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ABSTRACT

A study of the Tlargest value
distribution for & zero-mean Gaussian
process is presented. A first-passage
problem 1is dJmplemented to derive the
largest value distribution and the
associated 1limiting decay rate is newly
proposed assuming that the process s
narrow-banded and the upcrossings of
process are correlated. A consideration
is also given to the non-stationary and
the long-term prediction of the largest
value. For a typical wave data, the
design wave heights are determined using
the largest value distribution,

INTRGDUCTION

Naval Architects and Ocean
Engineers have aspired to provide a
rational procedures by which the field
industry and regulatory agencies can
determine the most “adequate" design
loads. The structures must withstand the

design leads safely and at the same time
economically during their service
lifetimes. task of assessing the
most adequate and consistent safety
margin c¢an be done most effectively
using the vreliability theory which
requires load distributions and
resistance (or capacity) distributions.
To comply with this aspect, during the
past two decades, load distributions
have become a central interest with the
ultimate objective of dimproving the
prediction of wave loads and the
rational design procedures.

In connection with the load
distribution, as a tool! for determining
the design wave height, the largest
value distribution of a random variable
which can be described by a zero-mean
Gaussian process, 1is presented by this
paper. A first-passage problem is
implemented to derive the largest value
distribution and the associated limiting

The

decay rate is rewly proposed assuming
that the process is narrow-banded and
the upcressings of the process are
correlated. Some methodological
extension is given to the non-
stationary and the long-term
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prediction of the Targest value of a
random variable.

For a typical
scatter data, the
exceedance and the probability
function of the largest value
heights are computed for the selected
design periods, 1, 10, 25, 50, 100
years. Their numerical values are
discussed in comparison with those
obtained by the conventicnal method,
that is, the Weibull distribution fit
and the peak analysis. The Targest
value distribution method clearly
quantifies the design wave height as a
random variable in a probabiiistic
manner and can serve when implementing
the reliability theory which requires
the load distribution and the resistance
distribution. Several advantages of the
largest value distribution method, in
fact, based on upcrossing analysis are
discussed as a substitution for the
conventional method based on peak
analysis in determining the design wave
height.

long-term wave
probability of
density
of wave

THEORY

The Largest Value Distribution { LVD )

The first-passage probability
p{bs;t|x } is defined such that the value
of the process X{t) surpasses & certain
fixed threshold b for the first time
during t to t+dt on the interval [0, T],
starting from probabilistic initial
condition X = x, This is intimately
related with the probability S(b;T|x,)
that the iargest value X of the process
during the interval T vremains smaller
than the threshold b, i.e., in a
mathematical form:

T
S{biTix,} =1 - [ plbst]x )dt (1)

0

where S(b;TixO) = prob{X_ <b ; 0<t<T};

i.e., the probability of no-exclrsion
{say, the fraction of the ensembles
which do not have an excursion). In
other wards, it is exactly the
cumulative distribution function (CDF)
of the largest value X of a random

process X(t) during the time interval T.



When the threshold b is associated with
the failure surface of the reliabiiity

theory, S{b3T|x,) represents the
probability that “the system has not
failed at time T, starting from the
initial condition XD = x, in safe demain
and 1is called the reliability of the
system.

For a diffusion Gaussian-Markov
process, the probability of no-

excursion, S(bsT)|x%,), that is, the
cumulative d1str1but1on function of the
largest value during the fnterval T s
the solution for the backward Koimogorov

differential equation [12,15]
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in which f ds a drift and a is a
diffusion coefficient, with the boundary
and initial conditions:

S(bs3Tib) = 0 {3)
S(b3T[0} = finite (1
S(b;O!xo) =1, 0 <x <b (5)
The formulation of the backward
Koimogorovy differential equation with
the associated initial and boundary

conditions can be studied in detail by
referring to [8].

Approximate Splution and Limiting Decay
Rate

For the backward
equation with 1initial and
conditions given in the equations (2)
through (5), wunfortunateiy, an exact
solution for S(b;T|x. ) has not yet been
cbtained in an analyt1ca1 form even for
a simple single-degree-of-freedom linear
oscillator subject to a white noise
extitation. The best approximate
solution can be given, by separation of
var1ables, in the form of eigenfunction
expansion as presented in reference [7];
that is,

Kolmogoroy
boundary

S(b3T|xe) = £ Acexp( ~a T ) (6)

The values of A, and oy depend in a
complicated manner on the
characteristics of functions involved in
the equation (2), on the boundary and
initial conditions imposed as well as on
the magnitude b of the threshold.

However, Mark[9] found in his simulation

studies that for the larger but still
stationary period T, which is of most
practical interest, in comparison with
the mean period defined by the zero

upcrossings of the process, the solution

S(bs;T]x,) tends to S{b;T), i.e., becomes

independent of the initial condition.

He also found that for high threshold b,

say b > 2 /W, , where/m, is the root mean

square of the process X(t) on [0,T], the
3 +e

caefficients @ —+ 0 but small and

[
0
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Ay —= 1, while Aj — 0 for every iz 1.

Th1s 1eads to the drast1c simplification
cf the approximate solution with good
accuracy.

For high thershold b and large
periad T, the approximate solution in
the limiting form can be given by

S(b;T} exp{ - «T ) (7)
where © is the smaliest of oy in the
equation (6. The value of a is the
dominant eigenvalueg of the equation
(6} and is called the limiting decay
rate. The Tlarger value of o implies
that the process X{t) is likely to
excurse beyond the specified bound in a
period. On the other hand, smaller
value of o implies that the ©process
X{t) s unlikely to excurse beyond the
specified bound in the same period.

Consequently, the problem of
s0lving the backward Kolmogorov equation
with initial and boundary conditions for
the no-excursion probability
distribution function S{b;T) that the
largest value of the process X{t) during
the time interval T remains smaller than

the threshold b, has been reduced to
that of determining the value of the
limiting decay rate o . That is, once

we find the 1imiting decay rate o , we
can obtain the largest value
distribution of the process X(t}) during
the time interval T.

Limiting Decay Rate Based on Correlated
Peaks

Concerning with the limiting decay
rates, many versions of estimates have
been proposed, These 1include the
assumption of dindependent <crossings,
that of independent maxima (or peaks),
that of independent envelope crossings,
that of independent envelope peaks and
that of two-state Morkov process, etc,
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The estimation of @
envelope should be confined to the
narrow band process since the
mathematical definition of the envelope
by Rice [11] or Crandall [4] does not
represent well the envelope of the wide
band process. 0n the other hand, for
the narrow band process, the assumption
of independent crossings or independent
maxima appears not to be appropriate
since the grouping tendency {clumping)
can be significantly noticed.

Vanmarcke(1975}) improved the
limiting decay rate based on the
envelope, taking into account the
fraction of time that the envelope
spends above the threshold b and the
fact that not all the envelope crossings
(E-crossings) will be followed by a
crossing of the process itself (8-
crossing) during the time interval that
the envelope stays above the threshold.
He evaluated the fraction ¢ of the so-
called "qua11f1ed" E-crossings which are

followed immed 1:_‘,-’ b" at least one B-

using the

datn
Hirave



crossing [13], which is of
for high threshold level and

importance
is of form

l-exp(-v2m qn) /{ v27 gn) {8)

b/ vm non-dimensional
o threshold

¢ =

in which n

&5
/1 - m'/ mm
1 0 2

£
"

i-th moment of the
spectral density
function of the
X{t)

m, = power
(PSD)}

process

In considering the fraction of time
that the envelope spends above the
threshold, which is of importance for
the 1lower threshold level, he modified
the two-state process for the envelope
by transferring from state 1 (above the
threshold) to state 0 (be]ow the
threshold) those intervals T, in which
a B- cross1ng does not nccur Further,
assuming that the expected time
intervals E[T,'] and E[T,'] in the
modified process are increased in the
same ratioc ¢ , Vanmarcke finally
proposed the improved 1limiting decay
rate such as

l-exp(-/Z7gn)
t-exp(-n’/2)

in which N ( n)=(1/2n)v/m /m exp(-n “rey:
the expected rate of B- cross1ngs.
The envelope 1is assumed to
randomly back and forth from the
0 to the state 1. The successive
intervals T, and T, spent in states 0
and 1 are taken to be independent random
variables and exponentially distributed.

+ . s
a =N (n }

(9)

pass
state

The up-crossings of the envelope across
the threshold n is taken to be
"recurrent" events, 1i.e., events whose

recurrent time intervals are independent

and identically distributed. This
constitutes a two-state Markov process
and for successive pairs of time
intervais,

E[T,+T,1 = 1 / Ng (n) (10)

/Zr qn N (n
crossings.
true narrow Dband process,
envelope has a Rayleigh
distribution, the fraction of time that
the envelope stays above the threshold
n can be obtained by integrating the
probab111ty density function

lnllnlLy, therefo re,

[ nexp(-n®/2)dn
+

N (n)/N (D)

where R (n)=

ted rate of E-
ror‘ a

since the

Jithe expec-

ECT J/E[T +T .1

+3

= awnf 2 1oy fF111
= BApl-n" /L) (@]
where N+( n) is,the expected rate of B-
crossings and N {0) is the expected zero
up-crossing rate.
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Fig.1 Visualization of times T and T
The time intervals of T,» T, and

Tn+T1 are sketched in Fig. 1.
In Fig. 1, if ¢ =1, all the E-

crossings are followed 1mmed1ateTy by at
least a B-crossing., However, if ¢=1/2,

only a half of total E-crossings are
qualified. To consider this, in Fig. 1,
if & B-crossing does not occur during
the second time interval T/ spent
above the threshold n , then we will
modify the two-state process by
transferring the second time interval
T, into the modified time interval
[P Consequently, the time that tne
envelope spends above the threshold n
is T, again, d.e., T,'=T Y and the
time that the envelope spen&s below the
threshold becomes

T '=

(1}
0 T i

(2

+T S8 4T ! (12)

If $ = 1/3, i.e., when a B-crossing
does not occur during the second and the
third time intervals, T, and T,/ in
which the envelope spends above the
threshold n , then the modified time
interval of state 0 will be

T =T () 4T 2 4T ¥ 3T @) 4T &) (13)
b 4 0 0 1 1

while the time interval above the
threshold vremains unchanged, that is,
T1I= T It is important to note that in
a” modified two-state process, the time
that the envelope spends above the
threshcid does not change regardiess of
the fraction ¢ of ‘Mqualified" E-
crossings. This is different from the
Vanmarcke's assumption that E[T,'] and
E(T,'] in the modified process are
increased in the same ratio ¢ ; that is,
E(T,'] = ¢ E[T,] and E[T,*] = ¢ E[T,].
As a result, the expected time
interval of recurrent events will be

ELT, 4T '] = 1/ oM (n)

! unchanged

—
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From tne equations (14) and (15),
the expected time E[T,'] that the
envelope spends below the threshold n

in a modified two-state process can he
given by

1 N
ELT,') = - (16)
+ + +
gNp{n} Np(n) K°(0)
Assuming that the first passage
time T ' in a modified two- state

process 1s exponentially distributed, we
will have

prob{TD' < t}=1 - exp( -a t} (17)
and E[Tu'] = 1/a .

Therefore, the AG-exXCuUrsion
proebability is

S{n;T)=prob{T '> Tl=exp(-a T) {18)
and the limiting decay rate o becomes
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N (n)

a =1/EQT,']=¢ N (n}/ {1-9 }
R N+(0)
, L - exp(- /Zman )
=N" (n) (19)
1 -¢exp{-n2/2)}

Comparing the equation (19) with
the equation {9), we can notice that
the parameter ¢ is again the fraction
of "qualified" E-crossings and the new
limiting decay vrate introduces ithe

as a correction factor to

limiting decay rate. New
limiting rate 1is hoped to correct
Vanmarcke's which has been found to
systematically overpredict the
simulation result [10].

New 1limiting decay rate in the
equation (19) is plotted for various g
in Fig., 2 and, for g= 0.1, 0.5,
s compared with Vanmarcke's 1in

through Fig. 5. New limiting
decay rate predicts less conservative
than Vanmarcke's. It deviates farther
from Vanmarcke's and converges faster to
N {n) as q goes to unity.
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Non-stationary and Long-term Prediction
of the Largest Value

In the preceding sections, only a
stationary Gaussian process has been
considered 1in determining the limiting
decay vrates and predicting the Jlargest
value of a random process in a
stationary period.

However, the 1limiting decay rates
that depend on parameters m,, N'(0) and
G can be heuristically extended to a

non-stationary (time-dependent) process,

provided that we are given a time-
dependent power spectral density (PSD)
function instead of a time-independent

PSD functicen for a stationary process.
With time-dependent Vimiting decay
a ( n,t} which can be defined in
of the first few time-dependent
of the time-dependent PSD
the CDF of the largest value
non-stationary period T can be

rate
terms
moments
function,
for a
given by
2 3 e pT. 5 1 i 3
S(niT)= exp{- [ a(n,t)dt} (20)
0
For practical design purpose, the
long-term prediction of the Jlargest
value is important. Since the long-term
pericd should be considered as being
non-stationary, a similar argument can
be given. However, it seems impractical
to find a time-dependent PSD function of
a random process throughout a long
pericod T and to directiy evaluate the
integral given by the equation {20). To
overcome this, we may assume that a non-
stationary long-term period can be
subdivided into multiple stationary
short-term periods. Then, the CDF of
the largest value becomes

S(H;T)=9XD['§ oj{n} Atyny] (21)

where n.;

i number of occurrences of the

i-th state during the period T

Aty time duvation in seconds of
' the stationarity for the i-
th state.
a;{n)s limiting decay rate for
the i-th state.
Equation (21) dmpiies that the
largest value of each stationary periad

is mutually independent and this is wel}

represented by the property of
exponential function,
THE LVD OF LONG-TERM WAVE HEIGHT
Stochastic Mode! for Random Wave

) In applying the Jargest value
distribution theory presented herein,
ocean wave elevation is assumed to be
the sum af many sinusoidal wave

cemponents with arbitrary amplitudes,
frequencies and uniformly distributed
phase angles in [o, 2n 1. This
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assumption leads to a Gaussian
for the wave elevation by the "Central
Limit Theorem" which states that the
probability distribution of the sum of
statistically independent random
variables tends to become Gaussian as
the number of independent random
variables increases with Timit,
regardless of the probability
distribution of the random variables as
long as it has a finite mean and finite
variance.

For a stationary short-term period,
it is assumed that the random process of
wave elevation is successfully described
by I.T.T.C two-parameter spectrum; i.e,

process

S{ w)={Ah/w®)exp(-B/ju") (22)
where A = 173K, /T"
B = 691/T"
w = circular frequency in
rad/sec
H,, = significant wave height
in meters
T = 2n-m,/m,=characteristic
period
m, = the i-th moment of S{uw )

1

The use of T.T.T.C. two-parameter
spectrum also implies that the process
is narrow-banded for a stationary short-
term period and their peaks are
correlated,

Typical Wave Statistics

As a typical long-term wave data,
the synthesized height and period
contingency table is obtaind from the

British Maritime Technology (BMT) and is

given in Fig. 6. It covers 35 years'
data and every cell of the <contingency
provides the number of occurrences in

particles per thousand (PPT) of pairs of
significant wave height and mean zero-

crossing period which characterize the
sea states. In addition, the BMT
provides the extreme significant wave
height for I, 10, 25, 50, 100 design

years, respectively, which describes the
extreme sea state, based on the
conventional Weibull distribution fit

method. It also gives the most probable
value of the largest wave height for the
extreme sea state based on order-
statistics. In their actual

computations, the BMT set 12-hous torm
period in determining the total number
of sterms in N years and took the mean
wave period T = 15 seconds in
calculating the number of wavesin 12
hours. It s noticed that T =5 secs
is the specific value for the North Sea
and North Atlantic and any justification
of its use for other area of interest is
not given. More details can bhe referred
to the BMT report [1,2] and



results will be compared later with
those of the largest value distribution
method.

Numerical Calculations and Discussions

For the BMT (H,, ,T) contingency
table of a typical wave data, the
probability of exceedance and the PDF of
the largest value of wave height are
calculated for 1, 10, 25, 50, 100 design

yvears. The probability of exceedance is
just complementary to the CDF of the
largest vaiue and the PDF is the first
derivative of the CODF.

The overall calculation procedure
is briefly summarized in Fig. 7.

In calculating the moments of
1.7T.7T.C spectrum in the equation (22},
the visual wave height H, in the BMT
table s interpreted as the significant
wave height H,, and the mean zero
crossing period is 0.92 times the
characteristic period.

The time duration of the
stationarity of the i-th state, Aty

is assumed to be independent of the i-th
state, di.e., Atj= At for all states.
The total number of stationary periods

in N years, Ny, is taken by
N = 3600 seconds * 24 hrs * 365
) days * N years / at
and then n can be given by
( PPT of each cell)
n; = * Ny

1000

In the actual calculation, At is an

hour, that is, 3,600 seconds.
However, the magnitude of At does not
affect on the calculation of Zojbting
since the At term is cancelled out in
the multiplication of At and ny If
we have more information about At; in
relation to the sea state, ity will
provide more accurate estimate for
Zaj At ny.

The calcuiation was performed
PRIME 9650. The probability
exceedance and the PDF are plotted
Fig. 8 and Fig. 9, respectively.

The 1largest value of wave height
which has 1% chance of being exceeded
and the most probabie value based on the
largest value distribution method are
tabulated in Table 1. The BMT results,
i.e., the most probable value based on
the order-statistics and the
corresponding probability of exceedance
according to the largest value
distribution are also given in Table 1.
It shows that the BMT result 1is not
consistent with the design periods in
terms of the prebability of exceedance
obtained by the LVD method. For shorter

"""" it seems relatively less
conservative and for longer period it
looks too much conservative, That s,
the most probable value 17.96 meters for
1 year has 73% chance of being exceeded

by
of
in
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while 28.06 meters for 100 years has
y 0.1%.

The
probability

the design

"adequate" level of the
of exceedance in selecting
wave height, remains a
subject of great debate between
certification and classification
authorities, designers, operators and
owners. This may be deduced from the
experiences accumulated to date through
the structures in successful

performance. However, once we set the




adequate level of it, we can obtain the
design wave heights for various design
periods with the <consistency 1in the
probability of exceedance.
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Fig.8 Probability of exceedance of

the largest value of wave
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Fig.9 Probability density function
of the largest value of wave
height

Wave Height in Merers

LVD Mechod 84T Merhed
Design Years | With 12 of Prob|Mest Probadle Mese Probable [?‘:Obabi.li[y of
of Exceedance | value Value Exceedance (1}
1 22.% 18.3 17.95 73

W0 24.5 20.3 23.08 5.3

s 25.3 2.3 25.08 1.3

30 23.8 2.9 26.36 4.4

100 J‘ 5.4 i 2.5 28.06 a1

Table 1 Calculation results of wave
heights

CONCLUSIONS
The following summarizes some
conclusions:

1) With respect to the largest value
distribution during the given period, a
new limiting decay rate 1is proposed
assuming a zero-mean Gaussian process.
It is less conservative in predicting
the largest value than Vanmarcke's which
has been found to overpredict the
simulation results to the conservative
side, especially for the lower region of
the threshold,

2) As a practical design purpose, the
LYD method is considered as a new tool
which determines the design wave height
with the acceptable level of the
probability of exceedance.
3) For typical wave data, the LVD
method is compared with the conventional
method based on Weibull distribution fit
and order statistics, The LVD method is

@) With the implementation of the
LVD method, it is not necessary to
assume Weibull distribution for long-
term wave heights to find the extreme
sea state. We can obtain the long-term
LYD of wave height directly from the
long-term wave data by evaluating the
limiting decay rates and summing them up
cver all the sea states.

Accordingly, it is not necessary to

risk an inaccuracy of parameter
estimation and further eéxtrapolate

Weibull distribution for the region
where data’ is lacking. In fact, for
typical wave data, MWeibull distribution

inaccurately predicts larger wave
heights.

b) In addition, an unjustified use
of the North Sea & North Atlantic mean

wave perioed T = 15 sec can be removed in
calculating the number of waves during
the extreme sea state.

c} The LVD method provides a
consistent design wave height in a
probabilistic manner. We can control

the design wave heights for different
design years, keeping the consistent
level of the probability of exceedance.
This will ease the dimplementation of
reliability theory,

d) In a practical point of view,
the LVD method based on upcrossing
analysis is still simple,
straightforward, and consistent in
determining the design wave heights for
the long-term design periods,
Consequently it can successfully replace
the conventional method of determining
the design wave height.
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