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ABSTRACT

A stochastic model for fatigne crack growth is
applied, which accounts for uncertainties in loading,
initial and critical defect sizes, material parameters
including spatial variation, and in the uncertainty
related to computation of the stress intensity factor.
Failure probabilities are computed by first- and
second-order reliability methods and sensitivity fac-
tors are determined. Model updating based on in-
service inspection results Is formulated within the
first-order reliability method. Updated failure proba-
bilities are computed and the distributions of the basic
variables are updated. Two types of in-service inspec-
tion results are used to update the computed failure
probabilities. Inspections which do not detect a crack
are used and the inspection uncertainty is included in
terms of the distribution of nondetected crack sizes by
the specific inspection method. Inspections which
detect a crack are also included and the inspection
uncertainty is included through the uncertainty in the
measured crack size. The formulations are presented

for undatine based on one or more inspections. A
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similar formulation for reliability updating after
repair is provided within the same framework.

INTRODUCTION

In offshore steel structures flaws are inherent due
to, e.g., notches, welding defects and voids. Macro
cracks can originate from these flaws and under time
varying loading grow to a critical size causing catas-
trophic failure. The conditions governing the fatigue
crack growth are the geometry of the structure and
crack Initiation site, the material characteristics, the
environmental conditions and the loading. In general,
these conditions are of random nature. The appropri-
ate analysis and design methodologies should there-
fore be based on probabilistic methods.

In recent years considerable research efforts have
been reported on probabilistic modeling of fatigue
crack growth based on a fracture mechanics approach,
see, e, [1-8). In particular, stable crack growth due
to cyclic loading has been studied, This paper presents
a stochastic model for this crack growth phase for
which linear elastic fracture mechanics is applicable.
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A common model is formulated for constant and vari-
able amplitude loading, The model is developed for a
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agreement with experimental test results. A generali-
zation 1o a semi-elliptical surface crack {s straightfor-
ward and has been successfully implemented. Uncer-
tainties in the loading conditions, in the computation
of the stress intensity factor, in the initial crack
geometry, and in the material properties are included.
In particular the material resistance against crack
growth is modeled as a spatial random process thus
accounting for material variations within each speci-
men.

The probability that the crack size exceeds a criti-
cal size during some time period is of interest. It is
demonstrated how this event is formulated in terms
of a limit state function with a corresponding safety
margin and how the probability of failure can be cal-
culated by a first- or second-order reliability method.
The critical crack size may refer to growth through
the thickness or to a size where a brittle fracture or
plastic collapse oceur. The eritical crack size can be

modeled as a deterministic or as a random quantity.

Inspections are frequently made for structures in
service. Some inspections result in the detection of a
crack while others give no detection. The size of a
detected crack s measured either directly or
indirectly through a non destructive inspection
method, where the measured signal is interpreted as a
crack size. Neither the measurement nor the interpre-
tation are possible in an exact way and the resulting
inspection result is consequently of random nature.
When the inspection does not reveal a crack this does
not necessarily mean that no crack is present. A
detectable crack is only detected by a certain probabil-
ity depending on the size of the crack and on the
inspection method. Whether or not a crack is
detected, the inspection provides additional informa-
tion which can be used to update the reliability and/or
the distribution of the basic variables. This can lead
to, e.g., modifications of inspectlon plans, change in
inspection method, or a decision on repair or replace-
ment. The paper describes inspection results in terms
of event margins and formulates the updating in



terms of these event margins and the safety margin.
The use of first-order reliability methods to perform
the calculations is demonstrated.

When a repair of a detected crack is made and a
new reliability analysis is performed, it is important
that the new analysis accounts for the information

that a renair was nNecessary. Often it is not possible to
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determine if the unexpected large crack size has been
caused by a large initial size, by material properties
poorer than anticipated, or by a loading of the crack
tip area larger than anticipated. The paper demon-
strates how information obtained in connection with a
repair is introduced.

For welded structures a crack is generally
assumed to be present after fabrication. The analysis
method can, however, in a simple manner include a
random crack initiation period for which a separate
model can be formulated.

FATIGUE CRACK GROWTH MODEL

In a linear elastic fracture mechanics approach
the increment in crack size, Aa, during a load cycle is
related to the range of the stress intensity factor, AKX,
for the load cycle. A simple relation which is
sufficient for most purposes was proposed by Paris and
Erdogan, [9]

Aa =C (AKY*, AK >0 (n

The crack growth equation is used without a positive
lower threshold on AKX below which no crack growth
occurs. The equation was proposed based on experi-
mental results, but is also the result of various
mechanical and energy based models, see, e.g., [9,10]
C and m are material constants. The crack increment
in one cycle is generally very small compared to the
crack size and (1) is consequently written in a "kinetic’
form as

da_

N

where N is the number of stress cycles. The stress
intensity factor X is computed by linear elastic frac-
ture mechanics and is expressed ag

K =gY(a)vra (3)
where ¢ is the far-feld stress and Y(z) is the

geometry function. To explicitly account for uncer-

tainties in the calculation of K-, the geometry function
is written as Y (@) = Y (a,Y), where Y Is a vector of
random parameters, Inserting (3) in (2) and separating
the variables leads to the differential equation

da
=C (Ao dN, a(0)=a, (4)
Y@ Y (Voa o
where @, is the initial crack sfze. The equation is
applied both for constant and for variable amplitude

loading, thus ignoring possible sequence effects. Alsoa

possible effect of the mean stress or R -ratio {s ignored.

Eqs.(1-4) describe the crack size as a scalar <,
which for a cracked panel is the crack length. For a

=C (AKX, AK >0 (2)
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surface or embedded crack a description of the crack
depth, crack length and crack shape is necessary. It is
common practice 10 assume a semi-¢lliptical initial
shape for a surface crack and to assume that the shape
remains semi-elliptical during the crack growth. In
that case the crack depth ¢ and the length 2¢ describe
the crack. The differential equation (2) is replaced by

a pair of coupled equations, see e.g. [11].

Solutions to (4) are smooth curves which de not
intermingle. This is in contrast to experimental
results as reported in, e.g., [12]. As a consequence the
crack growth model is randomized as, [7]

da

—_— {

N z(a) Ak ™ (5)
where C, is a random variable modeling variations in

C from specimen to specimen, while C.(a) is a sta-

om specimen to specimen, while C;{a) is a
tionary log-normal process modeling variations in C
within each specimen. The expected value of C,(a) is
taken as one. The random model in {5) has three pro-
perties, which are experimentally observed in the test
results reported in [12)

- sample curves of @ versus V are irregular and
not very smooth,

- sample curves of @ wversus N become more
smooth for larger values of @,

-  sample curves of @ versus N intermingle, in par-
ticular for smaller valuesof a.

To estimate the correlation properties of the random
process C,(a) a statistical analysis of the test data
from [12] has been carried out, [7). The correlation
function p,(Aa) for Cy(a) is shown to decrease to
Zero very rapidly with Ae. The correlation radius r¢
is defined as

re = [pdx)dx (6)

and has been estimated as 0.12 mm for the aluminum
alloy in the experiments of [12). The variance of C,
has been estimated as 0.062 for the same data. The
variance is expected to be significantly larger for crack
growth in material in the heat affected zone or in the
weld material. Non-proprietary data are, however,
not avallable for estimation of the variance in these
clrcumstances.

A damage function ¥(a) s introduced from (4)

_ r Cz(x)
W(a)_!y(x'Y)m(m)mdx N

The stress ranges are denoted S, =Ao,; and solution of
(4) gives

» C1 5™ N constant amplitude
¥(a)=C, [S"dN = (8)
¢ l ')" 8§ variable amplitude
=}

The difference between the two cases of constant and
variable amplitude loading therefore only concerns



the loading statistics. In what follows, constant
amplitude loading is considered, while variable ampli-
tude loading is considered again at the end of the
paper.

In the presentation it has so far been assumed
that a crack {s present at the time the loading is
applied. With an initial crack initiation period before
the ¢rack reaches a size ag for which fracture
mechanics can be applied with some confidence to
describe the fatigue crack growth, the solution to (4)
is

[ dx =C,S™ (W=Ng) (9)
2q

Yz, Y (Vax Jm
where N, is the (random) crack initiation period for
which a separate model can be formulated.

The second moment statistics for the damage
function conditioned upon {a,,Y,m ) are

_ T 1
E[“’(‘Z)'“°’Y'm]‘£1f(x,y)m Aty
—~ e rcz Var [Cz] dx
Var [¥(a)taoYm) &I:Y(I,Y)z’“ — D
P[W(al),‘y(ﬂ 2)|aopY,m] = (12)
min{a ,.a 5}
f 1 dx
ap Y(x .Y)zm (*n'x )m
“ dx, w2 dx, o
(a{Y(x,,Y)""‘ (mx, ™ ) (a{Y(xz.Y)”" (7x )™ )

The approximations for the variance and the correla-
tion function are justified by the short correlation
length of € ,(a ) compared to crack size increments of
interest. The random variable ¥{a)layY.m is essen-
tially the sum of many independent random variables
of approximaiely the same variance. The distribution
is therefore well approximated by a normal distribu-
tion.

The failure criterion is taken as exceedence of a
critical crack size a; in a time period with NV stress
cycles, ‘
where a,; is the crack size after the &V stress cycles.

¥(a ) is monotonically increasing and the failure cri-
terion (13) can be written as

Ta. ) —¥ay )= (14

e Cyx) i
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The safety margia M is therefore defined as

s Cofx)
M = f
2, Y (x, Y (Vax ™
and the failure probability Py is

P = P(M<0) (16)

dx —C, 5™ N (15)
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EVENT MARGINS FOR INSPECTION RESULTS
AND REPAIR

Two types of inspection results are considered
alN)S Ay, i=12,--r (17)
alN;)=A4,, j=12,"-s (18)

In the first case, (17), no crack was found in the
inspection after NN, stress ¢ycles, implying that the
crack size was smaller than the smallest detectable
crack size 4,4 . Ay is generally random since a detect-
able crack is only detected with a certain probability
depending on the crack size and on the inspection
method. The distribution of A,, is the distribution of
non-detected cracks and the distribution function is
identical to the pod (probability of detection) function
for the inspection method. Information of the type
(17) can be envisaged for several times. If A4, is
deterministic, however, and the same for all inspec-
tions, the information in the latest observation con-
tains all the information of the previous ones. In the
second case, (18), a crack size A, is observed after NV,
stress cycles. A; is generally random due to measure-
ment error and/or due to uncertainties In the interpre-
tation of a measured signal as a crack size. Measure-
ments of the type (18) can also be envisaged for
several times corresponding to several values of NV, .

For each measurement (17) an event margin M,
can be defined similar to the safety margin (15) as

i Ag CZ(I)
M =CyS" N, — [ e — 4z <0019)
gg 4 WX, X \VTX J

These event margins are negative due to (17). For
each measurement (18) an event margin can similarly
be defined as

M. = '}‘ Cyx)

I Y Y (Ve

These safety margins are zero due to (18},

The situation is envisaged where no c¢rack is
detected in the first r inspections at a location, while a
crack is detected by the r +1'th inspection and its size
is measured at this and the following s —1 inspections.
The updated failure probability is in this case

Pr=P(M SO1M,€0N.NM, £0NM, ,==M, ,,=0) (21)

A more general situation involves simultaneous con-
sideration of several locations with potentially
dangerous cracks for which inspections are carried
out. The updating procedure still applies when due
consideration is taken to the dependence between bastic
variables referring to different locations.

Assume now that a repair takes place after Ny
siress cycles and a crack size a.,, is observed. The
event margin M,,, is defined as

M, = T Cafx)

———————dx —C; 8S™ N,
S Yy (e  C1

P

=0 (22)



The crack size present after repalr and a possible
inspection is a random variable a,,,, and the material
properties after repalt are mn, and C),.,. The
safety margin after repair is M.,

% Cx)
B doe ¥ (2 YY) (rrx Y
—Ciew 87 (N~N,pp)
and the failure probability after repair is
Py = P{M,,,, €0IM,,,=0) (24)
This updated failure probability is then of the same
form as (21).

The crack size at repair is not necessarily meas-
ured, but the decision of repair is based on an observed
size larger than a limiting value a,,,. The event mar-
gin M, in (22) is then negative. In (24) for the
updated failure probability, the condition M,,,=0 is
then replaced by M,,, €0 and the expression is still of
the form covered by (21).

M. dx  (23)

RELIABILITY METHOD

The reliability method used in this paper is the
first-order reliability method which is here briefly
reviewed for parallel systems. For a more thorough
description see [13]. Each element in the parallel sys-
tem is described by a safety margin M,=g,{Z) in
terms of the vector of basic variables Z. The safety
margins are defined with M, <O corresponding to
failure in the ith element, and g,(z)=0 defining the
limit state surface for the i{th element. The failure
probability of a parallel system with k¥ elements is

Pp = P(M,<ONM,<0N --- NM, £0) (25)

The failure probability is computed efficiently and to a
good accuracy by a first-order reliability method. The
first step in the computation is a transformation of the
vector of basic variables into a vector of standardized
and independent normal variables U. The transforma-
tion is denoted T and the transformed space is called
the normal space.

U="T(Z} (26)
A good choice for T is a transformation, which uses
the conditional distribution functions

Fi (z! Iz 10002 —])=P (Zi in 12.1':2 1,.,21 —1=Z; ...1) of
the basic vartables, [14]

U,= 0 F(z2,D)

Uz = ¢_I(F2(ZZ 1 Z 1))

U = o UF (212,25 -2, 4,))

U, =0 UF,(Z,1Z,,29, " Zp_y))

27

Here ®( ) denotes the standardized normal distribu-
tion function. The limit state surfaces for the indivi-
dual elements are expressed in terms of u as
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8@ =g (T ud =g, ,(W)=0, i=12,,k (28)

The second step in a frstorder reliability
analysis consists in determining the joint design point
u’, which is the point on the limit state surface closest
to the origin. u" is thus found as the solution of a
constrained minimization

min ful
g, <0, i=12,---k

provided that g, ;(0)>0 for at least one i €{l,...k}.
Standard optimization techniques can be applied to
solve this problem. All constraints are not necessarily
active at the joint design point, Le., g, ,(u’)=0 s not
necessarily valild for all i. Let I <k denote the
number of active constraints.

The third step in a first-order reliability method
consists in a linearization of the safety margins at the
joint design point u° formulated in the normal space.
In normalized form the linearized safety margins are

M, = B,—afU W

where o, is a unit vector and 8,=ou’ is the first-
order reliability index for element i of the parallel
system linearized at the joint design point. The corre-
lation coefficient p;; between the safety margins M,
and M, is

(29)

pu = p[M[ ij ] = “iraj (31)

The failure probability of the parallel system is now
estimated as

Pp = ¢1 (—ﬂ:p) (32)

where 8={8,}, p=lp, ; } and only the ! active elements

are included. The asymptotic result as (u’ | oo is,
[15]

Pp ~ @, (—B;p) [det(1-D)Y V2, Iu’ |—aoo (33)

where 1 denotes the unit matrix and D is a matrix
determined by the coordinates of the design point and
the gradients and second order derivatives of the limit
state functions at the design point.

The reliability index 85 for the system is defined
as

Bp = —0~UPp) (34)

For a single element the asymptotic result for 8z is
derived in [16]:

By ~ B, B=luv" |50 (35)

A generalization of this resull 1o & parallel system
vields

Be ~ -0 N, (~B;p)), v |oeo (36)

The failure probability in (16} is calculated
directly by (32) or (33) with k=I=1, The updated
failure probability in (21) is rewritten as



P(M<0iM,S0N.NM, SONM, ,,=.=M, ., =0) (37)
FP(M SOM SO.M, SOM, . Sx, 13 M, 4, S, 4,)

= er+1"'axr+;
a‘P(MISO---Mr SO-Alr +1S,I,. +l"'Mr'+.r er +;)
axr+1 t 'erﬂ

where the

partial derivatives are evaluated at x=0.
Two parallel systems must thus be analyzed, but the
optimization problem is cast in a slightly different
form than (29) since the constralnts corresponding to
the detected crack sizes are changed to eguality con-
straints. In addition, linearized safety margins for
inactive constraints are included as described in [171
The wvector of reliability indices and the correlation
matrix for the normalized safety and event margins in
the numerator are

8 1 pf pf
Bil. o1 Py Ph
8, P2 Py P2z

(38)

where 8 refers to the safety margin, an index 1 to the
normalized event margins for no detection and an
index 2 to the normalized event margins for a detected
crack and measured crack size. The dimension of 8, is

r (since inactive constraints have been included) and
The vectar of rplinhHHv
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the dimension of R- is g.

indices and the correlation matrix for the denominator
are similarly

B’

By

The joint design point for the parallel system in the
denominator is generaily different from the design
point for the parailel system in the numerator. This is
emphasized by the use of a prime in the denominator.
The dimension of B,' is r and the dimension of B, is
5.

P11 Pz{ (39)
' P’ Pz

In [18] the asymptotic result for the partial
derivative of 85 for an element has been derived with
respect to a distribution or limit state function param-
eter p:

B 98 |y
— =, 1| 40)
o (
For the failure probability then follows
0Fr _ _ 9% BR) 0Bx
1

% 7 ~(8z) » (41)

~-¢® B, v e

or

Generalizing this result to ihe parallel system In the
numerator of (37) ylelds
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§ P(M S0M,K0..M, SOM, 1%, 10 My 45 $xe4e)

0% 410 0% 4 ix=0
8 1 pf of
& Crase =Bl |y Py PR
.le le P2 Pzz.l
~ (42)
aBr+l e aBr-u
T
B P "
= b, (B pra} Bp oy [— IBl ok P Bl
L TP
P Py ol r |05 P2 oz

(")

where standard results for the conditional multivari-
ate normal distribution have been applied since the
vectors of linearized safety margins are joint normally
distributed. Furthermore §8,/§x,=—1 has been used,
which is valid since Var [M,}=1. For the conditional
probability in (37} one obtains:

P(M €OIM SON.NM, SONM, ,,==M, ,, =0) (43)
th (=R 0.2
i\ rarzs
¢: (=85 p2y)
1 pf] [of
Droy|— 'B‘l [P:u pirBai; PP P 4 P [p2 pal
T @ (B + pAlex) 81 pu' — PR P

The updating of the reliability has been demon-
strated. If the interest is on updating the distribution
of the basic variables the same procedure is followed.
Instead of the safety margin (15) an eveni margin M
for basic variable Z, is defined as

M= Zi -z (44)

With the safety margin replaced by this event margin
the value of the cumulative distribution function for
Z, at the argument z,; is updated. The procedure can
be repeated for different arguments z; and the com-
plete distribution function thereby be updated. Even
when the basic variables are initially independent the
updating procedure generally introduces dependence.
It may thus be more relevant to update the joint dis-
tribution function. The safety margin M Is then

replaced by a vector of e¢vent margins
{Z;—z,},i=1,--- n and the updating of the vector is
performed as described above.



EXAMPLE.

Consider a panel with a center crack as In the
experiments of [12]. The loading is a constant ampli-
tude loading leading to a far-field stress range S. The
geometry function is modeled as

Y(a,Y) = exp(Y 1(5“—0)"’) (45)

The geometry function takes the value one for a=0.
Lengths are measured in mm and stresses in N fmm 2,
The distribution of the basic variables is taken as

§ € N (60, 107)

Y,€LN(1,02%)

Y, € LN(2,0.1%)

ag €EX(1) (46)
ac € N (50, 10%)

(InCy, m ) € N,(—33.00,0.4723.5,0.3%, —0.9)

N{u,0%) denotes a normal distribution with mean
value u and varfance 2. Similarly LN (u,02) denotes
a log-normal distribution with mean wvalue @ and
varlance 0% N (g;,02,05,04:0) denotes a bivariate
normal distribution with mean values g, and u,, vari-
ances ¢ and o and correlation coefficient p. EX (g)
denotes an exponential distribution with mean value
#- The negative correlation between InC,; and m is
not reflecting a physical dependence, but is intreduced
by the form of the crack growth equation (2). Statis-
tics for C,{a ) are taken as those reported in [7], see
section 2 of this paper. The example has eight basic
variables and the transformation into standardized
and independent normal variables has been described
in [13,19,201

SORM
FOR

15’ 210 510° 105 210° 5108 107
Figure 1. First- and second-order relia-
bility index from design calcuiation.
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The first-order and improved second-order
approximations to the reliability index are shown in
Fig.1 for various life times expressed in terms of the
number of stress cycles V. The iwo approximations
are close implying that the curvatures of the limit
state surface are moderate at the design point. Statis-
tics for the distribution of life time I can be directly
approximated from the results of Fig.l. For the mean
life time the approximation is

Elr]l= [U-P@ <t Nar z{cp(ﬁ(z ) dr (47)
1]

For N=1510° cycles the reliability index and
the sensitivity factors are shown in Table 1. a? can
be interpreted as the fraction of the total uncertainty
due to uncertainty arising from basic variable I/;. The
major contribution to the overall uncertainty is thus
in this case from the uncertainty in the material
parameters. The critical crack size uncertainty is of
little relative importance in this case, and the same is
concluded in almost all cases where the critical crack
size is significantly larger than the initial crack size.
The uncertainty in the geometry function contributes
very little to the total uncertainty in this case. Thisis
because the value for =0 is completely known.
When this initial value is not known the uncertainty
is comparable to the uncertainty in the loading. The
uncertainty contribution from the uncertainty in the
change in the geometry function from the initial value
is generally found to be low. For tubular joints,
where the geometry function is approximately propor-
tional to a~V2 for large values of a, this statement
may not be true in all cases.

TABLE 1 Reliability index and sensitivity factors

N=1510* B=1.816
Variable oy “tz
ag 0.5513 30%
ac -0.0001 0%
S 0.3577 13%
m -0.6141 38%
Clm 0.4362 19%
Y, -0.0248 0%
Y, 0.0085 0%
Wagagac,Yom -0.0060 0%

Based on the results in Table 1 and results for the
parametric sensitivity factor (403, [13,18], the sensi-
tivity of the reliability index to a change in a distribu-
tion parameter can be determined. For the mean value
fs of the normally distributed loading varlable §, the
sensitivity factor Is

T -

Ors Os
An Increase in gg by 10 MPa thus leads to an change
in B of approximately (-0.0358)10--0.358.

_0.3658 =—0.0358  (48)



Next, the situation where a crack is found In the
first inspection is considered. It is envisaged that the
inspection §8 carried out after N,=10° stress cycles
and a crack length of 3.9 mm is measured. The meas-
urement error Is assumed 1o be normally distributed
with standard deviation ¢4. Figure 2 shows the
updated reliability index as a funcilon of 6,4, When
(43) has been applied with (r s }=(0,1). The result is
almost independent of o4 In this example as the
uncertainty in the initial crack size is dominating the
uncertainty in A ;. When the crack is detected, a deci-
ston has to be made and two options are present. It
may be decided to repair the crack now or to leave the
crack as it is and base a decision on repair on more
inspection results. With just one inspection it is not
possible to determine If the crack was initially large
but grows slowly enough that repair is not needed, or
the crack was initially fairly small but is growing fast
and must be repaired. If a requirement on the reliabil-
ity index in a period without Inspections is formu-
lated, e.g., Bp 22, the latest time of the next inspec-
tion is determined from Fig.2.

AN

7

& 510% 10

2‘.10
Figure 2. Updated first-order reliability
index after first inspection with crack
measurement 3.9 mm.

Assume that the crack is not repaired but a
second inspection at N =2-10° stress cycles is required.
Let the inspection method be the same as in the first
inspection and let the measured crack size be 4.0 mm.
The measurement error is again assumed to be nor-
mally distributed with standard deviation ¢, and the
two measurement errors are assumed to be statisti-
cally independent. Figure 3 shows the updated relia-
bility index after this second inspection. Different
inspection qualities now lead to very different results,
With o4 =0 the negative slope of the reliability index
curve becomes very large demonstrating that the
crack growth behavior is basically determined by two
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G, 05 02 o1 ap2 Omm

1 W

2+

—— + + — B
210°® s510° 10%  210° 5108 107
Figure 3. Updated frst-order reliability
index after second inspection with crack

measurements 3.9 mm and 4.0 mm.

10°

combinations of the basic variables. With a large
measurement uncertainty there is an immediate and
large increase in reliability, but after some time the
curve becomes almost identical to the curve resulting
after the first inspection. Due to large uncertainty in
both inspections only little information is gained on
the crack growth rate. If the inspection quality is
very high it may be possible to state that the crack
does not grow to a critical size within the design life
time, Repair and further inspections are then unneces-
sary. For a poorer inspection quality a time period
unt{l the next inspection can be determined and the
decision on repair be further delayed.

G,: 05 02 O3 Q02 Omm
1 1

° ‘)‘ 0 - t
rCZVar(CZ} 20075

+ + + + + N

s 5105 0® 210 516% 1’

10% 210
Figure 4. Updated frsi-order reliability
index after second inspection with crack
measurements 3.9 mm and 4.0 mm,
importance of inhomogeneity.



Figure 4 shows the results of Fig.3 together with
sim{lar results for a homogeneous material. It is
observed that only for very small inspection uncer-
tainty does the material inhomogeneity significantly
affect results. The estimates for materfal inhomo-
geneity used in this example are for base material and
the conclusion may be somewhat different for crack
growth in weld material or in base material in a heat
affected zone.

Figure 5 presents results similar to those in Fig.3,
but for the case where a crack size of 5 mm is reported
in the second inspection. Together, the two inspection
results now indicate that a large and fast growing
crack is present. Repair is therefore necessary within
a short period.
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1° 210 5100 100 2100 s10° 107

Figure 5. Updated first-order reljability
index after second inspection with crack
measurements 3.9 mm and 5.0 mm.

Consider now different situations where the
inspections do not result in crack detection. An
attempt is made to illustrate possible means to achieve
a required reliability. Let the reliability requirement
be B 3.0 and let the design life time correspend to
1.5-10% stress cycles. Flgure 6 shows the reliability
index as a function of number of stress cycles for two
plate thicknesses, With a plate thickness ¢ the relia-
bility requirement is fulfilled for the design life time
and no inspections are needed. With a plate thickness
of only 60% of ¢ the rellability requirement is
fulfilled for the period nntil N =2-10° stress cycles,
where an inspection is needed. The quality of the
inspection is reflected in the distribution of non-
detected cracks. An exponential distribution is
assumed with a mean value A. Cracks initially
present are cracks which have passed the inspection at
tha nrodinction =ite sither becanse fhm.' were nnt

g ProcCclioll oo CIUel RAQliso =ic UL

detected or because they were below the acceptance
level. If no cracks were accepted in fabrication, the
fabrication inspection therefore corresponds to A=1.
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Figure 6. First-order reliability index for
two plate thicknesses.

Figure 7 shows the initial reliability index and

updated reliabllity indices for three inspection quali-

ties. The best inspection quality A=0.3 is better than
the fabrication inspection quality and if no crack is
found with this method the increase in reliability is
sufficient to make further inspections unnecessary. For
the two other inspeciion qualities, periods are deter-
mined until the next inspection.
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mgure 7. Ul!&dtm BI’SL—O}"U‘:I reliabili Ly
index after first inspection with no crack
detection.



Figure 8 shows the total inspection requirement
for A=1 when no crack is delected in any inspeciion.
For this case two inspections are needed. Finally,
Fig.9 shows the total inspection requirement for A=3
when no crack Is detected in any inspection, and for
this case five inspections are needed. It is thus demon-
strated that different strategles on design and inspec-
tion planning can be used to achieve a required relia-
bility.
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Figure 8. Updated first-order reliability
index after inspectlons with no crack
detection, mean size of non-detected
cracks 1 mm.
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Figure 9. Updated first-order reliability
index after Inspections with no crack
detection, mean size of non-detected
cracks 3 mm.
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The results of a reilability analysis following a
repair of a detected crack Is iilustrated in Fig.10, Itis
assumed that a crack size of a,,,=8 mm is repaired
after ¥V, =2:10% stress cycles. The distribution of the
initial crack size after repair a,, is taken as an
exponential distribution with a mean value of 1 mm,
t.e., as the same initial distribution as after fabrica-
tion. Two situations are considered with either identi~
cal or independent material properties before and after
repair. When independent properties are assumed the
same distribution is used for the properties before and
after repair. If follows from the results that there is
an immediate increase in reliability after repair, but
the reliability quickly drops to a level below the level
obtained for the calculations before repair. This
reflects the possibility that the cause for the large
repaired crack size is a larger than anticipated loading
of the crack tip, which is also acting after the repair,
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Figure 10. Updated first-order reliability
index after repair of an 8 mm crack at

N =2-10" stress cycles.

The results presented in this example have been
for a constant amplitude loading. For offshore struc-
tures a long term stress range distribution is generally
applied in fatigue analyses. Due to uncertainty in the
environmental statistics, load models, global struc-
tural analysis and local stress analysis, the parameters
of the long term distribution should be modeled as
random variables, A Weibull distribution is often
used

Fels)=1—exp(~(s{ A)%), s>0 (49
where A and B are random variables. A calibration
of the statistics for A and B, based on an uncertainty
modeling for the above mentioned sources, can be per-
formed by a modification of the probabilistic fatigue
analysis presented in [21]. The factor Y,/V,57 in (8)
is replaced by the expected value, which for Weibull
distributed stress ranges becomes



ELE 5= EVIELs™]= EV1am T(1+2) (50)
r=i

The expected value is random due to the random dis-

tribution parameters, but the uncertainty in the sum

for fixed distribution parameters is neglected. This is

reasonable due to the large number of random wvari-

ables with little correlation in the summation.

For wariable amplitude loading it is also of
interest to study the effect of a non-zero threshold
value for AKX in (2), which becomes

A _ -
4L~ CaK, AK>AK,, (51
Eq.(4) is then replaced by
da
e — = (0 A 1 dN (52)
Yaxr ey B > e (

where 1 denotes the indicator function. Replacing as
an approximation

Lo sa_ ____ _
Dy iis expec

Q.

[}

Y(a, Yy (Vma ¥"G(a)

The reduction factor G(a), 0€G(¢)<1 depends on
the long term stress range distribution as (S=A¢)

=C E[Aay ]dN (53)

o0

M[ S™ £4(8)dS

G(G)= Y(a,\i);:ra (54)
.i" §7 £ (S )dS
AK,
Tf1+2 (———% __
—_| B (AY(a.Y)\hm |
m
e

where the last expression is valid for the Welbull dis-
tribution in {49).

CONCLUSIONS
The following conclusions can be stated:

I} A stochastic model for fatigue crack growth has
been applied which accounts for uncertainties in
loading, initlal defects, critical crack size,
material parameters including spatial variation,
and in the computation of the stress Intensity
factor. Based on the crack growth model and a

Inard mndal a cafotr mosradin hae haan dafiond
auals MNGGEL & SalSly NMaigill 048 UEEn Genned.

2) Two types of inspection results have been con-
sidered and the inspection uncertainty has been
modeled. Event margins have been defined for
both types of inspection results. Updated relia-
bilities have been expressed in terms of the safety
margin and the inspection event margins. A simi-
lar analysis has been performed for a structure
af'ter repair.
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3) A brief discussion of first-order rellability theory
applied to parallel systems has been presented. It
has been demonstrated that the updating after
inspection and repair can be carried out in a sim-
ple way by use of first-order reliability methods.
Updating of the reliability and/or of the distribu-
tion of the basic variables have been considered.

4) The analysis has been presented for an example
panel with a center crack. The reliability index
has been computed based on information at the
design stage and has been updated based on
tion and in no detection. The effect of material
inhomogeneity for the selected base material has
been demonstrated to be insignificant. Different
inspection qualities have been considered resuli-
ing in different effects on the updated reliability
index.
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