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ABSTRACT

The purposeof khk studyisto developa generaf
method forestirn.atinzthe system reliability of offshore
structureswith the ~d of thefulldistributionmethod
and to introduce a probabilistic definition of structural re-
dundancy. Structures ?... treated as systems of structural
components. Failure of any “umber of the% mmp.mnts
results in a redi.strihution of cbe internaf or/and exter-
..1 forces. The probability of str.cturaf failure is then
evaluated by examining a limited number of significant
zequence.s of member failures that produce collapse of the
structme. The structure examined is m indeterminate
deep offshore truss under fully developed sea conditions.
Two different types of material behavior are mrmidemd to
characterize the type of failme of the oxnpormntq ductile
and brittle beb aviom. Them reliability amdysia and m.
dundmcy definition wifl form an important malyticd be
sis for fuxther investigation of offshore structuralintegrity.

1NTRDDUCTION

Recent advamms in the prohabfitic safety analysis

methodology and probability-based design procedures for

structures and stmct.ml systems have resulted in the pub-

Iicatim of a large nmnber of technicaf reports and pa-

w,. S.me .f th.,. m. i.te.d.d f.. use in dewkwing

Pr.h.bility-b=.d d=iw ..d.s and mm. in providkg a

theoretical basis for a risk a.ssesmnent procedures guide.

Typical of the former is .“ NBS p“blimtirm by B, Elling-

wcmd et al. (1980) while belonging prominently to the lat-

ter is am NRC document hy J.W. H,ckman et al. (1983).

.kfthough these documents deal primarily with build-

ing structures and nuclear power plants, respectively, they

address themselves to some of the basic issues of etr.ct .ral

i“t egrity assessment and, as such, repzesmt the state-of.

the-art in the probabilistic design and ane.ly~is of complex

engineering systems.

The offshore and ship-building industry has also made

significant progress in the same area of e” gineerin g en.

deavor. 1“ fact, a mcmt symposi@workshop retitled

‘rDesigr., Inspection and Redundant.yz (Faulkner et d.,

1984) organized by the Marim Structures Board, N-

tiomd Research ComIcil and held in November 1983, dis.

cussed the subject matters indicated i“ the title within

the gemral framework of reliability analysis and design,

and he”..isan indicationofthk industry’.recognition

thats,tmx.tum.lreliabilityissuesarea cruciali“gred,e”ti“

designpmxedm.s.

While these advmces and efforts are impressive, there

are still a number of important questions that need to

be answered effectively before a probabilistic methodology

cm tmly respond to the needs of the i“d.stry, Typically,

the following items, whkb are all heavily interrelated, ap

pear t. be in need of immediate atkntion on the p-at of

Practiti.n.rs w well as researchers

A. Estimation ofsystem reliability;reliabilityestimation

143



——— .

Pr-dures must be d-bed for .fih.r. ., @

Structures as structural systems.

B. Full distribution methods for improved reliability

analysis of offshore m ship structures.

C. Load combination analyses wbicb load combinations

are to be considered in the design, what in the appro.

Priate level of a target safety indexforeachcombine

$ion,etc.

D. Effectsofstructuralredundancyon reliabilityperfor-

mance damage-tolerant or fail-stfe design c.ncep~

nmst be implemented.

The present study, however, Primarily develops a

method for estimating the system reliability of offshore

stmctures with the aid of the full distribution method.

Also, a probabilistic definition of structural redundancy

is i“trodumd in this study. These reliability analysis and

redundancy definition will form an importmt am.lytical

beais for the investigation of the questions surrounding

load combination analy~.

EXPECTED MAXIMUM WATERPARTICLEVELOCITY

AND ACCELERATION

The wave analysis petformed in the present study uses

the assumption of the .m.aU amplitnde (Airy) theory im-

plying that the fluid is imiscid, incompressible and the

ratio of wave amplitude t. wave length is small. Then,

it can be shown that the power. spectral density function

S,, of tbe horizontal component C of the water particle

velocity is related to the power spectral density function

.%(w) of the water sufiace ~vfition 7(t) thrOugh

s“”(w)=w,.sn.(w)[’-h[’(”+:~:l’(’+~l] (,)

where u = circular frequency, k = wave number, d =

water depth, z = vertical coordinate axis, positive in the

upward direction and measured from the mean sea surface

.Ievatim and g = gravity accelemtion. Note that

W2 = kg tanh[kdl (2)

For deep water, i.e., d + co, Eqs. 1 and 2 respectively

md”ce to

,
S*,(W) = u’Snn(w) e+” (3)

and

Us = kg (4)

5imilarly, the horizontal component wof the water particle

acceleration has the npectrd density function

,
S&i(w) = w2Stti (w) = w’Sqq(w)e~” (5)

For the purpose of this study, we asmme that the

offshore tower is excited by wavm under fully developed

sea conditions for which the Pierson-Moskowitz spectrum

of the followimg form is used (Pierson & Moskowitz., 1964);

where the parameters a and p are as.mrmd to be a =

0.00g1 and P = 0.74 in the n“rnerical analysis that follows.

The quantity W in Eq. 6 indicata a windspeed represen-

tative of a fully developed sea condition. The spectral

density function for W = 1160 in/aec (29.46 m/see) is de-

picted in Fig. 1. 1“ the present analysis, W is treated ~

. random variable governed by a log-normal distribution

function.

It follows from rmdom process theory (Cram.4r k

Leadbetter, 1958) that the expected maxirrmm value of

l~(t)l fi O S t S T is given in e.pproxinmticm by

K, = {2 ln[z~+ (0)2!’]+ ‘Y
.,/2 ln[2fi+ (0)T1

(8)
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and

7 = 0.5772 (Euler’s constant) (9)

In Eq. 8, T is the duration of the storm, U+(0) is the

expected rate of zero crossing from below by the velocity

pr.c=s w(t) and fi given by

i+(o) = & .: [10)
“

where a, and c; arethestandarddeviationofO(t)and

~(t)and are obtainedfrom integratingtheirrespective

power spectral demity functicmq

.:= J-s”o(w,& (11)

and

.:= J-S”,(W)* (12)

Similarly,

ii,..,. + E[ma.lti(t)l in O s ts T] = K,r, (13)

with

KU = ~2 ln[2ti+(0)Z’] + 7
~2 ln[2u+ (0)T]

(14)

and

ti+(o) = :.: (15)
“

where U+(0) is the expected rate of zero crossing from

below by the acceleration proce~ u(t) and

0;= ~-sv”(w,* (16)

with

s“.(w) = o’s,”(w) ==Aoq(w)e% (17)

In order to avoid .“due analytical complications,

the dependence of the power spectral density functions

s,,(u),S,,(w) .md Su. (w) m z is simplified. Thm is W-

cornpliihed by using

~“, = (:p),/~ .+ (18)

in the factor exp(2ua z/g) in Eqs. 3, 5 and 16. Hence, the

values of them POW.. spectral density functions deczease

in the form of a negative exponential function +(z) as the

water depth -z i“cre U.S.

$+(,) = ..P[*] (19)

Furthermore, in evaluating u;, o< and cr., the respective

integrations (Eqs. 11, 12 and 16) will be carried out nu-

merically up to u = u. = 24 md/sec. That w. covers

the frequency range over which the power spectral den-

sity Sn. (u) is significant can be seen from the fact that

u- = 0.289 radfsec for a mean windspeed of W = 1160

infsec (29.46 m/see). Note here, that the value of w. was

take” to be extremely large but tbe same numerical results

would be obtained using a smaller w.lue (i.e., 6 rad/see)

WIND. INDUCED WAVE FORCES

While the structure we deal with i“ thin study is a

fixed cdfsbore truss as sbmvn in FLg, 3, we will first con-

sider vertically standhg offshore piles in order to ewd”ate

the effect of wind-indmed wave forces on truss structures,

The wave force m an offshore pile is “.”ally estimated

from the well-known empirical formula mgge.ted by Mor-

rison et al. (1950):

f(.) = cd ~v(z) + ~CDPWZ)l~(Z)l (20)

in w~,ch t = time, f(z) = horizo”td force funit len@h of

the pile at water depth z, p = mm demity cd tbe water,

D = pilediameter, and C,,. and Co are respectively the

inertial and drag coefiiciemts, In the nwnerical analysis

that follows, Cm = 1,5 and CD = 1.0 are assumed.

lrI the dymrnic analysis of pile response, the inter.

actionbetweenvczveand structureshouldbe considered

when the velocity and acceleration of the stmctmd m..

tion are of tbe same order of magnitude as that of the

wat.. part ides. It is geuerally accepted that tbe effect

~. .
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of tK,. interaction can be incorporated into t be Morri-

mn equation by .,ing tbe instantaneous relative velocity

and acceleration between tbe structure and water parti-

cles. In tbe present study, bowmwr, this effect is di.we-

garded and the structural analysis is performed in a q.asi-

static fashion. In a recent work (Paliou, C. et al., 1986)

this approach is extended to dynamic response evaluation,

withcmt disregarding this effect, md incl”di”g a fatigue

am.lysis and tbe effect of inspection.

In order to circumvent undue analytical difficulty

and -& the same time to be on the conservat iv. side,

0,,,.. ezp(~z) and ii,,.. ezp(~z), evaluated in the pre-

ceding ae-ction, are used in Eq. 20. Thb is obviously

a mmervativ. approximation since in actuality the max-

imwn values of J(t) and i(t) will not usually occur at

the same time instant, but also bearing in mind that the

main mbj ect of this paper is the development of a reli-

abilityanalysis procedure, this approximation of the load

configuration serves as an illustration. Hence,

f(z) = CmP ~ %.a. e~p (~.) +

%’
, + : CDPD&= .Zp (&z) (!31)

The force per““itIe”gtbevahatedbyEq. 21 is based

on tbe Morrison formula for vertically standing members.

Even wbm a member is inclined with respect to tbe ver-

tical direction by a small angle 0, we assume that Eq. 21

cm still be used with %..s cca O and w,,,., cos.9 in place

of u,,.., and ;,,,.=, respectively. This asmmptim basically

indicates that i,,,.. cm.9 and %... con # are assumed to

produce (in approximation) forces per “nit Imgth perpm.

dimlar to the member axis. The effect of the cmnpomnte

of i,,... and win.. in the direction parallel to the member

axis is disregarded in epproxinw.tim. Tbe horizontal com-

ponent of the re,.lt~t for.. derived from the dktributed

force acting almg the member and in the perpmdimlar

directionthereofisdividedintotwo equalcomponents,

and eachisconsideredesan externalforceactingon each

end (.node of the truss structure to be analyzed) of the

member. Tbe structure is then subjected t. tbcme external

forces resulting from the distributed forces actin g.. all of

its members; F; represents the mm of these forces acting

at mode i (Fig. 3).

As mentioned in the previous section, tbe windspeed

W that represents a fully developed wa stat. is =umed

to be a random variable governed by a log-rmmmd d,stri-

b“tion (Ymg, 1978)

2 loge 1 Iog(clw*) – Pi j
fw(.) = W’=-W-j[ .& 1 } (22)

in which w is meammd i“ in/see, p> and ok represent

the expected value and standard deviation of log YIm =

log C, W’, where YM is the annual expected maximum

wave height and

(23)

For tbe NorthSea,theuseof& = 2.842and c&,= 0.1

was sugge.tedinYang and Fre.denthd(1977).Tbe den-

sity function of W with these parameter values is depicted

in Fig. 2.

The expected ml”. of AW and standard deviation uw

of W can then be evaluated from

pw = c.p(# + :) (24)

md

.W=,wn (z5)

where

1“10
p = (/l& – Iogcl). y (26)

1“10
.=.; .7 (27)

The reliability analysis the” proceeds as follows:
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(a) Working in the range of windspeed from a mea” ml.,

of N’ .6 standard deviations@w - 60W )toa mean

due ofW + 6standarddeviations(W + 6UW ),the

rangeisdivided into 200 intervalsand the probability

ofwi”dmpeedi“eachintervsdisevaluated.

(b)UsingthePierson.Moekowitzspectr.xn(Eq. 6), the

expected maximum wave particle velocity and accel-

eration (%,.. and ii,,...) which corresponds to each

windspeed is computed.

(c) Having computed tbe values of the expected maxi.

mum water particle velocity and acceleration, the dis-

tribution load exerted by the waves on each member is

computed by the Morrison equation (Eq, 21). Thus,

the horizontal mmpone”ts F; of the wave force acting

cm each “ode of tbe structure can be calculated.

(d) TWO cases are examined herein. Case I - Ductile Be-

h.vioc Whenever a number of members fgils either in

tension, compression or buckling, the effect of those

members will be rephced by pairs of extemaf forces

acting in the direction of the axes of these members

.~”d to tbe member forces due to the same Ioad,”g

condition of tbe intact structure (see Fig, 4.), Case

11- Bn”ttle Behatior Wbenewr a number of mem-

bers faifs either in tension, mmprmsion or bwkling,

“O C&r”af force will be assumed to a@, in t,he dirm.

ticm of theaxesofthesemembers asisconsideredin

CW I (see Fig, 4b). The external forces F; (due to

waves) remain to act at M the “odes. The stresses i“

the members which are still intact nmst therefore be

rc-eval. ated under these loading c.mditions. ID this

proces. of r~eval.ati.n, those members wbic3 have

failed do mot m“trib”te to the mnztrmtion of the

stiff mess matrix.

(e) For a number of wi.dep.eds W, the conditioned prob-

ability of failure of the etmctnze is comp.t ed. Thk

cormp”tation,however,isquiteinvolvedsince,inprin-

ciple,we rn.stconsider all the possible sequences of

member failures that lead to cokp,e of thc str”ct ure

In the present study, a strmtur.1 collapse ie comid-

ered b have occurred when excessive structu~ ai de-

flection materialize after failure of a number of mem-

bers or the corresponding stiffness matrix becomes at

least near singular.

(f) At this point, the notion of simultaneous failure of

members used in this study shall be made clear. It

is acknowledged that if tbe intensity of the load in-

cmzses from zero to a certain level, the” the proba-

bility of simultamous failure of two or more members

will be zero if the strengths of the members are ran-

dom. However, for ewe of the probabbtic analysis,

it is -umed throughout this study that sirmdtane-

..s failures can take place in those members whose

strengths are less than the intern al forces resulting

from this level of load intensity.

(g) I. the evaluation of this mnditiormf probability men.

tinned in (e) above, the material strength .wcb as cry,,

a~. or UBk is assumed to be a random variable g...

.med by a normaldist rib.tion with mean val.- 36

k.si (248,04 MP.) foroyt,c=. and x2 EIk/(L~A~) for

OBb, with variousdues ofth...effi.ientof,=i.bbn.

(h) hI order to evahte the conditimal probability of fail-

ure Pf (w), the pmcedum described i“ tbe next sec-

tion is used. At this point, it should be noted that tbe

brmch and bo”ndi”g operatims appearing originally

in the work of Murotw and Okada (1981) contained

certain approximations that may not be valid in cer-

tain circumstances. It is the p.rpme of this paper to

offer a more detailed and accurate prese”tatim of this

method, thm improving tbe origin d developmmt.

(i) FIndlY, the unconditional probability of fail.,. Pr or
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the structureisevaluatedas

RELIABILITY ANALYSIS OF REDUNDANT STRUC-

TURES

The probabilityG:) oftheeventthatrnemheriwill

fail first, while no other members have failed is

where

F(o) = probability of failure of member i (30)

F.(o) = probability of s.rvivd of member j (31)

n = number of members in the structure (32)

The probability SG~) of the event that member k

fails after member i h= failed first, while .11 tbe remaining

members survive is

where

G:) = ~:) fi F;(.) (34)
;=,
i#i,b

with

F~l = probability that member k will fail under re-

d,stributim of the load immediately after tbe event

that member i and only member i has failed.

and

~~(,1 = probahifi~y that member k will survive ..der

redistribution of the lm.d immediately after tbe event

that member i and only member i has failed.

F“rthemnore

where

SG~,,~) = probabi~iiy that ~emher 1 fails after mem.

ber i fails first and member k fails second.

G~,kl ~ ~iven the fajlure .f ~embers i and k,the

probabilitythatrnernber1failswhile all other mem-

bers (except members i, k, 1) survive.

(W), SG~,k@), ,tc,Similar definitions apply to SG~

At this point, it should be noted that the probability

F~~ is .On(ltiond due to the fact that member k b= .1-

readysurvivedUf’)(i.e.,stressofmember k intb.int~t

atru.t”re).In ordertocompute,in 3ener.1theprob.-

~,hky~f,,i,,...,i”l
(i.e.,~suming a sequentialfailureof

members i,+ i,- - i.)thefollowingexpressionis

used

p(.2<...’”l_<f. <...<.m)
=k for condition(.)

~.[,1....,kl
.

~pi.1 ~ ~ for m“ditior(@)

_ @fl,...,l.l— forcoalition(c)

where

Condition (a) : u:’ ,“’”-) = maz{lu~[’,,..,.,), ,

~fJ18...:t) ~;xs,;.1 > i)}

(“,’’’,~”)l < 10:’ -’”)1 :Condition (b) : {IT,

(..,....,8)
‘k C:’,’’,’”)> o)

[G...,i,) < ~)Ccmditim (c) : {u:’ ,“,’”1 u,

for all 1 = 1,..., n-1

and

}f,,..., ).) = ~,ob{cf . .....”l > ~y} (37)

Consider now a set of I+ members (r,, rz, . . . , n,) which

are identified as combination p and whom failures in any

sequence (out of . possible k,! sequences) will produce

system failure. Ass”me further that there are a t.atd of m

s“cb combinations of mernbem. Let rP,i (j’ = 1,2, ..., k,)

identify the member which fails j-th in seqnmce q when

combi” atim p is considered. For example, supposethere

isa trussconsistingof.=4 members;allthesemembers
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areidentifiedby a member ID number 1,2,3 and 4.Smp.

po,ef.rhb.,,tbakthefailureoftwomembers willproduce

collapsein this truss. This tn.... that there are ,C, = 6

cmnb,nati.ns of rnembem whose failure will result in ..1.

lapse. Tbe first combination consisting of the two mem-

bers 1 and 2 is identified by combination ID number p=l,

and nince this combination involves two members, k, = 2.

The second combination is identified by p=2, consisting

of the two members 1 and 3 and for this mmbin ation,

k%= 2, and S. on. Al.., foreachcombination,there are

k,! = 2! = 2 sequmces -according to which the two memb-

ers of that mrnbimmion can fail. For instance, if mm.

bination ID “umber p=l, q=l identifies the sequence of

failure 1 b 2, while ifq=2, the sequence 2 + 1. Therefore,

r,, I = 2 ad mm = 1 inthisexample.

WritingEF~] forthe evmt that member i fsils fol-

lowing the fail”.. of (j-l) other members,

Using the notation i“trod.ced above, we note that

(.”l,,,.% ....<...,,,.,l)Pmb{EFSP,} = SG,,,,, (39)

The failure probability of a red.”dmt structure can

now be written as

“, k,!

P,= Prob{ IJ U EFS,,} (40)
,=1 ,=,

The upperbound ofthefailureprobabilitycan be

computedeither by

.
P,u = ~ Prob{EF/’)} (41)

,= ,
or by

_ ,,,

Pf,, = ~ ~ Prob{EFSP,} (42)
,=, ,=,

These two formulations are not used in the present

st “dy, however, becawe the first is too conservat iv. with.

out discriminatingbetweenred””dantand non-red.n-

dantstr”ct”resand thesecondrequiresen.rneratio”of

all powible failure modes, and thus is .SU ally t.. tirne-

mns.rning. An alternative upper bound is evaluated hy

P,,, = ~’ Prob{EFSP,} (43)

where ~ signifies mmnmatiom over the selected dorni” ant

modes of fail” . . . We assume that there are m’ of them.

The lower bound of failme probability can be mm-

puted as

PrL = maz(P,,)Prob{EFSpq} (44)

where the mmim.m is taken over .11 the pairs of p .md

q that me examined, and ewh pair repmsmts a particu-

lar failure rnecbmism and a particular seque”tid path of

member failures.

Followirg Mumtsu md Okada (1981), three steps,

which comist of branching operations, upper and lower

bound adjustments and bo””din~ operations am comsid.

reed, i“ order to evaluate Ptu and PfG.

Step 1 : Brmmhi”g Operations - Selection of Dmni-

mant Modes

A combimatim of members and their partic”lm fail-

me sequence, or a pair of p and q, are selected m that

it yields a faihne mechanism with the l.srgest [stmct.ral)

failure probability among pmaihle pairs of p and q. To

this end, first identify member r,,l such that

Prob{EFj:!, } = G:] = maz[,,c,.,]Prob{ EF/,’]} (45)

wbem Prob{ EF/,l ]} = G!) is theprobability that mem-

ber i, and CAY member il will fail under the prescribed

loading cond,tim. Hence, the probability that .11 other

members will remain intact mmd be take” into consider-

atim in evaluating this probability. Set I., consists of

thosernernber.for which Prob{EF/,l)) = Gf] are larger

thana certainprescribedvalue.

Then, identify .,,2 s.cb that



Fr.b{EFj::,} = Gfi,;lJ = maz[i,=,.,lProb{ EFf:)}

(46)

where Pr.b{EF\~ ]} = G:’{’] i, the probability of failure

of member i, and only mernb w i, after tbe redistribution

of i“temal forces immediately mbseq.ent to the failure

of member r,,,. Set 1., m.sistsof those members i, for

whichProb{EFj,2]} .I, greater than a prescribed value.

Proceeding similmly and examining if structural fail-

“r. occurs at tbe end of each member failure, the pm-

tic.lar combination p’ and particular sequence q’ which

produce structural failure will be idmtified together with

mt~ I.,,1,,,..., L, ,. Then, the corresponding structural
.

failure probability in

k,,

Prob{EI’SP,,,} = Prob ~ {EF\~j,,,} (47)
j=,

Step 2: Adjustments of Upper and Lower Bounds

Define PfL and Pfu (1) es

J?. = Pr. (1) = PrA{EF%+~, ) (48)

and

Pf” (1) = Pf. (49)

Then, find tbe second combination p“ and q“ with

the system failure probability Prob{EFSP,, Q-) and update

Pf,, (1) and Pfr (1) so that

Pf” (2) = Pf” (1)+ Pf. (2) (50)

where PfL (2) = Prob{EFSp,,f,,} and

Pf. = f’fL (2) (51)

ifPf= (2) z Pffi (1). Repeat the pmced”re m’ timesun-

tilallthedominantmodes have been examined.Then

pr.(m’)becOmestheupperbOund Oftbefailureprobabil-

ityoftbesystem.

Step3: BoundingOperations

To findp“ and q“,the followingprocedureisfol-

lowed. First, consider members ik,,, in tbe set I.,n, ex-

cePt r,,,, ko,, a“d examine if k,,, members consisting of

,,,,,, (= r,,,d,,), rP,d2 (= rp,fgw)j , rp,dtb,.-,) (=

,P<<,f,[k, <-l))>,P,,k.<, , rp,k-,.$, represent a fail-

“r. comb,” ation p“ in a particular ,eq.en.e q“, where

k,,, > k,,. Tbe str”ct”ralfailure probability associated

with th,s particulw pair of p“ and q“ will be evaluated

only when

, } > 10-”P,LProb{EFr,,,,,,,i , (52)

~h~re ib,, c 1,,,, but ik,, # r,,,, i,,. If I@ W is satisfied,

then the combination p“ and q“ repreaer.ta a dominant

failure mode.

Tbe above procedure is repeated until all tbe possible

paim of P md q =e exhaus~d. Not% b~ever, that U. 52

limits to a minimum tbe number of failure modes for which

tbe stmct”rrd failure probabilities are to be computed.

Computer codes have been developed to implement

tbe analytical procedures indicated above and numerical

examples have been worked o“t using tbe structure sbmvn

in Fig. 3

Tbe upper and lower bounds eval”mted with the aid

of tbe procedure described above are still conditional to

a specific wind speed and corresponding Ioad,ng cond,tion,

and be”.. they should actually be denoted by Pfu (w) and

Pffi (w), respectively,

1. the present study, we use Pfu (w) for Pf (w) in ap-

proximation, since less complicated nume,icd ex~ple.

carried out ind,.ated that these bounds are quite close

particularly in the range of high windspeeds where tbe

condition d probability values become more cmcial.

DEF1N1TION OF STRUCTURAL REDUNDANCY

There are a ““mber of definitions for structural re-
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dundancy ranging from that implied by tbewell-known

degreeofstructuralindeterminacyinstructuralanalysis

tothoselistedbelow,assuggestedby Lloydand Claws..

(1984)

RedundantFactor=

intactstrength——
intactstrength-damagede.trength

ReserveResistanceFactorn

environmentalloadatcoUapse(undamaged)
—

designenvironmentalload

ResidualResistantFactorD

emvironrnentalloadatcollapse(damaged)——
environmentalloadatcollapse(undamaged)

In thepresentstudy,however,an attemptisnwade

todefinetheredundancyby a probabilisticmeasure.Tbe

definition introduced here uses, as a mesa.re of redun.

dancy, the probability P; that the structure will ewntu-

.Ily survive, given the failure of one or more (but simul.

taneously) of ita members.

Usins the notation introduced in the previous section,

the following example attempts to give a frequency inter-

pretation. of tbe red.ndmcy probability defined above.

It is supposed that there are initially N nominally

identical but statistically different k-member structures.

For illustrativepurposes, N isassumed to be one bu”dmd

(N= 100) and k equal to three (k= 3), Furthermore, it is

assumed that tbe pmb ab,lit ies of failure G ~) of members i

(i= 1,2,3) oftheintactstructureduetotheinitialloading

mnfig”mtim are

G~) = 0,1, G$) = 0,2 and

Tbe frequencyinterpretationofEq.

G~] = 0.3 (53)

53 statesthatt.”

tbefailureofmember 1,twenty(20)outofonehundred

structureswillsufferfrom tbe failure of member 2, thirty

(30) out of one hundred structures will suffer kom the fail-

ure of member 3, but all will survive. After the redistri-

butionofloadsintbeaestructureswhich.wffemdfromthe

failureofo“.oftheirmembers and survived, it is assumed

for illustrative purposes that the probability of survival of

those structures has been found to be 0.2, 0.8 and 0.1 for

atmctures without members 1 or 2 or 3, respectively, i.e

1 – G~] – G!) = 0.8 (54)

1 – G~l – G!) = 0.1

The frequency interpretation of Eqs. 54 now states that

two (2) out of the ten (10) structures which survived after

the first failure of member 1 will again survive the redis-

tribution of the loads, etc.

Iv=lccl

Fail”r. of members

/ \
#1 #2 #3

/i)o=m
Swvivc 10 20

I
Redistribution of loads I I

Ill”
Swvive: 2 16 3 = 21

makes clear that twenty-one (21) out of the sixty (60)

str”ct.res which survived tbe first failure of one of their

members, will eventually ( i.e., after redistribution of

loads) survive. Thus, according to tbe definition intrc-

d.ced pmviowdy, tbe redundancy probability P; is 21/60

= 0.35.

Explicitly written, Eqs. 53 and 54 lead to

(10)out of me hundred (100) strmtmes will suffer from
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(55)

The numerator of the second term on the right-hand side

of Eq. 55 is nothing else but the probability of failure

of the structure, without including tbe probability of si-

m“ltmeoun fail”.. of more than one member in the intact

structures which, in this example, would produce coil.pne

of the atmct”ms.

in order to include this event and to make tbe defini-

tion of tbe redundancy probability completely gener~> it

should be defined that

p:=l– l’f =1–P; (56)

~ Gf) + SF(0)
i=,

where SF to) is the mmation of the probabilities of the

events ofsimultaneousfirstfaihreofmom thanonemem-

ber,which lead, however, h mrvival of the structure. In

Eq. 56, p} h defined M the non-redund~cy probabil-

ity, i.e., the probability that the structure till event.~b

collapse given the first failure of one or more (but simul-

taneously) of its members.

The probability Pi in the numerical example db-

.umed in this study can be witten as

p,= /-p;wfw@),w (57)
o

inwhichP;(w) istheconditi.”alnon.red””dancyproba-

bilityofthestructureina fullydevelopedseastaterepre

aentedby a windspeedw.

NUMERICAL EXAMPLE

The Pierson-Mmkowitz spectrum given in Eq. 6 is

used for wa surface elevation II with a = 0.00s1, p =

0.74 and g = 386.4 in/=2 (9.81 m/sec2). The spectral

density beyond w. = 24 rad/sec is disregarded as insignif-

icant. The deep water assumption is used with d = 3W ft

(91.5 m) in Eq. 1. This asmmptirm resulted in a simpler

expreseio” for the dependence on z of the spectral der.-

sity f“”ctio”s of the horizontal cmnpone”t, of the water

particle velocity and acceleration. The duration T of each

~tonn i“ F+ 7 and 13 is asmrned to be four (4) hours.

While such a duration should also be considered random,

the eas”mption of T being equal to four ho”m does “d

appear to be wmee.scmable.

In employing the Morrison formula in Eq, 21, we

am”nw Cm = 1,5, CD = 1.0 and p = 9.61 x 10–”

kipnsec2/i”4 (1.028 x 10-8 N.see;/m4), The q“rmtity

w- in tbe frequency at whick tbe P,emon-Moskowitz spec-

tm.1 density takm a maximum v.1”. and in given by Eq.

I& For example, w- = 0.289 rad/sec for W = llM in/see

(29,46 m/see). The dwtribution function of W b= a l.g-

nonnal distribution as shown in E.+ 22 where the constant

C, is giv.n h M 23 ~d is .wJ fA o.o@J5212=C21 in

(0.0205 sec’/m). We =sum. that pi = 2.842 and uk =

0.1. These correspond to IJ.W= E[W] = W = 1160 in/see

(29.46 m/see) and Vw (coefficient of variation of W) a

0.1.

The truss considered for the numerical example is

shown in Fig. 3 and its geometrical and other ch arac-

teristics are listed in Table 1. The material strengths UY,,

OY. and UBk are assumed to be normally distributed ran-

dom variables as mentioned in the previous section. AIso,

theirvaluesarestatisticallyindependentfrommember to

member
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The conditionalprobabilityPf(w) (upper bound)is

evaluatedforseveralwindspeeds:W = 621 ir,/sec(15.77

ml...),894 in[sec(22.71m/see),1160 in/see(29.46

ITI/see),1425 in,fsec(36.2rn/see),1698 in/see(43.13

rn/8ec),1963injsec(49.86m/aec),th.scoveringtberan8e

from PW -4 Ow to#w + 6 OW. The values of P,(w) at

thesewind velocities w for Cases I and II are plottedin

Fig. 5..

The unconditional probability of failure PF in then

obtained with tbe aid of Eq. 28. The integmnd

Pf(w)fIv (w) for both @es I and II appe~s in Fig. 5b.

Comtr”cting such a plot, tbe values of Pf (w) other than

those aheady computed are obtained by interpolation. AS

can be seen from the plots of P, (w) fw (w) m log-scale, the

contribution towards PF from lower windspeeds is negli.

gible. The final results indicate that PF = 0.24 x 10-$

(CaseI) and 0.88x 10-s (Case II) for this truss,

With respect to the conditional “on-red. ”dancy

probability f’; (w), the denominator of the ne.ond term

in @. 56 is computed at the same windspeed values an

those used for the cornp.t.tim of PJ(w). The remits for

P; (w) are shown for both Cams Iand IIinTablez .nd

am plotted in Fig. 6.. Fig. 6b displays the values of

the integrand of Eq. 57, Fkm.lly, P; in computed u 0,99

X 10–2 forCase 1 and 0,93 x 10–1 for Case H and the

mrrespo”di”g wmond,tio” al redundancy pmbabdity P;

is equal to 0.99 for Case I and 0.91 for Case 11.

CONCLUS1ONS

An armly ticalmethod, “.merical procedure and mm-

p“ter codes are developed to evaluate the prob-ablity of

str”ct”rd failure, While the stmct”re considered is a fixed

offshore str”ct.re, tbe methodology is general enough to

be extended to other types of offshore ,tructurm, Cru.

cially important in the methodology is the fact that it

treats tbe structure as a system of str”ct”ral mmpo”ents

with the .ndemtand,ng that failure of them components

in my number results in redistribution of the internal (and

possibly external) forces.

Tbe external forces that act on the offshore structure

stem from wind-induced waves. These forces am evaluated

under the assumption of the small amplitude wave tbe.ry

together with the assumption that the flow is irrotational

and inviscid.

Tbe horizontal components of the water particle

velocity and acceleration the offshore structure is sub-

jected to during each storm are derived from the P&on-

Mmkmvitz spectmrn for the sea s“rfaw elevation. III its

analytical form, the spectrum m“taim a rnem windspeed

value representative of each storm, which is assumed to

l-t four hours. Assuming further th-at the sea surface d-

e.ation is a G aumian random process, the expected max-

imum vdms of the horizontal water particle velocity and

acceleration in their absolute values am .waluated with the

aid of random processtheory.

The atte””ation of these expected nmxim”m values

along the water depth depends on the frequency. For simp-

licity of analysis, this dependence is disregarded and a

form of negative expo”entid atten”atim is med for .11

the freqmmy cmnpo”ents, Aim, disregarding the effect

of relative motion between a water particle and tbeoff-

shorestructure, the Morrison eq”atim is used to mrnp”te

the external forces acting on thetrussmembers, tak,ng

into mmiderat ion the angle of i“cli” ation of these rnem-

bem with respect to tbe vertical direction and transform.

ing these distributed forces into ccmcmtr.ted forces acting

on the “odes of the tress.

The probability of structural failure k evaluated by

exmninin g on] y a limited number of higher-pmbability se-
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quencesof member ftiluresthatproducecollapse of the

structute. The probability analysis involved could become

quite time-consuming if all the possible sequences leading

to structural collapse were comider.d and if the str”ct”re

m.sists of a large “umber of struct”ml component..

The probability analyais is important not only be-

cause it will provide us with tbe probability of structural

failure but also because it will make it pmsible to define

tbe redundancy probabilistically, for example, = tbe prob.

ab,lity of struct”ml survival give” the first failme of one

of the members.
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TA BIJ3 1, Geometrical and Material Characteristics

ofstructuralC.rnpanents

rhick”e=
(in)
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2,0
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1.0
1.0
1.0
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0.75
0.75
0.75
0.75
0.75
1.25 T

Area InertiaMom,
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F
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103.3
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EJ2.o
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50,1
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50.1
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60.1
45.0
45,0
45.0
36.0
S6.o
38.0
36.0
.98.0
96,0
27.0

W E 1160in/,ec

(Mean Windspeed)

1

L
05 10 1.5

0

.

290W ksi u (r.ad/see)Modulus of Elasticity =

UYC>UY, = 36 km

Note : 1 ft= 0.3048 m ; 1 h = 25,4 m ;
1 ksi = 6,89 MPa.

FIG. I One-SidedSpectralDensityofOcean Wave El.-
vation,

TABLE z. ConditionalProbabilitiesPf (w) and P;(w) Due

toVarious Win&peed Values ~ ~3,
>

A900 1(CO T!OI 1200 1303 ILOI 15c0
E

Windsped
(k&c)

621.22
894.51
1159.78
1425.01
1698.30
1963.58

PAW)
ca8e 1

0“591.10-,
0.553.10-4
0,807.10-X
0.12.5.10-1

0,141
0.624 0.366

P;(w)
cue 11

0,244.10–4h-
i=;(w)
c&se1

0.523.10–S
0.359.10-4
0.420.10-3
0,216
0.217
0.587

PI (w)
casen

0.144.10-0
0.947.10–7
0.517.10-4
0.419.10-2
0.141
0.624

ExpectedMaximum Storm WindspeedW (i”/kec.)

m G. z ProbabilityDensityFunctionofExpectedMaxi.

mum Storm W indspeed.

0.171.10-,
0.641.10-1

0.335
0.997
1.000

Not. : 1 in= 25.4nun
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