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1
RAPID PROPACATION OF A CRACK IN A BRITTLE MATERIAL
by

2
Max J. Schilhansl

1., The slow propagation of a crack has been theoretically examined by
A. A, Griffith (1) (2), A. Smekal (3), K. Wolf (L) and L, Prandtl (5).
The rapid propagation of a crack has been theoretically examined by E. .
Yoffe (6), who lists further references. The investigation is based on
the assumption already made by A, A. Griffith that the initial crack can
be considered as a slit in an infinite plate; the slit has the shape of
an ellipse, the shorter semi-axis of which is parailel to the direction
of the s
that this slit does not change its length when moving with the velocity
v in the general direction of the longer semi-axis, With both assumptions,
it has been found, that the crack propagates in a direction normal to the
maximum tensile stress up to 2 cyitical velccity v = O.6vSH -~ vwhere Von
designates the velecity of propagation of shear waves -- at whaich the crack
tends to become curved. This trend is confirmed by experiments according
to a statement of Z, H, Yoffe.
i, H.o H. Schardin (7) found by experiments that a crack propagates

1 see)
£0,000
is applied to the test specimen, A. Smekal (8)(9)(10) concluded from

experiments that the propagation of a cracl immediately after the starting

of the crack cannct he examined by means of the mechanics of the continuum

“The results presented in this paper were obtained in the course of research
sponsored by the Department of the Navy, Bureau of Zhips, under Contract
o, NObs 65917,

2professor of Engineering, Brown University, Frovidence 12, R, I,

3Numbers in parentheses refer to the Bibliography at the end of the papere
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but must be explained as a thermal effect., When the crack has reached a
certain length, the velocity of the propagation of the Crack grows very
rapidly up to approximately 60% of the velocity of propagation of the shear
waves and thereafter remains constant,

In the papers of A, Smekal (9)(10) further references are listed,

2+ In the following pages, an attempt will be described to apply the
mechanics of the continuum to the problem of the propagation of a crack
in a plate being in a one-dimensional state of stress YLy static external
loads. Of oourse, it is necessary Lo assume that the crack has already
reached the point where the rapid increase of veloclty of propagation
bvegins.

For this purpose, the concept of L., Prandtl (5) will be used,
Fige 1 shows the plate and the system of coordinates to be employed. Tt
is assumed that the initial crack is right at thc center of the plate and
that it consists of a slit perpendicular to the direction of the external
lcad p; the length of the crack is 24(%) at the time +t. The actual
plate is replaced by a model consisting of two beams that are connected
by strings perpendicular to the axes of the beams from x =':{, to the
edges of the plate. The length of these strings is equal to the gap of
the initial crack so long as no load is applied.

This correspends exactly to the concept of Prandtl (5). Mercover,
a second system of strings should be zssumed pernmendicular to the first ones
g0 that our concept comes closer to the ccicept of an isotrepic material,

A system of coordinates x,r or x,w 1is used, the x-axis of
which coincides with the axis of the bLeam and Lhe y-axis or w-axis, re-
spectively, passes through the middle of the crack. The symbol w gdenotes

the deflection of the axis of the heam at any time + while the symbol ¥

~ & R | WwEl
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is used fer gquantities which are independent of the time as, for instance,

the amplitudes of an oscillatory motion in case of vibrations,

3s The folléwing notation will be used:

E = modulus of elasticity in tension

G = modulus of elasticity in shear (G = 5?%:15)
v = Poissen's ratio
F = area of the cross section of the beam
F_ = equivalent area c¢f the cross section in shear
p = mass density

b =pF mass per unit length

—
N

moment of inertia of +he cross sectional area

The differential ecuation of the elastic line of a beam reads

I b I
W EI 3w I 3w dw
23 (kg vet) S eu B g v S e (3.3)
ax S ax ot S5t at

so long as the beam i1s not supported by an elastic foundation and carries ne

external static loads, It is assumed here that there are no masses attached

tc the beam which would contribute to the mass inertia but not to the stiffness.
By equating the rotational mass momant of inertia pl to zerc, a

simplified equation can be obtained

éhw ET ahw 32w
EI L MG T3 tHTTE = C. (3.2)
ax SaX at at

en the othar hand, if the shear deformation is neglected by squating GFS =

@, we shall have another simplified equaticn

2

Ahw d W o W
p—d -
ox axagt at

Next, we assume that a periocdical disturbance y051ncut is

introduced at the point x = 0. In this case the solubtion of the above

NObs-65517/1



three equations is of the form

[
ct
~——
—~
o

LWY)
.
£

where v 1is the velocity of wave propagation,

Substitution of the solution (3.4) into Eg. (3.2) yields

il , (3 .u_.)? "
Z " % GF, —J 5OF., .2 (3.5)
The velocity v has a maximum for w = o which is given by

GF F
E 1 S
= J_I,TS' = J; (1+v) F (3.6

Substitution of the solution (3.4) into equation (3,3) yields

1 1P 1P\%, 1
il B> :\Kﬁﬁ) * S (3.7)

v w

Again, there is a maximum velocity for w = e which is

"v'_ (308)

vgy and v, are the velocities of propagation of shear waves and of longi-

tudinal waves, respectively,

Substitution of the solution (3.L) into the Eaq, (3.1) yieldst

Li (3.9)
+ 2E \ e S

= o

e L
E| &R

In view of Egs, (3.5) and (3.7), Eq. (3.8) can be written, if © = o

L1 1 T 1
v (2\;2 ' 24 2} [l 2 ! GF E 2 (3.30)
SH L N

E . .
With G = eED] and abbreviating the ratio F/Fs by the symbol ¢, we

NCbs-65917/1



find

Lg 1 o 29(1vv)

Thence with w = o

1
> = 'QEE{ feq{l+v) + 1 ]: 2p(1+v) = 1]}

With the use of the upper sign in the parenthesis, it follows that

1 1
— B e
2 v 2
1 SH
while with the use of the lower sign in the parenthesis,

4o If the beam is connected with a second beam as shown in Fig. 1 by

elastic strings of the elastic constant c, the external load owdx

-2

(3.11)

(3412)

must be added tc the d'Alembert force L Q—g- dxe The shear forece € at a

ot

certain abscissa =X increases by the amount %}% dx as we nroceed from the

abscissa x to the abscissa x + dx, Consequently

2
Fquilibrium of the element dx is established if
a1 Q
ax

NObs~65917/1
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Let the angular rotation of a cross section be denoted by ¢« Sc long as

the defomation in shear is neglected, ¢ can be put equal to -g-; .

If the shear deformation is taken into account, the angle 1 is no longer

equal to %; thus, the stress-strain relations are

ah

M=o & (Le3)
and
w
Q = GFS \a_}_{ - ‘l!){) ® ("-i.'l-f)

Differentiating Eq, (L.L) with respect to x vyields

& -or (——5-—‘4’ : (L.5)
ax
Introducing Eq, {L.5) into Eq. (L,1), we obtain
62w < A 62W - O
w2y v onmar, (S50, (1.6)
The solution of Zq. (4.6) for E%bc gives
2 2
9*“5;2-- FS-:;‘%--@%;w- (1e7)

Differentiating Eq. (he3) with respect to x, substitubing the result into

Eq, (L.2) and, finally, comparing with Bq. (L.L), we find

2

i - o

~El a"'"; = UFS {% - li’)- (‘;1-0)
aox

Elimination of the variable 1 and its derivatives from Eas. (L.7) and

(L.8) yields, finally,

i
<FI /ahwﬁ w 0w __c r_zw\= H_?EET oW (Le9)
k ot g b2 g 2] FET
or
ow EI ahw éz'w' { TL 5%\
By rbgr o3 bprelw-gem==5)=0 (Le20)
Aax 5 Ax a3t At “s 38X

NObs=65517/1
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If it is desired to also tnke the rotational inertia into account,

Eqe (Le2) must be replaced by

2

aM = - a S
-a—x Q pI ;t% ()-J-!-l---

By proceeding as previously, the differential equation of the elastic line

is obtained as

ET oty _ 6* 51 +-p1) sl . plI o .
g;ﬂ B 3xlate g g;E
(L.12)
62w . w1 8w, pl 62w\ o
#y ——= * c{w = =
-y i TTs g OFg 12,
The solution of Eq, (L.12?) is
. X
w(x,t) = =y, sinw( 2= 4) (Lel?)
The velocity v of wave propagation is given by
L.2Tp ,pl 1 e
ve 2 GFg EI = 2 GF_ (La1k)

SN TRV S R T O O (SR T 23 B S
L [GF 7 Grs BT T Z\E "G, )T B E

v

In the special case w = o0, it follows that

vy = Vay
and
v, = vy
In the special case ¢ = pm’e, it follows that
vy = @
and
v? = VL

NObs=65917/1



2 . . ‘
In the general case ¢ = gquw =- wheére @ 1is a dimensionless

parameter, it follows after a lengthy transformation with ¢ = F/Fs that

¢ -
L2182 -0y + 1“11
v - (}4015)
20(1-a)(1ev) - 108 z -
T eEnIsTO RSy [2¢(1-a)(1ev) + 112
where h is the beam depth and x = gEE . Let us assume that
£ h™p
10 1
w = 10 S0 a8 observed by SMEXAL (10)
E = 2,1 x 10° kg en™? )
- steel
p = 0.8 x 10 6 kg cm“ll sec? ]

h =1 ecm (0.4 inch)(arbitrary)

6

Then, the factor % = EE egquals 1426 x 107, It can easily be seen
[N

ool
Relicy

that the velocity of wave propagation is very close to that of the special
Ccase w = M0,

let us guess for a moment that the crack propagates after reaching
its maximum and constant value with the same velocity as the wave propagates
as given by Eg. (Ls15), then we conclude that thers must be a freguency
w' which is much lower than the frecuency « observed by Smekal,
In Fig, 2 the ratio of v/vL is plotted ns a function of the parameter
a for three different values of the narameter % o It can be seen
that «!' must be lower than 10-hw or than 1O6 E%E s+ However, it
can not be proved that such low freaquencies exist. Thus, the guess men=-
tioned above is not justified. The difference between crack propagaticn and
wave propagation secms to be caused by the time needed for the delivery of
stored elastical ensrgy to the endpoint of the crack and for the transfor-
mation of this energy into the energy of the surface tension at the crack,

e N I 13 o
fie

ne n R < O ral 0
ad BARAGINICG OF OMOKdL { LU )e

NObs-65917/1



Se The strings parallel'to the x-axis cause only a slight increase of
the moment of inertia I of the beam in the region where the strings
perpendicular to the x-axis are not yet ruptured., The tensile stress in
the x=direction must be zero at the end of the strings. Thus, these
strings parallel to the x-axis participate in the general state of stress
only at abscissae x larger than the abscissa of the instantaneous end of
the crack, They are strained by the sheor forces acting at the boundary
between the beams proper and the networlk of the strings. It can be con-
cluded that the shear stresses at this boundary are very high in the

immediate vicinity of the end of the crack,

6. After these general considerations on the differential equations of the
elastic lines of beams, let us go hack to the concept of Prandtl as
represented in Fig, 1. The beam must be subdivided into two branches, the
first one from x= 0 to x =4 (where 24 is the instantaneous length
of the crack) and the second one from x =4 to x = oo,

If the effect of the shear forces on the dsformation and if the

rotational inertia is neglected, the differential equation for the first

branch is simply

dhe 2
jong _LTI _é_a I (6.1)
= p - I.L -
8x at
and for the second branch
hw ?
5r L iR ) (6.2)
-~ = p - =~ (b +w 2
axi B at2 II

where p 1is the external lateral load and 2b the length of the strings.

If p = cb is abbreviated by Prps L0 (6.2) can be written in the form

3 L“‘II 3 WIT

&1 = pII - 4l = CWpre (6.3)
BX“ L at2 17

NObs-65917/1
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The deflection w 4is a function of the abseissa x and of the time t,

It can be written as

w = y(x) @(t)

(6.1)

where y 1s a function of the abscissa x and ¢ a function of the time,

Substitution of solution (6,4) into Eqs, {6.1) and (6.3} yields

and

d
R S
BL Y w2 UM
Pry e >
EI(&I iI

we obtain

and

= b - H r
s 1" R Vg

The solution of Eqs, (4.,8) and (649) can be taker in the form
L

b - A%
. o4 In
N, '"IE L A7 E
T iw T "

NObs~£5917/2

(6.5)

(6.6)

(647)

(6.8)

(649)

(6,10)
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and

5 b N
- —'EEE i, A In 6,11
117 b e (6,11)
where
Ap = 2x(l % i) (1 = /<0) (6,12)

7« If the influence of the shear stresses does not secem to be negligibly

small, the differential equations are

2 L
ahwI 8w 3w
El — = - I, EI I
P=p—m *y == (7.1)
axh at G g at26x2
and
L 2 2
07wy d ¥ EI 0 Wy
E'I—h—"p“c(b*y)-J, II«!- — e, (
1T l M 742)
ax o2 Fs t2an?

Sibstituting solution (6,4) again and using the abbreviations

-

Ef%l =Y
2
d
o1 __.__CPI = lth
2
2L .___d CZI = 2 2
CFs 97 I
‘ ’ (7.3)

P - ob -0
EIQPII IT

d2
Soap 2 Z0mo, ok
T BL CPII dt2 IT

2
b1 99 -2y 2
e %r g2 I J
we obtain similarly
2

ad

‘b%-egbzg—%*hxhy- d =0 (7.4)

dx dx

HObs-65917/1
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The sclutien of this equation can be taken as

h A X
ye=Lo +) B "
L' 1

~—
~J
o
A5t
j

where the exponents Kn are given by
NN ' .
Kn’I\}(b 2 - (7,6)

Usually ¥ is rwmech larger than U thus, to a first approximation

2 L
_ 2 L _ |

it % "

¢ comparison of Eqs, {6.12) and (7.,7) shows that the numerical values of
the exponents Kn are a iittle different and thus, the constants of
integration A, must differ from the constants B,, but nothing is changed
in principle.
It is also possible to take the rotational inertia into account

if it seems to be desirable, It car be dene in the same manner as above,

8, The constants of intesratior Apr end Ajpp can be determined such
that the boundary conditicns at x =0, x = £ and x = o are
satisfied, They are as follows:
At x = 0, the shear fore: @ rust vanish and the deflection
line must have a Lorizontal tangent,
At x = 33 the deflection ¥1 mist be equal to the deflection V1T

dy- ay
the slope 15% must be equal to the slope 11

dx
the second and the third derivative of the deflection

of branch I and branch II must be equal to each
cther whereby the equilibrium of the bending moments
at the end of both branches and of the shear forces,

respectively, is esctablished,
NObs-£65917/1
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At x = oo, the bending moment and the shear force must be zero,

A system of eight linear equations can be derived from these boundary
conditions which can be solved for the elght unknown quantities A,1 and
AprTe As soon as the constants of interration A p and A yr are known,

the deflection line can be drawn.

9. It can be shown that the infleection peoint of these bending lines

is very close to the abscissa x =4, 1i.e., to the end of the crack,
This observation suggests a further simplification since as the bending
mement is zero at the inflection point. This means that the shear force
Q at the abscissa x =4 can be determined from the condition of

equilitrium in the y-direction alone, It follows that

4

vhere m 1is the mass (variable with time = pd) and
vy is the velceclty with which the point x =.{ travels in the

. . < Y
y~direction or vy 3t *

The veleecity of propagation of the crack will he dencted by

3L

Vy * 3¢ ¢ In order to find the relation between vy and vy, let us

consider a point at the distance dx from the end of the crack., If the
stress in the string at x =% is dg, then the stress in the string at

x = A4+ dx is

&3]

= S dx. 942
¢ 6 = Bx (9.2)

The erack travels the distance dx in the time dt, At the time 1 + dt,

the stress at the point x = £ + dx will again equal Sy Thus, the increesse

.%% dx must occur during thz time dt. 3ince o = c(b + y), we have

29 +|-
g@?dx=i’-gi9—l—)dx=c§1d£, (9.3)
x DX



on the other hand

g% dt = Efé%:fl dt = e g% dt (9.4)
Thus
-e % il = c %% dt
or
..vy x vx(%% } (5.5)

This relation has already been derived by L. Prandtl (5),
The following calculations will be simplor if the erigin
of the system of coordinates is assumed to coincide with the endpoint of

the cracks, The subscript IT may also be omitteds According to Eq, (6,11)

the bending line is given by
L
AKX
by n
y’ = —E + Z An e
" 1

or in order %o avoid the complex functions

- + X +ux

Y = ﬁ-n + Dle chOSux +D2e-xxsin Hx + D3e * CO5 KX + Dhe " sin ux (9.5)
1
LA

Jsing the boundary conditicns at x = @ we seg that D3 and Dh must

be zero. The bending mement at x = O 1is assumed to be zero as pointed

out at the beginning of this section. This condition is satisfied by taking
D, =0 (9:7)

The fourth boundary condition is

3

Q= B (i—%) (948)
x=C

e

NObs=65917/1
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and is satisfied if

Q

D, =~ j (909)
1 2EIx

Thus, we have

Q=X

b . R
y- + e co8 X
I 25D

—~
N
-
P
[
~

It must be mentioned that it has been tacitly assumed
- W2
that the term .1(5 2 9? 4n the abbreviation % - sec Eq. (6,7) is a constant.
dt
The slope of the elastic line at x = 0 1is

ﬂ = - Q (9.1-1)
-

.

SubstitutingEq, {9.11) into Eq., {9.5) yields

Ve " —2-5 Ve * (9.12)

DEIXE

Substituting Eq (9.12) into Eq. (9.1) yields

Al e )
u\lw rFl

= ~ 1 Hit vx .
q=4p — & (9413)
or
a(Qv.} 3
Q=fp ~ —He X L Mgy T (5.14)
— dt SEIne *

At the abscissa x = 0, the deflection Yo is

¥ H—b's‘* Q - (9-15)
O L opry

The tensile stress %9 at the absclssa x = 0 is

or

OG-cb+ cé"‘-—-—-—j. (9-16)
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Solving Eq. {(9e16) for Q yields

2

o = 2N

(6, = cb - h—‘;% ) W (9.17)

Since o is the maximum stress at which the rupture occurs, it is

lo's]
independent of the time t; thus :;9 = (0, Consequently
t

aq _
E.E‘ = Oo (9-18)

Differentiating Eq. (9.14) with respect to time we have

a9 . _q&_u__d[dm"x)}_y g o
@ a9t " pgpe & ..JP’ ST Z'E[va ar] . (9419)

or with Vy @ %%’ and the abbreviation

q= L (9.20)
LR N
LAl E;H
and using Eq. (9+18) we ottain
3 2
a 2. al dd M.
R=—st+2x =35 -az =0 (9.21)
dt3 dt dt2 at
This equation does not contain the time t  explicitly. Therefore, we
consider t as a function of £ and we set
A/t = £{4), (9422)
Then
%
d e df . af g&,= ar

dt

NObs=-65917/1



and
3 2 2
g 2d°f, p/df
= f +
j Y \5)

Thus Eqs (9.21) becames

2 4% ary 2 2 afr .
L[f ;—Ei-f(.al) }+3f a - f =0

If fy§o,

2
af 2

m) +3f.g.£_q-0

&=
&

+

o

Next, we set

Consequently
d
af -..2]: -E-
Ve
and

2 2
dzf-..}dg+%dg
heglz Ve

Subst itubing the Eas, (9427), (9.28) and (9.29) into Eq, (9.26) yields

2
dg, 3dg 2
&2 * ) .d—i i =0
d
This linear equation has the general solution

8(£)'co+clil-2-*-32-q'?,

Thus, the velocity of propagation of the crack is given by

a4 1 42 g9
VX-H_E'JCO‘*CIE-Q-"‘?q%

NCbs~65517/1
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(942L)

(9425)

(9.26)

(9427)

(9428)

(9.29)

(9.30)

(9.31)

(9.32)
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dv
If the velocity vxo and the acceleration (?ﬁ?) are known at a time ¢t
0

when the crack has a length £b’ the constants of integration ¢; and
¢, can be determined, It follows that
. = F_l_/__ic\ 1]
Lzl at 3 J
(9433)
%/d"x)
CO y"‘ .'-72.-t t v
Yo
Thus
2 ——
I"u'q.- . fdv - " fdv 1,0 002
Au+1fo _q_l“'x) 1 J("OJ 2 .4
3 | = Fl== =-x19 + £ 1
H'EO“' : (3 0 | o 3T 3Q(z‘; (5.34)

10. In the paper of Smekal (10), an experimental curve is published, which
gives the velocity v, of the propagation of the crack as a function of
the length of the crack., The experiments have been made with cylindrical
rods of glass. In spite of the fact that our considerations concern a
plate, we tried to approximate the experimental curve by an equation of

the type (9.32). We found

v S T
X - 1.y2 k
= \/O.lhBE - 0.0L033 (w) * 0,389 & (10,1)
o “ o)
)
where 4, ol the Eq, (9.3L) is replaced by the wnit of length L which

we selected to be OC.1 cm, Fig, 3 shows how close the curve representing
Eq. (10.1) comes to the test results, We certainly do not believe that
this agreement can be considered as a proof of our considerations but it
shows that this attempt is not too far from the truth.
The main objection against the comparison above is the fact that
a the area of the crack is assumed to be proportional to the length of the
n the cylindrical rods show that the border

NObs~65917/1
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line of the cratk is a <circle, see Fig, 4o In the domain b for which

the calculations of section 8 are made, the area of the crack is not a

linear function of the length of the crack.

11, If it is desired to know the length of the crack as a function of
the time, the integral

L
t -t = tdd (11,1)

»f,l Jcl + coz?,z +§ Q‘E

-~ see Egs, (9.32), (9.33) and (9.,3L) -- mst be solved where the subscript
1 indicates the beginning of the rapid increase of the crack prepagation,
This is an elliptib integral,

If numerical values of tys €p and g are known as, for
instance, in Eq. (10.1), it is much easier to employ a mechanical
summatlon, The curve shown in Fig. 5 has been calculated in this way,

The subscript 2 indicates the beginning of the constant velocity of the

crack propagation., The time 't.2 - tl equals -3-'-3%9—51' *
SH

NObs-65917/1



(1) A,

(2) A,

{(3) A

(L) X.

(5) L.

(8) A,

(9) A,

{13) A.
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