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ABSTSACT

This paper describes an attempt to
bring a state of the art methodology to
the state of practice. The methodology
aims at the evaluation of the failure
probability of a steel-jacket platform
under extreme environmental loading
conditions. Of course, this probability
of failure should not be considered as
the “true” probability of failure of
the ~:+~:ture over a particular period
of but simply as an overall
safety measure to be used as a decision
tool . In short, it is based on a search
for the most probable contponent fai Lure
sequences leading to the structure
collapse. Componental fai lures include
brace buckling, plastification of a
section, and punching of a chord by a
brace.

AfteE each cornponental f.ailure, the
structural stiffness is locally
modified and component re.sidmal
strength is accounted for by applying
equivalent nodal forces on the struc-
ture. The probability of occurrence of
a failure sequence is a joint proba-
bility whose computation requires
special attention (in particular the
depen- dency between the individual
component failures involved must be
accounted for) . Once the most likely
failure sequences have been identified,
their probabilities of occurrence are
combined in order to estimate the
overall probability of failure.

Bringing this state of the art metho-
dology to the state of practice, 1.e.
cievelopping a practical tool that can
be applied to real situations, is not
an easy task . Among tbe various
problems that have to be solved, the
following must be mentioned :

choice of the random variables (and
of the corresponding distributions]
among the many parameters that can
be identified in a realistic situa-
tion (in particular, the extreme
environmental condition parameters) ,

choice of an appropriate structural
analysis method in order to perform

many reanalyses at tbe lowest
possible cost (each time a component
fails, a new analysis must be
performed ,

accurate computation of joint
probabilities of failure events,

development of a simple and realis-
tic post-failure behaviour model for
each type of component failure.

The complete or partial solution to
each of the aforementioned problems is
described and discussed in the paper.

Finally, some application examples are
presented in order to show tbe capabi-
lities and limitations of the netho.
do logy .

INTRODUCTION

In recent years, an important amount of
research work has been devoted to the
development of methodologies for tbe
reliability analysis redundant
structures (10, 14) . To ~~r knowledge
however, very few practical
applications of these methodologies
have been presented if not attempted at
all. BY practical applications, we mea”
appl~catlons to real structures,
slgn~ficantly large. than the 2-D
frames on which the proposed methods
are usually applied to in the publi-
cations.

The purpose of this paper is “at to
present a new methodology, but “simply”
to describe an attempt to bring “state
of the art,’ methodologies to the ,“state
of practice” . It is hence mostly a list
of Droblems with Dro~osed solutions. or. .–
with still to be found solutions. It
also includes general
suqgesticms.

ref lexior.s and

General considerations

Steel-jacket platforms are the most

xo type of fixed offshore plat-
ranging in height from a dozen

of meters to several hundreds. our
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target for the application of the
existing methodologies is neither the
first type nor the second type of
structure but an intermediate type of
about hundred meters.

It is well known that the various loads
applied to an offshore structure
(waves, wind, current) are random in
nature. Moreover, uncertainty and
randonmess are present in the structure
itself : material resistance, geometric
parameters, initial defects, ... AIso,
some uncertainty is introduced by all
the physical models used to predict the
load effects and the structural res-
ponse. The combination of these random
or uncertain parameters results in a
non-zero probability of something going
wrong, the something ranging from a
single component fai lure to the total
collapse of the structure.

The structural component failure modes
considered in this paper are the fol-
lowing :

tubular member buckling,
plastification of a section,
punching of a chord by a brace.

Foundation failures are not discussed
here but they could be considered as
well.

In general, the failure of one compo-
nent does not mean the failure of the
structure. However, because of the load
redistribution that necessarily follows
a first failure, other member failures
can be triggered, eventually leading to
the collapse of the structure. Even
before the complete collapse is
reached, the structure can become unfit
for serviceability reasons (e.g.
displacements too large for normal
operation of tbe platform) .

Needless to say that a complete relia-
bility analysis of such a system is a
formidable task. Even with the analy-
tical tools (Advanced First Order and
Second Order Reliability Methods ) now
available (14) , some simplifying
assumptions must be made. Some of them
will be presented in a subsequent
section. As a consequence, any proba-
bility of failure obtained in that
context should not be” considered as a
“true” probability of failure, but
merely as a safety measure to he used
for decision making.

Brief description of the qeneral
me thodo logy

Among the various methods for struc-
tural system reliability analysis
proposed in the literature (4, 10,

14) , one class seems more popular that
the others. It may be called the

beta-unzipping, the progressive col-

lapse, or the member replacement

method, but it is more or less always

the same methOiiDIQgy. This is the
methociology that was chosen here for
practical applications because it is
basically the probabilistic extension
of tbe classical deterministic approach
called progressive collapse or static
push-over (7) .

This is probably the reason why’ it is
the most popular one, but it doesn’ t
mean that the other methodologies
(stable configurations, ideal plasti-
city) are not “slid. The following is a
brief review of the major features of
this methodology.

A major assumption is that all tbe
member failures, and hence the struc-
ture failure, occur at one instant, for
example when the lateral wave load is
maximum. More precisely, failures are
assumed to occur over a short period of
time during which tbe load is being
applied proportionally. For a given
period such as the life time of the
structure, the distribution of this
extreme load can be obtained from
available oceanographical data. If the
other time varying sources of loading
are included (e.g. wind and current) ,
the definition of the extreme loading
condit~ons IS more complex, in parti-
cular if the various sources of loading
are correlated (which is generally the
case) .

Tbe advantage of this assumption is
that it makes the reliability problem
time-independent. Of course, fatigue
failures cannot be treated in that
context. However, structural failure
due to the existence of fatigue cracks
can be accounted for, just like any
other static failure mode.

Once a given member failure bas
occurred, its stiffness, and hence the
overall structural stiffness is modi-
fied. A residual strength is model led,
for example by applying appropriate
forces at the nodes of the failed
member, and a new stress calculation is
performed.

After a sufficient number of successive
member failures have occurred, the
structural failure criteriOn (cOl~;jser
large displacements) is met a
failure path or failure sequence
identified.

In a reliability analysis context, a
failure path is nothinq else that a
cut-set. The probability of failure
following a particular failure path is
therefore a joint probability, whose
computation requires special attention.
Generally, many difterent failure paths
may lead to the structure failure.
Hence, the probability of structural
failure, i.e. the probability of
occurrence of any possible failure
path, is simply the probability of the
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.union Ot- all possible failure paths.

Unfortunately, even for a simple
structure with only a few members , the
number of faiiure paths is enormous and
a complete listing of them is practi-
cally impossible. It is therefore
usually suggested to look only for the
most critical failure paths. Taking tbe
union of those failure paths and
computing the probability of the
resulting event provides a lower bound
to the probability of structural
failure. Generally, because those
failure paths are the most likely, it
is a close bound.

Moreover, as will be seen in a sub-
sequent section, the information
gathered during the search for the most
likely failure paths can be used in
order to obtain an upper bound to the
probability of structural failure.

From the state of the art to the state
of practice

When trying to apply the above metho-
dology. to practical situations, one
faces several problems which can be
classified as follows :

Loading aspects
selection of random variables,
choice of a hydrodynamic force
model.

Mechanical and structural aspects
choice of tbe component failure
criteria,
nodelisation of component post-
-failure behaviour,
minimization of the cost of repeated
stress analyses.

Probabilistic redundancy analysis
choice of probability density
functions,
computation of joint probabilities
of failures,
search for most likely failure
paths.

In the s“bseq”ent parts of this paper,
the above mentioned aspects are
addressed successively. In each case
the problems are listed, and some
solutions are proposed, illustrated by
several examples.

PROBABILISTIC MODEL OF THE ENVIRON-
MENTAL LOADING

Preliminary comments

AS stated in the introduction, the
reliability analysis is performed cnder
a single extrer,e e“e”t, assuming that
the corresponding load is applied
proportionally from .3” initial value
(e.g. zero or dead load only) to a
final value.

1“ other words, the load acting on the
structure is described by a random
vector and not by a multidimensional
stochastic process. This is why this

type Of analysis is ofter, called
“tin,e-independent’t .

Let & of dimension N be this rcmdom
“eCtOr, where N can Vary from 1 to the

total number of degrees of fre~. c:n of
the platform structural model .As well
be seen in a subsequent section, the
reliability analysis requires as input
the random internal forces and moments
in every structural metier (e.g. beam
element) .

The metier replacement method major
advantage is that the behavior of the
structure in any damaged state is
obtained by the superposition of
several linear responses. In tbe intact
state, only the response to the exter-
nal action is considered. In the
damaged states, the responses to
additional self-equilibrated loaas
accounting for residual strength of
failed metiers are also included. In
this part, only the external actions
are considered.

Let ~i be the vector of inte:nal forces
and moments in metier i. It is linearly
related to the vector & by an equation
such as

(1)

where c= is the assumed deterministic
inf luerice matrix associated to
member i. Practically, the i probabi-
listic characterisation of $ is not
easy to obtain from the p~obability
distribution of L, except in special
cases. Those spec~al cases include the
case where the dimension of L is small
and the case where ~ is gaussian.

Most of the applications published so
far in the literature correspond to
the first case or to a mixture of both
cases . Typically, the dimension of & is
equal to two ,with a component
representing the dead load and

L;

component L representing the environ-
mental 10.6 (deterministic constant
load pattern x random amplitude) . An
important consequence of such a reduced
random load space dimension is a large
correlation between all the internal
forces in the structure. As will be
seen later in an examole this ma” ha”e
a significant influen~e ;n the reliabi-
lity estimates.

The following is the brief description
of a method corresponding to the second
case : no limitation on the dimension
of !, but equivalent qaussian
assumption. Under this assumption, only
the expected value of L, E (~) , and its
.ovaria”ce matrix, XL–, are required..

In order to obtain E (~) and ~% , the



tollowing steps are successively
performed by the program CHARGE (3) :

stochastic nodellinq of the marine
environment,
probabilisation of Morison 8s
equation,
calculation of the second order
characterisation of L.

Stochastic modelling of the marine
enva ronmen t

In the extreme loading situaticm, the
structure is subjected to the combined
effects of wind, wind current, tide
current and waves. In order to estimate
the hydrodynamic forces acting on the
structure, the random kinematic pro-
files ~ (x, y, z) corresponding to each
of these external actions must be
described. A possible way to describe
t~,em involves splitting the profile in
a random intensity parameter a and a
random field E(X, y, z) assumed inde-
pendent from 2 and such that :

y[x, y,z, ) = > .yix,y, z) (2)

For example, in the case of the linear

~o~c:~ ~$: h:;~~; a;:er;~~

city profile and ~= H/Ta if ~ is the
acceleration profile.

The randomness in ~ represents the
physical uncertain associated to a
given action while the randomness in F
represents the mode 1 uncertainty
associated to a particular wave theory.

With this model, the interact ion
between the various sources of loading
are easily accounted for by super-
position of the corresponding profiles.

Probabilisation of Morison’s equation

The Morison’s equation is a hydro-
dynamic model that transforms kinematic
profiles into drag or inertia forces
through the use of the force coef-
ficients C

2
and CM. These coefficients

systematic lly nary with parameters
such as the Keulegan-Carpenter number
and the relative roughness. Random
“aria tions around the systematic
variation can be observed on experi-
mental data. Therefore,

CD
and

CM
should be treated as random variables.
What are their distribution functions,
are they independent from each other,
from one member to the other ? Those
questions are difficult to answer at
present.

Second order characterisation of the
~oadng

As Suming a linear variation of the
profile between the two nodes of an
element, the equivalent nodal forces
are easily related to the action
intensity variables (the ~ ‘S1 , to the

nodal values of the kinenatic profiles
(the W’s) , anti to the force coef -
ficien~s (the c’s). Because zhis
relation is not linear, the second
order characterisation of & requires a
higher order cbaractexisation of each
of the above mentioned families of
random variables (each family is
assumed weakly correlated to the
others) .

Considering for example the family of
action intensity variables, it is
necessary to define :

a 4th order charact risation of each
&variable i.e. E( ~: ) for m = 1,4

the type~r~$f ~ ~~e~tsm) ~o~ mi,

G {0, ~,2,3]]with hi+mj+mk = 3m~~ ~

These moments can be obtained from the
knowledge of the joint distribution of
the various intensity variables.

In some cases, the necessary infor-
mation is totally lacking (kinematic
profiles, force coefficients) and
additional research is required. In the
meant ime simplifying assumptions
(perfect correlation of decorrelation)
can be made.

Model reduction

The method described above leads to the
probabilistic characterisation of a
load vector having a dimension equal to
the nunber of degrees of freedom of the
structural model. For realistic medium
size structures this number ranges from
one hundred to one thousand, thu S
im lying a huge correlation matrix
( EL) and lengthy computation to
obtain E (~=) and Z Si from E (~) and

z
TheL”possibility of reducing the di-
mension of the model was therefore
investigated. A possible method
consists in a diagonal isation of the
correlation matrix followed by a
reduction of the number of eigen-values
(all eigen-values below a given thre-
shold are assumed equal to zero) .

The table 1 compares component relia-
bility indices obtained for different
levels of reduction. It is still
difficult to ciraw general conclusions
from this example but it shows that
such a reduction method is promising.

Conclusion

The two extreme cases presented in this
part illustrate well the type of
dilemna one has to face when trying to
apply a model to practical situations.

Do we choose a simple model for which
all the required information is avai-
lable but with a risk of being too
crude, cr d~ we choose a sophisticated
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rnmlel for which some of the required codes (e.g. AISC, API, Dr,V) is a pl-iori
information is lacking and therefore adequate, provided that explicit safety
some assumptions have to be made ? factors are removed and that model
There are no easy answers to this kind
of questions.

uncertainty (see below) is properly
accounted for.

May be the reducticm method mentioned
in the last paragraph will help us
solve the dilemna in the case of the
probabilistic description of the
environment b“t as will he seen later
on, other similar dilemna will show “p
in the choice of the failure critexia.

MSCRAI’lCAL AND STRUCTUE@L ASPECTS

As explained in the introduction, the
methodology requires the definition of
component failure criteria, the
model isation of component post-failure
behaviour, and the repeated use of a
stress analysis program. As will be
seen, these three aspects of the
methodology may lead to practical
problems.

The followinq is a description of the
problems involved and of possible ways
to tackle them.

Definition of component failure
criteraa

General consideration

As far as the second choice is concer-
ned, the brutal probabilisation of all
the parameters involved in a particular
failure equation is rarely the best
solution, and this for two main
reasons. First, it requires the know-
ledge of the joint density function (or
the appropriate set of conditional
distr~bution functions) of all the
variables and this information is
usually not available. Second, it does
not account for the so-called model
uncertainty that is reflected by the
dispersion observed when experimental
data are compared to predicted data.

A better approach is to identify tbe
most significant (deterministically as
well as probabilistacally) factors of
the interaction equation and account
for all the other uncertainties as well
as the mode 1 uncertainty with an
additional random variable. Concerning
the parameters listed above, it is
usually recognized that the uncer-
tainties associated to Young’s modulus
and to the section parameters (diameter
and thickness) are negligible compared
to those associated to the other
parameters (e.g. yield stress) .

There are no major constraint imposed In the following, possible choices of
by the probabilistic analysis on the interaction equation and significant
expression of the failure criteria. III parameters for various failure criteria
the case of the First Order Reliability are presented. ‘l’he question of model
Methods mentioned earlier, the only uncertainty is discussed separately
requirements are co”tin”ity and diffe- later on.
rentability with respect to all the
random variables. Plastification of a tubular section

A failure criterion can generally be The following failure criterion is the
expressed as an interaction equation one proposed by Toma and Chen (11) on
between internal actions in the member the basis of a mechanical model of
and resistance variables, which, for imperfect tubular section :
tubular members, are functions of
several parameter-s such as :

yield stress,
stain hardening,
Young’s modulus,
residual stresses,
section parameters [diameter and
thickness) ,
out-of-roundness of the section,
out-of-straightness of the metier.

When performing a structural reliabi-
lity analysis the first problems to be
dealt with are the choices of inter-
action equations and the choice of a
set of random variables for each type
of equation. Those choices are impor-
tant ones because they affect quite
significantly the results of the
reliability analysis.

Regarding the first choice, a~y oce of
the interaction equations qi”en by the

1.0- (M/Mp)-l.18(P/PY)2 = O
for O < FIPy < O!;:

1.0-0.70 (f4/Mp)-(p/pY) = o
for 0.65 < P/Py < 1

where

Py = plastic axial capacity = A. <y
M = plastic moment capacity = Z. u y
;Y: :;:go:t::::

z= plastic modulus
P = axial load
M = bending moment at section

The authors have found the effect of
out-of-roundness to be negligible .
Moreo”er, residual stresses do not
affect the interaction curve as it
corresponds to a totally yielded
section. Thus , the on 1y remaininq
resistance paramete. to be considered
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is the yield stress. It can be found in
various publications (1, 11) that its
dispersion is well represented by e
positively skewed Gumbel distribution.

Buckling of a tubular member

Most of the proposed buckling inter-
action equations are of the following
form (AIsC) :

l. O-( P/Pu) -( CM. MA) / (Mp. (l-P/PE) )=0 (4)

Pu = buckling strength = koPy
PE = euler buckling load
C = reduction factor = 0.6-0.4 (MBIMA)
MM

MB = end moments (MA > M )
k:’ = function of the reduce %

sTenderness ratio

This type of formula is obtained by
assuning a linear interaction of thrust
and moment at the most highly loaded
section of tbe column.

In order to be consistent with the
choices made for the previous fai lure
criterion, the yield stress has to be
treated as a random variable. Another
good car,didate is the axial strength
reduction coefficient ko.

Given the yield stress and the effec-
tive length of a column the uncertainty
observed on k

?
is due to parameters

such as out-o -roundness of the sec-
tion, out-of straightness of the
column, and residual stresses. A large
number of compressive tests have been
performed to statistically describe k
for different values of slendernes~
ratio. As could be expected, the
uncertainty in k depends on the value
of the slendern~ss ratio. Except for
those of Chen and Ross (2) , most of the
tests involved columns different from
the tubular metiers used in offshore
structures. The use of these results
for the reliability analysis of jacket
structures may therefore be difficult
to justify. This is anyway the kind ‘af
information that is required.

The strength of tubular columns have
been studied by Toma and Chen (11)
using a non-linear finite element model
of tubular columns. The effects of the
parameters listed above were investi-
gated. For example they found that an
increase of out-of-straightness from
0.1% to 0.2% leads to a decrease of 15
to 20% of the compressive strength for
the range of slenderness ratios typical
of jacket structures.

This parametric study was not conducted
with the ebjective of performing a
statistical analysis of the results
however and it is difficult to draw
from it any practical conclusion
regarding the distribution of k.. Most

of the statistical data that such an
analysis would require (joint statis-
tics cm tbe influential parameters) are
lacking anyway and this is an area were
additional investigations are urgently
needed.

Punching of a chord by a bracing

Most of the test data available to
attempt a statistical description of
this failure mode are limited to simple
planar joints uncler simple loading
conditions (i.e. pure axial or pure
bending load) . Before additional
information is obtained there is no
reason to select a more complex inter-
action equation than the simple linear
interaction formula proposed for
example by ARSEM (13) :

1.o- IP/Pti)- (Mi/Miu) $OIMOU) = O (5)

where

Ph = ultimate axial load capacity of
the joint

Mi = in-plane bending moment in the
brace

M. = out-of-plane bending moment in
the brace

Miu= ultimate in-plane bending
capacity of the joint

Me”= ultimate out-of-plane bending
capacity of the joint

Ochi, Makino and Kurobane (8) have
evaluated the ultimate capacity of
unstiffened tubular joints under axial
brace loading (e.g. PtI) for several
tYpeS of joints (X, Y, T and K) . Their
method consists in adjusting semi-
-empirical models to experimental
results by multiple regression tech-
niques. The ultimate strength is
deduced from the load deformation
curves by chosing the first peak load.
Using this method, the ultimate axial
capacity PfI can generally be expressed
as follows :

Pi = f.T? 6_y.& (6)

where f is a function of tbe joint
geometrical parameters, the axial chord
stress, the yield stress, and the
ultimate strength of the chard, T is
the chord diameter and E is an error
term. The form of the functicm f varies
with the type of load (tension or
compression) and the type of joint.

Using a different method and very few
test results, Wardenier (12) has
derived similar expressions for the
in-plane and out-of-plane capacities
Miu and Mou .

Hence it seems that a minimum of four
random variables (the yield stress and
three error terms) are necessary if
this failure criterion is to be
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included in a reliabiiit.y analysis.

Model uncertainty

The three interaction equations pre-
sented above cm all be writtenin the
following way :

1-F=O (7)

where F is a function of random and
deterministic parameters.

A simple way of accounting for the
mode 1 uncertainty associated to a
particular interaction equation
consists in replacing the 1 in the
above equation by a randcxn vex iable z,
with its mean, hopefully close to 1,
represe”tin.g the biais of tbe model and
its probability density function
representing the model “ncerta.inty.

The only way of obtainimg the required
information is to compare predicted
results to measured results. This type
of investigation is difficult to
perform because it requires careful
statistical treatment. In particular,
one must be sure that the estimated
model uncertainty doe s not reflect
imperfect knowledqe of the interaction
equation variable (e.g. yield stress) .

This type of investigation has recently’
been performed by Koto.guchi et al.
(6) on steel beam-columns, but in
general the information required for
o ffshore structure tubular menbe.s is
far from complete and additional “ork
is required.

Remark

Because the above mentioned failure
criteria are to be used in a system
reliability analysis, the problem of
statistical correlation between the
various resistance parameters accross
the structure has to be addressed. It
is probably reasonable to assume that
all variables (including model uncer-
tainty variables) are decorrelated
except tbe yield stress but this
assumption has to be confirmed. Without
additional information, an objective
attitude is to perform tbe reliability
analysis with tbe two extreme assmnp-
tions of perfect correlation or perfect
decocrelation. By the way, the yield
stress is a priori a random field
accrosss the structure b“t also within
a member along its length and accross
the section. Therefore, the yield
stress appearir,g in the expression of
the plastic moment capacity is more or
less an averaged value accross a
particular Section. It may therefore
have less “amiability than shown by
experimental tests performed on indi-
vidual steel samples.

MODF.LLING OF CONFONENT POST-FAILU~
BEH?.VIOUR

Component post-failure behaviour is one
of the key factors that detern,ine the
effective redundancy of a structure. lt
is hence necessary to properly model it
m a probabilistic analysis that
includes strwtural redundancy. The
challenging problem here is to compro-
mise between tbe accuracy of the
deterministic model and its ability to
be used in a probabilistic context.

One class of models that can be easily
incorporated in a probabilistic ana-
lysis includes all hi-linear, twO -
-states cornponent models. In the
unfailed state, the component is linear
elastic, e.g. a standard beam or truss
element. In the failed state, the
component still behaves linear ly, but
with a modified stiffness matrix. f.fore-
over additional nodal forces and for
moments related to the strength (e.g.
yield stress) of the component are
applied at its nodes.

The resulting formulation is simple if
axial forces and bending moments
interaction is not accounted for. It is
more involved if interaction is accoun-
ted for [10) , but still tractable.

with this type of models, various
component behaviors, ranging from
brittle to perfectly plastic, can be
described (see fiq. 1) . It only
requires linear stress analyses, which
makes the Probabilistic formulation
rather simpl~. More precisely, in any
state of the structure, the stresses in
a non-failed metier result from the
superposition of the actual random
loads applied to the structure and the
residual st.engths of the failed
metiers. They can therefore be expli-
citly written in terms of the random
variables in the following way :

(8)

where
i

~ = i.ni.nra; forces and moments in

C= = influence matrix at member i
~ = external random load “ector
R= self-equilibrated random vecteur

of equivalent forces and moments
due to residual strength of
failed metiers

Because of this explicit formulation,
the structural analyses can be per-
formed separately from the reliability
estimations, and the computation is
greatly reduced.

This class of models is therefore very
attractive. However, the important
question to be answered the
following : how well does it de~~ribe
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the post- faiiure behaviour of a buckled
brace , a plastified section, or a
punched member ?

One model of this type has been tested
in the case of buckling of 3 .D truss
structures (9) and compared
satisfactorily with experimental
results. Only axial forces were
accounted for ani the failed state was
described by a zero stiffness and a
residual strength equal to a fraction
of the buckling strength.

Another class of models includes all
the non-linear models which can of
course be made as accurate as desired.
The drawbacks of such models are
obviouslv a hiaher commutation cost but
also a &uch mkre com~licated probabi-
listic formulation.

This is mostly due to the fact that the
stresses in the members become implicit
functions of the random variables.
Therefore structural analyses and
reliability estimation cannot be
separated.

SlfSmTED STSU2SS ANwYSES

Whether the structural component models
(including post-failure behaviour) are
linear or not, the methodology gene-
rally requires many successive stress
analyses in order to identify the
critical failure sequences of a redun-
dant structure. For a structure of
reasonable size (several hundreds of
nodes with 6 degrees of freedom each) ,
the cost of those repeated stress
analyses rapidly becomes prohibitive.

In the followina. we uresent two. .
methods aimed at reducing ~his cost as
much as possible. The first one is
based on a flexibility matrix approach
(Sherman-Morison alqoritbm) and the
second one on a stiffness matrix
approach (substructuration technique ).

First method (Sherman-Morieon
algorithm)

Most of the structural analysis
computer codes are based on the so-
-called “stiffness method” which
consists first in assembling the
individual element stiffness matrices
into a global structure stiffness
matrix K and second, in solving the
resulting linear system of equations

(K.U = F with U the vector of nodal
displacements and F tbe vector of nodal
forces) by a a factorisation procedure
(e.g. Cholesky method) .

By this method the complete inversion
of the stiffness matrix is avoided. If
the dimension of the load vector is N,
the influence matrix of equation (1) is
obtained by solving N successive linear
systems of equations corresponding to N

different force vectors. This wiii be
referreci to as the direct method.

Tbe Sherman -Morison (SM) algorithm
(5) provides a quick way of modifying
the inverse of a matrix if one column
of the original matrix is modified. Tk.e
modified inverse is obtained directly
from the previous inverse without
having to inverse the modified original
matrix. In the context of structural
analysis the inverse of the stiffness
matrix is the flexibility matrix which
is costly to obtain for a realistic
structure. However, if the S-M algo-
rithm can be used, which is the case,
this initial investment might be
worthwile.

Indeed, when the stiffness matrix of a
failed beam is modified, twelve columns
of the global structure stiffness
matrix are modified. Therefore by
;~g~in9 twelve times the s-M algO-

the modified flexibility matrix
is quickly obtained. In order to save
even more computer time, the M-S
algorithm can be improved to perform
the twelve modifications at once.

Some results are presented on table 2.
They show the reduced computer time
corresponding to the computation of the
modified flexibility matrix according
to the three methods (direct, M-S,
modified M-S) , and this for different
numbers of degrees of freedom.

As can be seen, the computer time
reduction becomes more significant as
the number of degrees of freedom
increases . It is therefore expected
that for realistic structural models
(several hundreds of degrees of free-
dom) , the initial investment of
computing the flexibility matrix will
be rapidly compensated by the saving in
subsequent structural reanalyses.

Second method (substructuration)

The substructuration technique is not
new. It is the base of tbe so-called
super-elements methods available on
some finite-element codes. Originally,
it was developed in order to analyse
large structures when computer storage
capabilities were limited.

In short, it works as follows. The
original structure is ciivided into
substructures of super-elements which
do not overlap (each element, e.g.
beam, belongs to only one sub-
structure) . Those substructures are
connected by some nodes, common to at
least two substructures, and called
primary nodes. All ether nodes, called
secondary nodes, belong to alonly one
substructure. Instead of building a
single stiffness matrix for the entire
structure, only substructure stiffness
matrices are built and stored.



First, each submatrix is condensed at
the primary nodes of its substructure
and assetiled to a global stiff r,ess
matrix. This global stiffness matrix,
as well as each individual substruc-
tures matr~x, is much smaller that the
stiffness matrix that would have been
obtained following a standard proce-
dure.

The global stiffness equation is then
solved at the primary node level.
Finally, each substructures stiffness
equation is solved at the secondary
node level , using the displacements
obtained at the primary nodes.

In our case, the major advantage of the
method is not tbe reduction of the
central memory space required, b“t the
fact that substructures stiffness
matrices, and other matrices necessary
to solve the secondary level equations,
can be stored individually. Recall that
each time a new component fails, its
own stiffness matrix is modified, thus
affecting tbe whole structure stiffness
matrix. Without substructuration, an
entirely new large system of equations
has to be solved. With substructu-
ration, only the stiffness matrix and
the other required matrices of the
sub.structu. e to which the failed
element belongs have to be modified.
The primary level system of equaticm is
also modified but it is much smaller
than
subs tru~t~ ratsiyosnt.em

obtained without

The method has been tested on two
different structures : a
(50 nodes,

small one
i.e. 300 DOF) and a medium

One (300 nodes, i.e. 1800 DOF) . 1“ both
cases, the structure has been divided
in three substructures. The results,
expressed in terms of CPU time ratios,
the reference being the case without
substructuration, are given in table 3.
In this table, the expression “new
analysis” means that one element of one
substructure has been modified. Without
substructuration, the cost of a new
analysis is obviously equal to the cost
of the first analysis.

About these results, three comments
must be made :

the cost of the first analysis is
roughly the same in both cases,
no significant CPU time is saved in
the new analysis of a small struc-
ture,
for the medium size structure, the
cost of a new analysis is reduced by
more that 50%.

The preceding results should only be
considered as indicators. A different
time reduction would probably be
obtained if the structures were di”ideti
differently into substructures. It is
very likely that an optimum substruc -

turation scheme can be found in eack,
case. Hence some additional work still
needs to be done.

Conclusion

Two methods aimed at reducing the cost
of repeated stress analyses have been
presented. Both methods seem promising
but it is presently not possible to
determine which one is the most effi-
cient. The comparison is presently
under investigation.

From a probabilistic point of view this
type of investigation is not very
motivating but recall that the objec-
tive here is to apply structural system
reliability techniques to practical
situations and our experience shows
that in such situations, the repeated
stress analyses account for most of the
cost of a reliability analysis.

PROSASILISTIC REDUNDANCY ANALYSIS

AS explained in the introduction, the
structural failure event can be des-
cribed as a union of intersections of
individual component failure events,
each intersection corresponding to a
particular failure path. Hence, the
estimation of the probability of
structural failure requires the compu-
tation of individual component failure
probabilities as well as joint failure
probabilities.

These two aspects are briefly discussed
in the following sections. Subse-
quently, a method for obtaining the
critical failure sequences and bounds
on the system probability of failure is
presented. Practical aspects are
discussed in view of the results of
application examples.

COMPUTATION OF COMPONRNT AWD JOINSD
FAILURl PROSASILITIES

With the recent developments of First
and Second Order Reliability Methods
the computation of individual compo-
nents as well as joint probabilities
of failures has ceased to be a major
obstacle in structural reliability

analysis.

The next major problem to tackle is

providing these efficient methods with
the appropriate input data !

Indeed, in order to compute proba-
bilities of failure, some choices must
be made regarding the
distribution

probability
type of each randcnl

variable. In most of tbe tbeoritical
work published in the literature,
distribution types are assumed more or

less arbitrarily because examples of

application are only given for demOns-
txatlon purposes. In practical appli -
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cations however, this becomes an
Important issue since the computed

probabilities are significantly

influenced by the choice of distri-
bution laws. It was seen in previous
sections that the information required
to properly characterise all the random
variables (load, resistance, and model
uncertainties) is still incomplete.
Except in some cases, the best in50r-
mation available reduces to a second
order characterisation.

Should we then assume some distri-
butions based on some “best engineering
jugment” or should we restrict the
reliability analysis to a first and
second moment formulation (which is
equivalent to assume that all variables
are normally distributed) ? This is an
other dilemna that becomes crucial in
practical applications. This problem
will be co~sidered more generally in
the conclusion.

we now consider another practical
problem : the search for critical
failure paths.

SSASCH FOR CRITICAL FAILUSS PATHS

Let us first consider a particular
failure path Fi where eachfailu=~i is an
individual component event.
Obviously, the following inequalities
hold :

P(F1) > P(Fln F2) > . . . > P(~Fi) (9)

As we proceed along the failure path,
the probability of reaching the succes-
sive steps decreases. This remark
suggests to generate the most likely
failure paths as follows :

Starting in the intact state of the
structure, the probabilities of failure
of each component according to each
possible failure mode are computed. The
state of the structure is then changed
according to the most probable initial
failure. If this is a failed state of
the structure (according to a prede-
fine criteria) , the algorithm stops.
If not, probabilities of subsequent
failures following the previous one are
computed. These are joint probabilities
of two failure event s.”

The most probable failure sequence is
then identified among all the two-steps
sequences just generated and all the
one-step seguences previously gene-
rated, except the one just chosen.
Again, after checking that the corres-
ponding state is not a failed state new
sequences axe qenerated and the asso-
ciated pr~b,abilities computed.

More g@nerally, s.t any step of the
algorithm, the state of the structure

changed according to the most
~~obable failure sequence among all the

sequences generated up to that point
and not yet chosen. Eventually, a
failure state is reached. The sequence
leadir,g to that state is the most
likely one.

Once the most likely failuxe path (c,r
sequence) has been obtained, the next
most likely one can be found by pur-
suinq the search further on.

As already mentioned, after the first
most likely failure paths have been
found, the probability of their union
provides a lower bound to the proba-
bility of failure of the system.

As the branch and bound algorithm is
searching for the most likely failure
paths, it generates incomplete failure
paths, from which many complete failure
paths could have been generated.
Because failure paths are intersections
of failure events, the event corres-
ponding to an incomplete fai lure path
contains all the events corresponding
to all the complete failure paths that
could have been generated from this
incomplete path.

As a consequence, the union of all the
incomplete failure paths, and of the
generated most likely complete paths,
contains the true structural failure
event. Hence, the probability of this
union is an upper bound to the proba-
bility of failure of the structure.

The situation is best illustrated by a
simple example such as the one shown on
figure 2. On this figure, the tree
generated by the algorithm (each brancb
corresponds to a member failure) is
represented as a subtree of the
complete [very small) failure tree. The
three minimal cut-set representations
corresponding to the lower bound, the
true value and the upper bound of the
system probability of failure are also
shown.

Actually, even before having identified
tbe most likely failure path, an upper
bound on the probability of failure can
be obtained at any step of the analysis
by incomplete failure paths generated
up to that step. In fact, each time a
new damaged state is explored (one new
structural analysis) the number of
incomplete failure paths ir,creases and
this upper bound decreases.

This is shown on fig. 3 in the case of
a small jacket structure. Note that
because the results are shown in terms
of the reliability index . There-
fore the upper bound on the probability
ot failure becomes z lower bound on the
reliaiblity index.



EXAMPLES

The following examples are performed on
the simplified model of a small jacket
structure standing in 30 meters of
water (see fig. 4) . The model is made
of 52 nodes and 147 beam elements.

Example 1

In this example, only first and second
moments of the load variables are
considered. Their statistical
characteristics are the following
(4 denotes the coefficient of
variation) :

Intensity variables

1 x = wind speed
E( xl)= 20 mls, Q% = 0.08

- ~.= tidal current veloc=ty
E( ~2) = 0.95 m/s, 9A2 = 0.14

A3= wave action [“elocity term =
HIT)

A,:( A ) = 0“415 “s’ “A3 = 0“08wav~ action (acceleratmn term
= H/T. )
E( ~4) = 0.02 mfs, VA

in .:}:”:’O- XA,A, . ~4,A,=f,4,A*=~,
- All actions are same

direction (positive x - direction) .

Profile variables

- E(~i) are given by deterministic
models of wave, current and wind
kinematics

The coefficients of variations are
assumed constant accros.s the
structure with the followiq
values :
Vwl = 0.17, <w’ = 0.30,

-+W3 = .JW4 = 0.10

The ~, s are assumed fully correlated
accross the structure for each type
of action and uncorrelated from one
type to another.

Force coefficients

- mean values and coefficients of
variation are constant accross the
structure
wind : E(CD) = 1.00 VCD = 0.12
water: E(CD) = 0.60 -4,-D= 0.35

E(CM) = 2.00 ./ CM = 025

- All coefficients are decorrelated
I .accross the structure.

The methodology described earlier is
used to obtained E (~) and ~ ~ where
& is the randcxn nodal force vector
(dimension = 6x52 = 312) .

6
The coefficients of correlation of the
horizontal forces (wave direction) at
node 201 (see figure 4) and other nodes
are gi”en below in tahie 4.

Failure criteria

only the plastification and bucklirm
cri~eria ake considered. Failures
assumed perfectly brittle (e.g.
residual strength) .

Structural failure is defined by a
reduction in global stiffness.

Results

ar~
no

50%

They are given on figure 5. If the
algorithm described i“ the previous
section is used and stopped after the
first most likelv failure node has been
identified (4306” - 4301)” the bounds C,ri
the structure reliability are

PLOW = 5.07 and. f3up = 5.27

The failure tree generated to obtain
these bounds is quite small (branches
outside the dotted lines) and this is
due mainly to the brittle failure mode
assumption. Given that a menber has
failed, the probability of having a
second failure is almost equal to one.
Hence no increase in the reliability
index can be noticed when goirwg from
the first to the second failure.

This is true for all the additional
failures shown on the failure tree
ibranches inside the dotted-lines) .

Example 2

ln this example, the loading has been
simplified : only two horizontal nodal
forces are applied at nodes 201, 202,
203 a“d 204. The direction of
applic~;iz makes a 30 degrees angle
W1 th positive x - direction. A
constant coefficient of correlation of
50% is assumed between the individual
forces. The f.ailure modes are assumed
plastic (e.g. full residual strength
after failure) .

The results axe shown in figure 6.
Because of te plastic behaviour
assumption, their is a significant
increase in the reliability index when
going from a first failure to a second
one.

By applying the algorithm until the
first most likely failure mode is
identified, the bounds on the structure

~;~’a$”tz 4. 3~eAt~0w show; on 4i;~
figure ‘&elow the failure tree is the
evOlution of the bounds (essentially
the lower bounds ) as the number of
structural reanalyses increases.

The effect on tbe results of the
correlation between the nodal forces is
dernonst.ated on figure 7. only a
subtree of the pre”ious failure tree is
show” but it is sufficient to show some
important effects.
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AS expected, going frox zero
correlaticm tG full correlation has a

strong influence on the reliability

values. Less expected is the change in
the ordering (ifi terms of reliability)
of the iailure sequences.

This clearly demonstrates the necessity
of well describing the correlation
between nodal forces on the structure.

CONCLUSIONS

As already stated in the introduction,
tbe purpose of this paper was not to
present a new methodology but rather to
present some of the problems one has to
face when trying to apply an existing

ln cases where there is nok enough
information to favor a particular
assumption, different assumptions have
to be considered in the reliability
analysis.

!iecause the purpose of the reliability
analysis is eventually to help make a
decision (e.g. repair or no repair) it
has to be checked if the decision
arrived at is affected or not by the
choice of a particular assumption.

If it is not affected the problem is
solved but if it is affected, there is
no easy solution to tbe problem, except
to use our best engineering judgement
or to use another model.

methodology to practical situations.
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