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ABSTRACT

The purpose of this study is to develop a general
method for estimating the system reliability of offshore
structures with the aid of the full distribution method
and to introduce a probabilistic definition of structural re-
dundancy. Structures are treated as systems of structural
components. Failure of any number of these components
results in a redistribution of the internal or/and exter-
nal forces. The probability of structural failure is then
eveluated by examining a limited number of significant
sequences of member failures that produce collapse of the
striuciure. The siructure examined is an iadeierminaie
deep offshore truss under fully developed sea conditions.
Two different types of material behavior are considered to
characterize the type of failure of the components; duciile
and brittle behaviors. These reliability analysis and re-
dundancy definition will form an important analytical ba-
sis for farther investigation of offshore structural integrity.

INTRODUCTION

Recent advances in the probabilistic safety analysis
methodology and probability-based design procedures for
structures and structural systems have resulted in the pub-
lication of a large number of technical reports and pa-
pers. Some of these are intended for use in developing
probability-based design codes and some in providing a
theoretical basis for a risk assessment pracedures guide.
Typical of the former is an NBS publication by B. Elling-
wood et al. (1980) while belonging prominently to the lat-

ter is an NRC document by J.W. Hickman et al. (1983).
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Although these decuments deal primarily with build-

" ing structures and nuclear power plants, respectively, they

address themselves to some of the basic issues of structural
integrity assessment and, as such, represent the state-of-
the-art in the probabilistic design and analysis of complex
engineering systems.

The offshore and ship-building industry has alse made

significant progress in the same area of engineering en-

deavor. In fact, a recent symposium/workshop entitled

™1 om ST A PR
LeaunQancy” (raulkner € al.,

“Diesign, Inspeciion and
1984) organized by the Marine Structures Board, Na-
tional Research Council and held in November 1983, dis-
cussed the subject matters indicated in the title within
the general framework of reliability analysis and design,
and hence is an indication of this industry’s recognition
that structural reliability issues are a crucial ingredient in
design procedures.

While these advances and efforts are impressive, there
are still a number of important questions that need to
be answered effectively before a probabilistic methodology
can truly respond to the needs of the industry, Typically,
the following items, which are all heavily interrelated, ap-
pear to be in need of immediate attention on the part of

practitioners as well as researchers.

A. Estimation of system reliability; reliability estimation



procedures must be developed for offshore or ship
gtructurea as structural systems.

B. Full distribution methods for improved reliability
analysis of offshore or ship structures.

C. Load combination analyses; which load combinations
are to be considered in the design, what is the appro-
priate level of a target safety index for each combina-
tion, etc.

D. Effects of structural redundancy on reliability perfor-
mance; damage-tolerant or fail-safe design concepts
must be implemented.

The present study, however, primarily develops a
method for estimating the system reliability of offshore
structures with the aid of the full distribution method.

Also, a probabilistic definition of structural redundancy

is introduced in this study. These reliability analysis and
redundancy definition will form an important analytical
basis for the investigation of the questions surrounding

load combination analyses.

EXPECTED MAXIMUM WATER PARTICLE VELOCITY

AND ACCELERATION

The wave analysis performed in the present study uses
the assumption of the small amplitude (Airy) theory im-
plying that the fluid is inviscid, incompressible and the
ratio of wave amplitude to wave length is small. Then,
it can be shown that the power spectral density function
S;¢ of the horizontal component ¢ of the water particle
velocity is related to the power spectral density function

Syn(w) of the water surface elevation n(t) through

-

Sse(w) = wh Snn(W)I_

1

coshik(z + d}] coshjk(z + d}] )
ginh?® kd

where w = circular frequency, k = wave number, d =

water depth, z = vertical coordinate axis, positive in the
upward direction and measured from the mean sea surface

elevation and g = gravity acceleration. Note that
w? = kg tanh[kd] (2)

For deep water, i.e.,, d — oo, Egs. 1 and 2 respectively
reduce to
k]
Ssi{w) = Wzsnﬂ(“")‘m:_' (3
and

w? = kg (9

Similarly, the horizontal component ¢ of the water particle

acceleration has the spectral density function
aw?
Sp(w) = wiSe(w) = w'Son(w)e s * (5)

For the purpose of this study, we assume that the
offshore tower is excited by waves under fully developed
sea conditions for which the Pierson-Moskowitz spectrum

of the following form is used (Pierson & Moskowitz, 1964);

2
Spnlw) = Zis . en:p[—ﬁ(;gﬁ ] 0<w<oo (6)

where the parameters o and # are assumed to be a =
0.0081 and 8 = 0.74 in the numerical analysis that follows.
The quantity W in Eq. 6 indicates a windspeed represen-
tative of a fully developed sea condition. The spectral
density function for W = 1160 in/sec (29.46 m/sec) is de-
picted in Fig. 1. In the present analysis, W is treated as
a random variable governed by a log-normal distribution
function.

It follows from random process theory (Cramér &
Leadbetter, 1958) that the expected maximum value of

|#(t)] in © < t € T is given in approximation by

Vs = Elmaz|p(t)] n 0<t<T) = Keou (7)

o R
wiere

Ko = VIREFOT] + Sl ®)
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and

4 = 05772 (Euler’s constant) (9}

In Eq. 8, T iz the duration of the storm, &+(0) is the
expected rate of zerco crossing from below by the velocity

process 9(t) and is given by

1 T
gy = L. %6
v7{0) 2r oy

(19)

where o, and oy are the standard deviation of (t} and
4(t) and are obtained from integrating their respective

power spectral density functions;

o} = /m 8o (w) dus (11)
4]

and

o = fo ” Spi{w) dw (12)
Similarly,

Vmae = Elmaz[it)] in 0<t<T| = Kjos (13)

with
Ky = /2In[20+(0)T] + Wmm {14)

and
#t(0) = 5%;::— (15)

where £7(0) is the expected rate of zero crossing from

below by the acceleration process 4(t) and

ol =/‘; Syu(w) dw (18)

with

' 2
Sou(w) = ?8py(w) = wﬂS,,,,,(w}em:'"

(17)

In order to avoid undue analytical complications,
the dependence of the power spectral density functions
Sss{w), Sss(w) and S,u(w) on z is simplified. This is ac-

complished by using
— (g &
Wm = (5 B) W (18)

in the factor exp(2w?z/g) in Eqs. 3, 5 and 18. Hence, the
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values of these power spectral density functions decrease
in the form of a negative exponential function ¢(z) as the

water depth -z increases.

é(s) = ezplz“’f‘z] (19)

Furthermote, in evaluating oy, g; and g, the respective
integrations (Eqs. 11, 12 and 16} will be carried out nu-
merically up to w = w, = 24 rad/sec. That w, cavers
the frequency range over which the power spectral den-
sity Spn(w) is significant can be seen from the fact that
wem = 0.289 rad/sec for a mean windapeed of W = 1180
in/sec (29.46 m/sec). Note here, that the value of w, was
taken to be extremely large but the same numerical results

would be obtained using & smaller value (i.e., 6 rad/sec)

WIND-INDUCED WAVE FORCES

While the structure we deal with in this study is a
fixed offshore truss as shown in Fig. 3, we will first con-
gider vertically standing offshore piles in order to evaluate
the effect of wind-induced wave forces on truss structures.
The wave force on an offshore pile is usually estimat;ed
from the well-known empirical formula suggested by Mor-

rison et al. (1950):
1) = Cop ™225(2) + CppDo(ANet) (20)

in which t = time, f(z) = horizontal force/unit length of
the pile at water depth 2z, p = mass density of the water,
D = pile diameter, and Cq, and Cp are respectively the
inertial and drag coefficients. In the numerical analysis
that follows, C,, = 1.5 and Cp = 1.0 are assumed.

In the dynamic analysis of pile response, the inter-
action between wave and structure should be considered
when the velocity and acceleration of the structural mo-
tion are of the same order of magnitude as that of the

water particles. It is generally accepted that the effect



of this interaction can be incorporated into the Morri-
son equation by using the instantaneous relative velocity
and acceleration between the structure and water parti-
¢les. In the present study, however, this effect is disre-
garded and the structural analysis is performed in a quasi-
static fashion. In a recemt work (Paliou, C. et al., 1586)
this approach is extended to dynamic response evaluation,

without disregarding this effect, and including a fatigue

analysis and the effect of inspection.

In order to circumvent undue analytical difficulty
and at the same time to be on the conservative side,
Umaz ezp(ﬂg:tz) and $az exp(%:lz), evaluated in the pre-
ceding section, are used in Eq. 20. This is obviously
a conservative approximation since in actuality the max-
imum values of ¢(t) and ¥(t} will not usually occur at
the same time instant, but also bearing in mind that the
main subject of this paper is the development of a relia-
bility analysis procedure, this approximation of the load

configuration serves as an illustration. Hence,

nD

f(2) =Cmp 1

2 w?
Ymaz exp (Tmz) +

D

3
m
a‘:'z)

1 .
v+ 5 CppDil  exp(

(21)

The force per unit length evaluated by Eq. 21 is based
on the Morrison formula for vertically standing members.
Even when a member is inclined with respect to the ver-
tical direction by a small angle #, we assume that Eq. 21
can still be used with 0,,,, co8# and ¥ma. cosf in place
of Omaz 80d Fnaz, respectively. This assumption basically
indicates that ¥,,., cos® and ¥,,5, cos @ are assumed to
produce {in approximation) forces per unit length perpen-
dicular to the member axis. The effect of the components
of Oymaz and $maz in the direction parallel to the member
axis is distegarded in approximation. The horizontal com-
ponent of the resultant force derived from the distributed

force acting along the member and in the perpenrdicular
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direction thereof is divided into two equal components,
and each is considered as an external force acting on each
end (a node of the truss structure to be analyzed) of the
member. The structure is then subjected to those external
forces resulting from the distributed forces acting on all of
its members; F; represents the sum of these forces acting
at node i (Fig. 3).

As mentioned in the previous section, the windspeed
W that represents a fully developed sea state is assumed
to be a random variable governed by a log-normal distri-

bution (Yang, 1978)

zp{_%[bﬂ_(q:’;);*‘i]i} (22)

in which w is measured in in/sec, up, and oy represent
the expected value and standard deviation of log ¥Yi,m =
log C: W3, where Y., is the annual expected maximum

wave height and

a=-3005 (23)
For the North Sea, the use of ujy = 2.842 and oy, = 0.1
was suggested in Yang and Freudenthal (1977). The den-
stty function of W with these parameter values is depicted
in Fig. 2.

The expected value of uy and standard deviation oy

of W can then be evaluated from

0;1
= ol + )

(24)

and
aw = pw Ver® — 1 (25)
where
R n10
# = (uy —logCi) = (26)
In10
o= oy = (27)

The reliability analysis then proceeds as follows:



(a)

(b}

{c)

(d)

)

Working in the range of windspeed from a mean value
of W - 6 standard deviations {pw — Bow) to a mean
value of W + 6 atandard deviations (pw -+ 8ow}, the
range is divided into 200 intervals and the probability
of windspeed in each interval is evaluated.

Using the Pierson-Moskowitz spectrum (Eq. 6), the
expected maximum wave particle velocity and accel-
eration {Upmgyx 80d ¥mez) Which corresponds to each
windspeed is computed.

Having computed the values of the expected maxi-
mum water particle velocity and acceleration, the dis-
tribution load exerted by the waves on each member is
computed by the Marrison equation

{Eq. 21). Thus,
the horizontal components F; of the wave force acting

on each node of the structure can be calculated.

Two cases are examined herein. Case I - Ductile Be-
kavior: Whenever a number of members fails either in
tension, compression or buckling, the effect of those
members will be replaced by pairs of external forces
acting in the direction of the axes of these members
equal to the member forces due to the same loading
condition of the intact structure (see Fig. 4a), Case
II - Brittle Behavior. Whenever a number of mem-
bers fails either in tension, compression or buckling,
no external force will be assumed to act in the direc-
tion of the axes of these members as is considered in
Case | {see Fig. 4b). The external forces F; {due to
waves) remain to act at all the nodes. The stresses in
the members which are still intact must therefore be
re-evaluated under these loading conditions. In this
process of re-evaluation, those members which have
failed do not contribute to the construction of the

stiffness matrix.

For a number of windspeeds w, the conditional prob-

ability of failure of the structure is computed. This
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{f)

(g)

(1}

)

computation, however, is quite involved since, in prin-
ciple, we must consider all the possible sequences of
member failures that lead to collapse of the structure.
In the present study, a structural collapse is consid-
ered to have accurred when excessive structural de-
flections materialize after failure of a number of mem-
bers or the corresponding stiffness matrix becomes at

least near singular.

At this point, the notion of simultaneous failure of
members used in t.his‘st.udy shall be made clear. It
is acknowledged that if the intensity of the load in-
creases from zero to a certain level, then the proba-
bility

miarne: Mo osnmer e Fnilinma af dooe
BlIMIlvaliedus 1aulilrs oL

two or mote mmembers
will be zero if the strengths of the members are ran-
dom. However, for ease of the probabilistic analysis,
it is assumed throughout this study that simultane-
ous failures can take place in those members whose

strengths are less than the internal forces resulting
from this level of load intensity.

In the evaluation of this conditional probability men-
tioned in (e) above, the material strength such as oy,
Ove Oor Ok 18 assumed to be a random variable gov-
erned by a normal distribution with mean values 36
ksi (248,04 MPa) for oy:, oy, and x*El/(L3A,) for
&8k, with various values of the coefficient of variation.
In order to evaluate the conditional probability of fail-
ure Ps(w), the procedure described in the next sec-
tion is used. At this point, it ehould be noted that the

branch and bounding operations appearing otriginally
in the work of Murotsu and Ckada {1981) contained
certain approximations that may not be valid in cer-
tain circumstances. It is the purpose of this paper to

method, thus improving the original development.

Finally, the unconditional probability of failure P of



the structure is evaluated as

PF = ./;’WPf(w)fW(w)dw (28)

RELIARILITY ANALYSIS OF REDUNDANT STRUC-

TURES

The probability G EO) of the event that member i will

fail first, while no other members have failed iz

n
G‘(»O) — F‘-[O) H FJ_‘{U)

(29)
=1
s
where
F,-(O) = probability of failure of member i (30}
F;(c) = probability of survival of member j (31)
n = numbet of members in the structure (32)

The probability SGL(} of the event that member k
fails after member i has failed first, while all the remaining

members survive is

s = ¢ . g (33)

where

L
) _ g +(3)
e = I[ F;
=1
I#LE

(34)

with
F{ = probability that member k will fail under re-
distribution of the load immediately after the event
that member i and only member i has failed.

and
F; ) — probability that member k will survive under
redistribution of the load immediately after the event
that member i and only member i has failed.

Furthermore

sl = P (35)
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where
SG,("k) = probability that member 1 fails after mem-
ber i fails first and member k fails second.
Gfi'k) = given the failure of members i and k, the
probability that member 1 fails while all other mem-
bers (except members i, k, 1) survive.
Similar definitions apply to SGS;;"‘"), SGg'k'l'm), etc.
At this point, it should be noted that the probability
F,E‘) is conditional due to the fact that member k has al-
ready survived cr'(,co) {i.e., stress of member k in the intact
structure). In order to compute, in general, the proba-
bility F,ﬁ""'.“""""‘] (i.e., assuming a sequential failure of
members i3 — iy — ... — 1, ) the following expression is
used

~ ﬁ,ﬁi.,‘..,in)_Féil....‘\'.,.)

for condition (a)

F;(‘ls-~-|im)
Fliveiel -~ for condition(#6)
= A,E““""") for condition {c)
WIETe
i . Gavdm) {61115t}
Condition (a} : &} maz{|e, |

o‘j(:l.----"l) _O.L"x»---uiu) > 0}
Condition (b) & {lof™ ™| < o)
a'(:,,_..,u) _asl.....-‘..) > 0}

Condition (c) : {af:1 """ i) gl " < 0}

foralll=1,..,n-1

and
i) = Prob{a(“"""“] > oy} (37
k = E 4
Consider now a set of k, members (ry,rz,...,r¢,) which

are identified as combination p and whose failures in any
sequence (out of a possible k,! sequences) will produce
system failure. Assume further that there are a total of m
such combinations of members. Let rpy; (F=1,2,...,kp)
identify the member which fails j-th in sequence q when
combination p is considered. For example, suppose there

is a truss consisting of n=4 members; all these members



are identified by a member ID number 1, 2, 3 and 4. Sup-
pose further, that the failure of two members wil] produce
collapse in this truss. This means that there are ,Cy =6
combinations of members whose failure will result in col-
lapse. The first combination consisting of the two mem-
bers 1 and 2 is identified by combination II} number p=1,
and since this combination involves two members, k; = 2.
The second combination is identified by p=2, consisting
of the two members 1 and 3 and for this combination,
k; = 2, and so on. Also, for each combination, there are
kp! = 2! = 2 sequences according to which the two mem-
bers of that combination can fail. For instance, if com-
bination ID number p=1, g=1 identifies the sequence of
failure 1 — 2, while if =2, the sequence 2 — 1. Therefore,
#121 = 2 and ry33 = 1 in this example.

for the event that member i fails fol-

lowing the failure of (j-1) other members,

EF(*s) (38)

Fpaky

EFS,, = EF{}), EFP)
Using the notation introduced above, we note that

Prob{EFS,} = SGH ™ ste) (39)

Toahy

The failure probability of a redundant structure can

now be written as

Cs

k!
Pr=rprob{| ) | J EFS,;} (40)
9=1

1

P

The upper bound of the failure probability can be

computed either by

P, = 3 Prob{EF{) (41)
=1
or by
m k!
P =3 Y Prob{EFS,.} (42)
p=1 g=1

These two formulations are not used in the present
study, however, because the first is too conservative with-
out discriminating between redundant and non- redun-

dant structures and the second requires enumeration of
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all possible failure modes, and thus is usually too time-

consuming. An alternative upper bound is evaluated by

Pp, = 3 Prob{EFS,)} (43)

where 3_° signifies summation over the selected dominant
modes of failure. We assume that there are m’ of them.
The lower bound of failure probability can be com-

puted as

‘PfL = maz[p,q]Pl’Ob{EFSpq} (44)

where the maximum is taken over all the pairs of p and
q that are examined, and each pair represents a particu-
lar failure mechanism and a particular sequential path of
member failures.

Following Murotsu and Ckada (1981), three steps,
which consist of branching operations, upper and lower
bound adjustments and bounding operations are consid-
ered, in order to evaluate Py, and Py, .

Step 1 : Branching Operations - Selection of Domi-
nant Modes

A combination of members and their particular fail-
ure sequence, or & pair of p and q, are selecied so that
it yields a failure mechanism with the largest {structural)
fajlure probability among possible pairs of p and q. To

this end, first identify member ry,; such that

Prob{EFD } = G} = mazy e, | Prob{EFM}) (45)

where Prob{ EF'V

L3

1 — (;{9}
=6

1

is the probability that mem-
ber f; and only member {; will fail under the prescribed
leading condition. Hence, the probability that all other
members will remain intact must be taken into consider-
ation in evaluating this probability. Set I,, consists of
those members for which Prob{EF.-(l”} = G‘(.?) are larger
than a certain prescribed value.

Then, identify v, 5 such that



Prob{EF{L} = Gl = masg,er,, Prob{EF)

(46)
where Prob{EF‘-(:]} = GE:“‘) is the probability of failure
of member ¢z and only member 1, after the redistribution
of internal forces immediately subsequent to the failure
of member rp,;. Set I,, consists of those members 12 for

which Prob{EFe-(:)} are greater than a prescribed value.
Proceeding similarly and examining if structural fail-
ure occurs at the end of each member f{ailure, the par-
ticular combination p’ and particular sequence g" which
produce structural failure will be identified together with

sets o, [oyy-- -, I,." . Then, the corresponding structural

Define Py, and Py, (1) as

Py, = Py, (1) = Prob{EFSye) (48)

and

Pfu(l) =Py, (49)

Then, find the second combination p” and ¢” with
the system failure probability Prob{ EFSpign} and update

Py, (1) and Py, (1) so that

Pro(2) = Pr, (1) + P, (2) (50)
where Py, (2) = Prob{ EFS,ng+} and
P, = Pf:.-(z) (51)

if Pg, (2} = Py (1). Repeat the procedure m' times un-
til all the dominant modes have been examined. Then
Py, (m’) becomnes the upper bound of the failure probabil-
ity of the system.

Step 2 : Bounding Operations

To find p” and ¢”, the following procedure is fol-
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lowed. First, consider members 4, ,, in the set I,,‘p' ex-
cept rprgik ., and examine if k,» members consisting of
Toigt (= Torgn1)y Tpiga (= rprgua)s --. 1 Tplgt(ky, —1) (=
rp”q"(k,-—l))) Tpuquk',, ,T’,uanp,, represent a fail-
ure combination p” in a particular sequence g¢”, where
kge > kp. The structural failure probability associated

with this particular pair of p” and ¢" will be evaluated

only when

Prob{EF,, }>107°Py, (52)

gttiy
»

where s'k'. [ I,,," but ib,, # Tpigiky- If Eq. 52 is satisfied,
then the combination p" and ¢" represents a dominant
failure mod

The above procedure is repeated until all the possible
pairs of p and ¢ are exhausted. Note, however, that Eq. 52

| T ) TP
TUTILLS Lo 8 IHLNLIIUNIL LEIE DI

=1
=
[=
a
B
&

the structural failure probabilities are to be computed.

Computer codes have been developed to implement
the analytical procedures indicaied above and numerical
examples have been worked out ueing the structure shown
in Fig. 3

The upper and lower bounds evaluated with the aid
of the procedure described above are still conditional to
a specific windspeed and corresponding loadiné condition,
and hence they should actually be denoted by Py, (w) and
Py, {w), respectively.

In the present study, we use Py, (w) for Py(w) in ap-
proximation, since less complicated numerical examples
carried out indicated that these bounds are quite close
patrticularly in the range of high windspeeds where the

conditional probability values become more crucial.
DEFINITION OF STRUCTURAL REDUNDANCY

There are a number of definitions for structural re-



dundancy ranging from that implied by the well-known
degree of structural indeterminacy in structural analysis
to those listed below, as suggested by Lloyd and Clawson

{1984)

Redundant Factor =

intact strength
intact strength-damaged strength

Reserve Resistance Factor =

environmental load at collapse (undamaged)
design envircnmental load

Residual Resistant Factor =

environmental load at collapse (damaged)
environmental load at collapse (¢ndamaged)

In the present study, however, an attempt is made
to define the redundancy by a probabilistic measure. The
definition introduced here uses, as a measure of redun-
dancy, the probability P} that the structure will eventu-
ally survive, given the failure of one or more (but simul-
tanecusly) of its members.

Using the notation introduced in the previous section,
the following example attempts to give a frequency inter-
pretation of the redundancy probability defined above.

It is supposed that there are initially N nominally
identical but statistically different k-member structures.
For illustrative purposes, N is assumed to be one hundred
(N = 100} and k equal to three (k = 3). Furthermore, it is
assumed that the probabilities of failure G‘(.o} of members i
(i = 1,2,3) of the intact structure due to the initial loading

configuration are
¢ =01, 6™ =02 and G =03 (53)

The frequency interpretation of Eq. 53 states that ten

(10) out of one hundred {100} structures will suffer from
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the failure of member 1, twenty (20} out of one hundred
structures will suffer from the failure of member 2, thirty
(30) out of one hundred structures will suffer from the fail-
ure of member 3, but all will survive. After the redistri-
bution of loads in these structures which suffered from the
failure of one of their members and survived, it is assumed
for illustrative purposes that the probability of survival of
those structures has been found to be 0.2, 0.8 and 0.1 for

structures without members 1 or 2 or 3, respectively, i.e.
1- G‘,"-_ ¢ =02
1-6¢® -6 =08 (54)
1-6® -e® =o1

The frequency interpretation of Eqs. 54 now states that

two (2} out of the ten (10) structures which survived after

the first failure of member 1 will again survive the redis-

tribution of the loads, etc.

100

Failure of members

#1 #2 #3

/oo

Survive: 10 20 30 = 60
Redistribution of loads
Survive: 2 16 3 = 21

makes clear that twenty-ome (21) out of the sixty (60)
structures which survived the first failure of one of their
members, will eventually { ie., after redistribution of
loads) survive. Thus, according to the definition intro-
duced previously, the redundancy probability P; is 21/60
= 0.35.

Explicitely written, Egs. 53 and 54 lead to



__:___ (55)

The numerator of the second term on the right-hand side
of Eq. 55 is nothing else but the probability of failure
of the structure, without including the probability of si-
multaneous failure of more than one member in the intact
structures which, in this example, would produce collapse
of the structures.

In order to include this event and to make the defini-
tion of the redundancy probability completely general, it

ghould be defined that

Py
k
> G + sF©

i=1

Pr=1- =1-F (56)
where SF(?) is the summation of the probabilities of the
events of simultaneous first failure of more than one mem-
ber, which lead, however, ta sutvival of the structure. In
Eq. 56, P} is defined as the non-redundancy probabil-
ity, i.e., the probability that the structure will eventually
collapse given the first failure of one or more (but simul-

taneously) of its members.
The probability P} in the numerical example dis-
o0
Pp = f Py {w) fw (w) dw {57)
o
in which P}(w) is the conditional non-redundancy proba-

bility of the structure in a fully developed sea state repre-

sented by a windspeed w.
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NUMERICAL EXAMFPLE

The Pierson-Moskowitz spectrum given in Eq. 6 is
used for sea surface elevation n with a = 0.0081, 8 =
0.74 and g = 386.4 in/sec? (9.81 m/sec?). The spectral
density beyond wy = 24 rad/sec is disregarded as insignif-
icant. The deep water assumption is used with d = 300 ft
(91.5 m) in Eq. 1. This assumption resulted in a simpler
expreasion for the dependence on z of the spectral den-
sity functions of the horizontal components of the water
particle velocity and acceleration. The duration T of each
storm in Eqs. 7 and 13 is assumed tc be four (4) hours.
While such a duration sheould also be considered random,
the assumption of T being equal to four hours does not
appear to be unreasonable.

In employing the Morrison formmla in Eq. 21, we
assume C,, = 1.5, Cp = 1.0 and p = 9.61 x 10°%
kips-sec?/in? {1.028 x 10~% N-.sec?*/mm*). The quantity
Wy, i8 the frequency at which the Plierson-Moskowitz spec-
tral density takes a maximum value and is given by Eq.
18; For example, w,, = 0.280 rad /sec for W = 1160 in/sec
{25.48 m/sec).
normal distribution as shown in Eq. 22 where the constant
C, is given by Eq. 23 and is equal to 0.0005212 sec?/ in

N A o0
L.0%L Al Uy —

—
3
[
B
w
[=
o
o

=

"
il

0.1. These correspond to uw = E[W] =W = 1160 in/sec
(29.46 m/sec) and Vy (coefficient of variation of W) =
0.1.

The truss considered for the numerical example is
shown in Fig. 3 and its geometrical and other charac-
teristics are listed in Table 1. The material strengths oy,
oy. and opy are assumed to be normally distributed ran-
dom variables as mentioned in the previous section. Also,
their values are statistically independent from member to

member,



The conditional probability Py{w) {upper bound) is
evaluated for several windapeeds: W = 621 in/sec (15.77
m/sec), 894 infsec (22.71 m/sec}, 1180 in/sec (20.48
m/sec), 1425 in/sec (36.2 m/sec), 1698 in/sec (43.13
m/sec), 1963 in/sec {49.86 m/sec}, thus covering the range
from pw - 4 ow to pw + B ow. The values of Pp{w) at
these wind velocities w for Cases I and II are plotted in
Fig. 5a.

The unconditional probability of failure Pr is then

obtained with the aid of Eq. 28. The integrand

Py(w) fw(w) for both Cases I and II appears in Fig. 5b.
Constructing such a plot, the values of P;(w) other than
those already computed are cbtained by interpolation. As
can be seen from the plats of Py(w) fir (W) on log-scale, the
contribution towards Py from lower windspeeds is negli-
gible. The final resuits indicate that Pr = 0.24 x 1073
(Case I} and 0.88 x 10~* (Case II) for this truss.

With respect to the conditional non-redundancy
probability P7(w), the denominator of the second term
in Eq. 56 is computed at the same windspeed values as
those used for the computation of Py{w). The results for
P; (w) are shown for both Cases I and II in Table 2 and
are plotted in Fig. 6a. Fig. 6b displays the values of
the integrand of Eq. 57, Finally, P} is computed as 0.99
%x 1072 for Case I and 0.93 x 10~ for Case II and the
corresponding unconditional redundancy probability Pp

is equal to 0.99 for Case I and 0.91 for Case II.

CONCLUSIONS

An analytical method, numerical procedure and com-

puter codes are developed to evaluate the probability of

offshore structure, the methodology is general enough to

be extended to other types of offshore structures. Cru-
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cially important in the methodology is the fact that it
treats the structure as a systern of structural components
with the understanding that failure of these components
in any numnber results in redistribution of the internal (and
possibly external) forces.

The external forces that act on the offshore structure
stem from wind-induced waves. These forces are evaluated
under the assumption of the small amplitude wave theory
together with the assumption that the flow is irrotational

and inviscid.

The horizontal components of the water particle
velocity and acceleration the offshore structure is sub-
jected to during each storm are derived from the Pierson-
Moskowitz spectrum for the sea surface elevation. In its
analytical form, the spectrum contains a mean windspeed
value representative of each storm, which is assumed to
last four hours. Assuming further that the sea surface el-
evation is a Gaussian random process, the expected max-
imum values of the horizontal water particle velocity and
acceleration in their absclute values are evaluated with the
aid of random process theory.

The attenuation of these expected maximum values
along the water depth depends on the frequency. For sim-
plicity of analysis, this dependence is disregarded and a
form of negative exponential attenuation is used for all
the frequency components. Also, disregarding the effect
of relative motion between a water particle and the off-
shore structure, the Morrison equation is used to compute
the external forces acting on the truss members, taking
into consideration the angle of inclination of these mem-
bers with respect to the vertical direction and transform-
ing these distributed forces into concentrated forces acting
on the nod

The probability of structural failure is evaluated by

examining only a limited number of higher-probability se-



quences of member failures that produce collapse of the
structure. The probability analysis involved could become
quite time-consuming if all the possible sequences leading
to structural collapse were considered and if the structure
consists of a large number of structural components.

The probability analysia is important not only be-
cause it will provide us with the probability of structural
failure but also because it will make it possible to define
the redundancy probabilistically, for example, as the prob-
ability of structural survival given the first failure of one
of the members.
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TABLE 1. Geometrical and Material Characteristics
of Structural Components

Conditional Probabilities Py
to Various Windspeed Values

# Length Diameter Thickness Area Inertia Mom.

(f) (in) fim) | () (in)
1 105.5 50.1 2.0 302.2 87554
2 804 50.1 2.0 302.2 87554
3 0.3 50.1 2.0 302.2 87554
4 45.2 50.1 20 3022 87554
3 105.5 50.1 2.0 3022 87554
6 80.4 50.1 20 302.2 87554
T 70.3 50.1 20 302.2 87554
8 45.2 50.1 2.0 302.2 87554
9 1200 45.0 1.0 1382 33469
10 151.7 45.0 1.0 1382 33489
11 151.7 45.0 1.0 138.2 33469
12 121.2 36.0 Q.75 83.1 12908
13 121.2 36.0 0.75 43.1 12008
14 103.3 38.0 0.75 3.1 12906
15 103.3 38.0 075 83.1 12906
ia 78.6 36.0 0.75 83.1 12806
17 78.8 36.0 0.75 83.1 12606
18 60.0 27.0 1.25 1011 8401

Modulus of Elasticity = 29000 ksi
Cyq, Oyy = 36 kal
Note: 1ft =0.3048 m ; 1in = 25.4 mm ;
1 ksi = 6.89 MPa.
TABLE 3.

(w) and P;(w) Due

Windspeed | &% 4 gF(@ Pp{w)
{in/sec) Case I
621.22 0.501.10~% 0.309-10~%
894.51 0.553-10—* 0.199-10-%
1159.76 0.807-102 0.339-10-¢
1425.01 0.125-107! 0.270-10~2
1698.30 0.141 0.391.10-1
1063.56 0.624 0.366
Pi(w) Py(w) Pi(w}
Case I Case II Case I
0,523-107% | 0.144.10~% | 0.244.10~4
0.359-10* 0.947-107 0.171-16~2
0.420-10~% | 0.517-10~4 0.641-10-1
0,216 0.419-10-% 0.335
0.277 0.141 0.997
0.587 0.624 1.000
Note : 1in = 25.4 mm
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FIG. 1 One-Sided Spectral Density of Ocean Wave Ele-

vation.
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