constant.
$’ dt

The slo~ of the elastic line at x - 0 is

g.. +

2EIx
(9.11)

subUt@g Eq, (9.11) into Eq. (9.5) yields

Q
v=—
Y 2Em2 Vx “

SubstitutingT@ (9.12) into Eq. (9.1) yields

or

Q=+

Q-.l/P-~
2EI%

At the abscissa x .

1 d mQ~x)._—
2Elx2 ‘t

0, the deflection y. is

QY0.4+ —..
lw’~ 2EIX3

The tensile stress 00 at the abscissa X n o i.S

KS. = c(b+yo)

or

‘o
-~b+cb +%,

&~ 2EIx3

(9.12)

(9.13)

(9*lJl)

(9.15)

(9.16)

NObs-65917/l
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Solving Eq. (9.16) for Q yields

Since d ~ is the maximum stress at which the mlpture occurs, it,is

‘o
independentof the time t; thue — - 0. Consequently

dt

(m=o
CM “

Differentiating Eq. (9.1~) with respect to time we have

d$
or with Vx = ~ and the abbreviation

P
q= rpx-$b- $ )

and ueing Eq, (9.18) we ottain

(9.17)

(9.19)

&/dt = f($).

Then

(9.18)

This equation does not contain the time t explicitly. Therefore, we

consider t as a function of /, and k,eset

(9.21)

(9.22)

(9.23)

NObs-65917/l
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*3

+
dt

*f2#+f H2

Thus Eq. (9.21) becmas

If f+o,

Next, we set

Consequently

and

[ ()]& f2&+fdf2 +3f2df .qf. o

d%2
a T?/

df2‘f%++-)+3f$&q=o

‘“G

d2f = .;&+l&

~gYE ~NZ

~bstitut.~the Eqs. (9.27), (9,28) and (9,29) into Eq, (9.26) yields

This linear equation has the general solution

Thus, the velocity of propagation of the crack is given tg

‘x ‘~”~~

17

(902~)

(9.25)

(9.26)

(9.27)

(9,28)

(9.29)

(9.30)

(9.31)

(9.32)

NObs-65917/l



‘dVx
If the velocity v and the acceleration

Xo ()
are known at a

Xfl

when the crack has a length ~o, the constant; of integration

c. can be determined. It follows that
.(,

Thus

time t

co
and

18

(9.33)

10● In the paper of Smekal (10), an experimental curve is published, which

gives the velocity Vx of the propagation of the crack ae a function of

the length of the crack. The experiments have been made with cylindrical

~ds Of glasS. In spite of the fact that our considerations concern a

plate, we tried to approximate the experimental curve by an equation of

the type (9.32). We found

~z
o*3J182

L2

()
- 0.ol.lo33: + 0.L389 ‘G

‘SH
(10,1)

.

where .$~ 02 the Eq. (9.3&) is replaced by the unit of length L which

we selected to be O,1 cm. Fig. 3 show9 :-IOWclose the curve representing

Eq. (10.1) comes to the test results, We certainUJ do not believe that

this agreement can be conside~d as a proof of our considerationsbut it

shows that this attempt is not too far fnam the truth.

The main objection against the comparison ahve is the fact that

a the area of the crack is assumed to be proportional to the length of the

crack while Smekalls

NObs-6S917/l
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line of the crabk is a tircle, see Fig. h. In the domain b

the calculation of section 8 are made, the area of the crack

linear function of the length of the crack.

19

for which

ie not a

11. If it is desired to know the len@h of the crack as a function of

the time, the integral

t I“1”:*
1

(11,1)

1

eee Eqe, (9.32), (9.33) and (9-3b) -- muet be solved where the subscript

indicates the beginning of the rapid increase of the crack propagation.

This ie an elliptic integral.

If numerical values of Cl, Co and q a~e kno~ as, for

instance, in Eq. (10.1), it is much easier to employ a mechanical

sumnation. The curve shown in Fig. S has been calculated in this way,

The subscript 2 indicates the beginning of the constant velocity of the

crack propa~ation. The time eouals 1.595Lt2-tl ~
x“

NOb.s-65917/l
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