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ABSTRACT

A study of the largest value
distribution for a zero-mean Gaussian
process is presented. A first-passage
problem is implemented to derive the
largest value distribution and the
associated limiting decay rate is newly
proposed assuming that the process is
narrow-banded and the upcrossi”gs of
process are correlated. A consideration
is also given to the non-stationary and
the long-term prediction of the largest
value. For a typical wave data, the
design wave heights are determined using
the largest value distribution.

INTRODUCTION

Naval Architects and Ocean
Engineers have aspired to provide a
rational procedures by which the field
industry and regulatory agencies can
determine the most “adequate” design
loads. The structures must withstand the
design loads safely and at the same time
economically during their service
lifetimes. The task of assessing the
most adequate and consistent safety
margin can be done most effectively
using the reliability theory which
requires load distributions and
resistance (or capacity) distributions.
To comply with this aspect, during the
past two decades, load distrib”tio”s
have become a central interest with the
ultimate objective of improving the
prediction of wave loads and the
rational design procedures.

In connection with the load
distribution, as a tool for determining
the design wave height, the largest
value distribution of a random variable
which can be described by a zero-mean
Gaussian process, is presented by this
paper. A first-passage problem
implemented to derive the largest val~~
distribution and the associated limiting
decay rate is newly proposed assuming
that the process is narrow-banded
the

and
upcros sings of the process are

correlated. Some methodological
extension is given to the “no-
nstationary and the long-term

prediction of the largest value of a
random variable.

For typical long-term wave
scatter d;ta, the probability of
exceed ance and the probability density
function of the largest value of wave
heights are comouted for the selected
des~gn periods, ‘1, 10, 25, 50, 100
years. Their numerical values are
discussed in comparison with those
obtained by the conventional method,
that is, the Wei bull distribution fit
and the peak analysis. The largest
value distribution method clearly
quantifies the design wave height as a
random variable in a probabilistic
manner and can serve when implementing
the reliability theory which requires
the load distribution and the resistance
distribution. Several advantages of the
largest value distribution method, in
fact, based on uncrossing analysis are
discussed as a substitution for the
conventional method based on peak
anal yzis in determining the design wave
height.

THEORY

The Largest Value Distribution ( LVO )-

The first-passage probability
p(b; tlxo) is defined such that the value
of the process X(t) surpasses a certain
fixed threshold b for the first time
during t to t+dt on the interval [0, T],
starting from probabilistic initial
condition x= x,. This is intimately
related witk the probability S(b; Tlxo)
that the largest value X of the process
during the interval T remains smaller
than the threshold b, i. e., in a
mathematical form:

,

S(b; Tlx B) = 1 -~p(b; t)xo)dt (1)

where S(b; Tlx O) = pro#{XL .b ; O.t< T};
I. e., the probability of no-exclirs ion
:;;:; do ,Ot havethe fraction of the ensembles

an excursion). In
other words, it exactly
cumulative distributi~; function

the
(CDF)

of the largest value XL of a random
process X(t) during the time interval T.
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When the threshold b
the failure surface
theory, S(b; Tlxo)
probability that the
failed at time T. startinu from the

is
of

associated with
the reliability
represents the
system has not

initial condition X. = X. in-safe domain
and is called the reliability of the
system.

For a diffusion Gauss ian-Markov
process, the probability of no-
excursion, S(b; Tlx O)> that is, the
cumulative distribution function of the
largest value during the interval T is
the solution for the backward Kolmogorov
differential equation [12,15]

as 1 a’s
—. fE+-o- (2)
aT ax, 2 a X;

which f is a drift and is a
~~ffusion coefficient, with the ~oundary
and initial conditions:

S(b; Tlb) = O (3)

S(b; TIO) = finite (4)

S(b; Olxo) = 1, 0 <xo<b (5)

The formulation of the backward
Kolmogorov differential equation with
the associated initial and boundary
conditions can be studied in detail by
referring to [8].

Approximate Solution and Limiting Oecay
~

For the backward Kolmogorov
equation with initial and boundary
conditions given in the equations (2)
through (5), unfortunately, an exact
solution for S(b; T]xq) has not yet been
obtained in an analytical form even for
a simple single-degree-of-freedom linear
oscillator subject to a white noise
excitation. The best approximate
solution can be given, by separation of
variables, in the form of eigenfunction
c??~;n;~~n as presented in reference [7];

S(b; T)xo) = E Aiexp( -ai T ) (6)
<.0

The values of Ai and ai depend in a
complicated manner on the
characteristics of functions involved in
the equation (2), on the boundary and
initial conditions imposed as well as on
the magnitude b of the threshold.
However, Mark[9] found in his simulation
studies that for the larger but still
stationary period T, which is of most
practical interest, in comparison with
the mean period defined by the zero
upcrossings of the process, the solution
S(b; Tlx ) tends to S(b; T), i.e. , becomes
independent of the initial condition.
He also found that for high threshold b,
sayb ?2 ,TO, where~o is the root Mean
square of the process X(t) on [O, TI, the
coefficients a,+ O but small and

An —-1, while Ai-O for ever Y i? 1.
This leads to the drastic simplification
(’f the approximate solution with good
accuracy.

For high thershold b and large
period T, the approximate solution in
the limiting form can be given by

S(b; T) = exp( - CIT ) (7)

where ~ is the smallest of CZi in the
equation (6). The value of a is the
dominant eigenvalue of the equation
(6) and is called the limiting decay
rate. The larger value of a implies
that the process X(t) is likely to
excurse beyond the specified bound in a
period. On the other hand, smaller
value of a implies that the process
X(t) is unlikely to excurse beyond the
specified bound in the same period.

Consequently, the problem of
solving the backward Kolmogorov equation
with initial and boundary conditions for
the no-excursion probability
distribution function S(b; T) that the
largest value of the process X(t) during
the time interval T remains smaller than
the threshold b, has been reduced to
that of determining the value of the
limiting decay rate a . That is, once
we find the limiting decay rate a , we
can obtain the largest value
distribution of the process X(t) during
the time interval T.

Limiting Oecay Rate Based on Correlated
a

Concerning with the limiting decay
rates, many versions of estimates have
been proposed. These include the
assumption of independent crossings,
that of independent maxima (or peaks) ,
that of independent envelope crossings,
that of independent envelope peaks and
;F?t of two-state Morkov process, etc.
L>J

The estimation of a using the
envelope should be confined to the
narrow band process since the
mathematical definition of the envelope
by Rice [11] or Crandall [4] does not
reoresent well the envelope of the wide
band process. On the other hand, for
the narrow band process, the assumption
of independent crossings or independent
maxima not to be appropriate
since t$~p~~~~ping tendency (clumping]
can be significantly noticed.

Vanmar::~:j975) improved the
limiting rate based on the
envelope, taking into account the
fraction of time that the envelope
spends above the threshold b and the
fact that not all the enveloue crossings
(E-crossings) will be folj;~~:f by ‘a
crossing of the process (B-
crossing) during the time interval that
the envelope stays above the threshold.
He evaluated the fraction @ of the so-
called “aualif ied” E-cross in’us which are
followed ‘immediately by at I;ast one B-
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crossing [13], which is of importance
for high threshold level and is of form

in which n = bl~; non-dimensional
threshold

2
q. 11-m,lmm 0,

mi = i-th moment of the power
spectral density (PSD)
function of the process
x(t)

In considering the fraction of time
that the envelope spends above the
threshold, which is of importance for
the lower threshold level, he modified
the two-state process for the envelope
by transferring from state 1 (above the
threshold) to state O (below the
threshold) those intervals T. ‘s in which
a B-crossing does not occur: Further,
assuming that the expected time
intervals EITO’] and E[T,’] in the
modified process are increased in the
same ratio b , Vanmarcke finallv
proposed the improved limiting deca~
rate such as

l-exp(-fiqn)
cl = N+(n ) , (9)

l-exp(-q2/2)

in which N’( n)=(l/2T) -e XP(-IT2/2):
the expected rate of B-crossings.

The envelope is assumed to pass
randomly back and forth from the state
O to the state 1. The successive
intervals TO and Tl spent in states O
and 1 are taken to be independent random
variables and exponentially distributed.
The up-crossings of the envelope across
the threshold q is taken to be
“recurrent” events. i. e.. events whose
recurrent time intervals ire independent
and identically distributed. This
constitutes a two-state Markov process
and for successive pairs of” time
intervals,

EITO+T, ] = 1 / N; (n) (lo)

where N: (n)= & qn N+(n ):the expec-
ted rate of E-crossings.

For a true narrow band process,
since the envelope has a Rayleigh
d$tribution, the fraction of time that

envelope stays above the threshold
n can be obtained by integrating the
Rayleigh probability density function
from n to infinity; therefore,

EIT, ]/ EITO+Tl]

where N+( r,) is+the
crossings and N (0)
up-crossing rate.

= ~~nexp(-n2/2)d.

= N (n )/N+(0)

= exp(-n2 /2) (11)

expected rate of B-
is the expected zero

Fig.1 Visualization of times T , and T 1

The time intervals of TO, Tl and
T,+T1 are sketched in Fig. 1.

In Fig. 1, if$ =1, all the E-
crossings are followed immediately by at
least a B-crossing. However, if $=1/2,
only a half of total E-crossings are
aualified. To consider this. in Fia. 1.
{f a B-crossing does not O~CrIJ~ d~ring
the second time interval spent
above the threshold n , the: we will
modify the two-state pFOC@SS by
transferring the second time interval
T, 12’ into the modified time interval
To’. Consequently, the time that the
envelope spends above the threshold n
i s T,”> again, i. e., T,l=T<,) and the
time’ that-the envelooe sDends below the
threshold becomes

If $ = 1/3, i. e., when a B-crossing
does not occur during the second and the
third time intervals, T,<z> and T,<31 in
which the envelope spends above the
threshold n , then the modified time
interval of state O will be

while the time interval above the
threshold remains unchanged, that is,
T’. T ~., It is important to note that in
a’ modl fled two-state process, the time
that the envelope spends above the
threshold does not change regardless of
the fraction $ of “qualified” E-
crossings. This is different from the
Vanmarcke’s assumption that EIT O’] and
EITI’] in the modified process are
increased in the same ratio $ ; that is,
EITO’~~= ~ E:~g~l:”d E[T,’] = @ E[T, ].

the expected time
interval of recurrent events will be

E[T ,’+T,’I = 1/ @f& (,) (14)

and E[T,’] is assumed unchanged from
E[T, ], that is,

1 N+(n)
E[T,’] = E[T, ] = —.— (15)

N:(n) N+(0)
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From tie equatio;~T~~~) and (15),
the expected time that the
envelope spends below the threshold n

a modified two-state process can be
~~ven by

1 1 N+(n)
EITO’] = — - — — (16)

@N:(n) N~(n] N+(0)

Assuming that the first passage
time TO’ in a modified two- state
process 1s exponentially distributed, we
will have

prob{T ‘ . t}= 1 - exp( -u t) (17)

and EIT O’] = I/m .

Therefore, the no-excursion
probability is

~(n;T).p~~b{Tol> T}. ~xp(. a T) (18)

the limiting decay rate m becomes

NEU LIHITLNG DECAY RATE
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Fig. 2 New limiting decay rates at
five different q Val UeS
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decay rate
at q = 0.1
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of new limiting
and Vanmarcke’s

N+(n)
~ .~/EITot]=$N; (r))/ {1-o —}

N+(0)
1 - exp(- fiqn )

‘N+ (n) (19)
1 -@exp(-q Z/2)

Comparing the equation (19) with
the equation (9), we can notice that
the parameter $ is again the fraction
of “qualified” E-crossings and the new
limiting decay rate introduces the
fraction O as a correction factor to
Vanmarcke’s limiting decay rate. New
limiting rate is hoped to correct
Vanmarcke’s which has been found tO
systematically overpredict the
simul:g; on result [10].

limiting decay rate in the
equation (19) jsa~~~tted for various q
:a~ues in Fig. for q= 0.1, 0.5,

is compared with Vanmarcke’s in
F;g: 3 through Fig. 5. New limiting
decay rate predicts less conservative
than Vanmarcke’s. It deviates farther
from Vanmarcke’s and converges faster to
N ( n ) as q goes to unity.
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Fig.4 Comparison
decay rate
at q = 0.5
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Fig.5 Comparison of new limiting
decay rate and Vanmarcke’s
at q = 1.0
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Non-stationary and Long-term Prediction
of the Largest Value

In the preceding sections, only a
stationary Gaussian process has been
considered in determining the
decay

Iimiti”q
rates and predicting the largest

value of .3 random process in a
stationary period.

However, the limiting decay rates
that depend on parameters m,, N+(0) and
q can be heuristically extended to a
non-stationary (time-dependent) process,
provided that we are given a time-
dependent power spectral density
function

(P SD)
instead of a time-independent

PSD function for a stationary process.
Uith time-dependent limiting decay

rate a ( 11,t) which can be defined in
terms of the first few time-dependent
moments of the time-dependent Pso
function, the COF of the largest value
for a non-stationary period T can be
given by

S(rI; T)= exp{- ~’a(n, t)dt} (20)
..

For practical design purpose, the
long-term prediction of the largest
value is important. Since the long-term
period should be considered as being
non-stationary, a similar argument can
be given. However, it seems impractical
to find a time-dependent PSD function of
a random process throughout a long
period T and to directly evaluate the
integral given by the equation (20). To
overcome this, we may assume that a non-
stationary long-term period can be
subdivided into multiple stationary
short-term periods. Then, the COF of
the largest value becomes

S(n; T)=e XP[-Z ai (q) btjnj]
i

(21)

where n.. n,, umber Of Occurrences of the
l-th state during the period T

Ati ; time duration in seconds of
the station arity for the i-
th state.

L-fi(v); limiting decay rate for
the i-th state.

Equation (21) implies that the
largest value of each stationary period
is mutually independent and this is well
represented by the property of
exponential function.

THE LVD DF LDNG-TERM WAVE HEIGHT

Stochastic Model for Random Wave

di~tr~~utig:plying the largest value
theory presented herein,

ocean wave elevation is assumed to be
the sum of many sinusoidal wave
components with arbitrary amplitudes,
frequencies and uniformly distributed
phase angles in [0, 2, ]. This

assumption leads to a Gaussian process
for the wave elevation by the “Central
Limit Theorem” which states that the
probability distribution of the sum of
statistically independent random
variables tends to become Gaussian as
the number of independent random
variables increases with limit,
regardless of the probability
distribution of the random variables as
long as it has a finite mean and finite
variance.

For a stationary short-term period,
it is assumed that the random process of
wave elevation is successfully described
by I. T.T. C two-parameter spectrum; i.e,

S( w)=(A/us )exp( -B/w’) [22)

where A=

B=

~=

H1/3 =

T=

mi =

173 H;,, /T”

691/T’

circular frequency in
radlsec

significant wave height
in meters

2~. mO/ml=chara cteristic
period

the i-th moment of 5(u )

The use of I. T. T.C. two-parameter
spectrum also implies that the process
is narrow-banded for a stationary short-
term period and their peaks are
correlated.

Typical Wave Statistics

As a typical long-term wave data,
the synthesized height and period
contingency table is obtaind from the
British Maritime Technology (EMT) and is
given in Fig. 6. It covers 35 years’
data and every cell of the contingency
provides the number of occurrences in
particles per thousand (PPT) of pairs of
significant wave heioht and mean zero-
cr; ssing period whic~ characterize the
sea states. In addition, the BMT
provides the extreme significant wave
height for 1, 10, 25, 50, 100 design
Years, res Dectivelv. which describes the
Gxtreme sea staii, based on the
conventional Weibull distribution fit
method. It also gives the most probable
value of the largest wave height for the
extreme sea state based on order-
statistics. In their actual
computations, the BMT set 12- hous term
period in determining the total number
of storms in N years and took the mean
wave period T = 15 seconds in
calculating the number of wavesin 12
hours. It is noticed that T .5 sees
is the specific value for the North Sea
and North Atlantic and any justification
of its use for other area of interest is
not given. More details can be referred
to the BMT report [1,2] and these
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results will be compared later with
those of the largest value distribution
method.

Numerical Calculations and Discussions

For the ~~jicj~ti,w;~~ C&in9@:~:
table of a
probability of exceedance and the’ PDF of
the largest value of wave height are
calculated for 1, 10, 25, 50, 100 design
years. The probability of exceedance is
just complementary to the CDF of the
largest value and the PDF is the first
derivative of the CDF.

The overall calculation procedure
is briefly summarized in Fig. 7.

In calculating the moments of
I. T.T. C spectrum in-the equation (22),
the visual wave height Hv in the BMT
table is interpreted as the significant
wave height Hi,, and the mean zero
crossing period is 0.92 times the
characteristic period.

The time duration of the
station arity of the i-th state, Atj ,
is assumed to be independent of the i-th
state, i. e., Atj= At fOr all states.
The total number of stationary periods
in N years, NT, is taken by

t$ = 3600 seconds * 24 hrs ● 365
days * N years I At

and then n can be given by

( PPT of each cell) , N
“i =

1000
T

In the actual calculation, At is an
hour, that is, 3,600 seconds.
However, the magnitude of At does not
affect on the calculation of Zai Atjnj
since the At term is cancel led out in
the multiplication of At and ni . If
we have more information about Ati in
relation to the sea state, iti will
provide more accurate estimate for
Eaj At nj.

The calculation was performed by
PRIME 9650. The probability of
exceed ance and the POF are plotted in
Fig. 8 and Fig. 9, respectively.

The largest value of wave height
which has 1% chance of being exceeded
and the most probable value based on the
largest value distribution method are
tabulated in Table 1. The 8MT results,
i. e., the most probable value based on
the order-statistics and the

Fig.6 Typical wave scatter data

b....,,.2

9., *

Fig.7 Overall calculation procedure

while 28.06 meters for 100 .Years hascorresponding probability of exceed ance
according to the largest value only 0.1%.
distribution are also given in Table 1. The “adequate” level of the
It shows that the 8MT result iS not probability of exceedance in selecting

the design wave height, remains aconsistent with the design periods in
terms of the probability of exceed ance
obtained by the LVD method. For shorter
design period, it seems relatively less
conservative and for longer period it
looks too much conservative. That is,
the most probable value 17.96 meters for
1 Year has 73% chance of being exceeded

subject of great debate between
certification and classification
authorities, designers, operators and
owners. This may be deduced from the
experiences accumulated to date through
the structures in successful
performance. However, once we set the

I
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adequate level of it, we can obtain the
design wave heights for various design
periods with the consistency in the
probability of exceed ance.

;! ~
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CONCLUSIONS

The fol
conclusions:

owing summarizes some

1) With respect to the largest value
distribution during the given period, a
new limitina decav rate is DrODOSed
assuming a ~ero-me~n Gaussian pro; ess.
It is less conservative in predicting
the largest value than Vanmarcke’s which
has been found to overpredict the
simulation results to the conservative
side, especially for the lower region of
the threshold.

2) As a practical design purpose, the ‘
LVO method is considered as a new tool
which determines the design wave height
with the acceptable level of the
probability of exceed ance.

Fig.8 Probability of exceedance of
the largest value of wave
height

.,,
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Fig.9 Probability density function
of the largest value of wave
height

3) For typical wave data, the LVO
method is compared with the conventional
method based on We ibull distribution fit
and order statistics. The LVO method is
found to have the following advantages:

a) With the implementation of the
LVO method, it is not necessary to
assume Wei bull distribution for 10ng -
term wave heights to find the extreme
sea state. We can obtain the long-term
LVD of wave height directly from the
long-term wave data by evaluating the
limiting decay rates and summing them up
over all the sea states.

Accordingly, it is not necessary to
risk an inaccuracy of parameter
estimation and further extrapolate
Weibull distribution for the region
where data” is lacking. In fact, for
tYPical wave data, Wei bull distribution
inaccurately predicts larger wave
heights.

b) In addition, an unjustified use
of the North Sea & North Atlantic mean
wave period T = 15 sec can be removed in
calculating the number of waves during
the extreme sea state.

c) The LVO method provides a
consistent design wave height in a
probabilistic manner. we can control
the design wave heights for different
design years, keeping the consistent
level of the probability of exceed ance.
This will ease the implementation of
reliability theorv.

d) Ii a pra~tical point of view,
the LVO method based on uncrossing
analysis is still simple,
straightforward, and consistent in
determining the design wave heights for
the long-term design periods.
Consequently it can successfully replace
the conventional method of determining
the design wave height.
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