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Reliability of Plates
Combined Loading
Henrik O. Madsen and Masoud Moghtaderi-Zsdeh, A.

Buckling of platesis an importantdesigncon-

siderationtoth for ships and fixed and floating

oEshora structures.A probabilisticprocsdure for

elasticbucklingand collapseanalysisof unatflfened

platesinmarfnestructuresfspresented.The procadure

isdavelopedforplatesundsr combined biaxial stress,
shear strsss and lateral pressure, due to still water
Ioadlng and wave induced loading. Uncertainties due
to lcadlng variables (static and time varying),
geometric variables (thickness and Imperfections), as
well as material variables (Youngs mcdulus and yield
stress) are included. The reliability analysis IS basad
on first- or second-order reliability methods combined
with methods for outcrossing analysk. The procedure
has been developed specifically for tida problem, but
has ganeral applkabifity in structural refinability ana-
lyses with a mixture of time-da.cen&nt and tire+
fndapendent basic variables.

lN’fRODUCfTON

Pfate elements in ship hulls, other submersible
and semi-submersible marine structures, and fixed
offshore stmctures are loadad by a combination of
stresses and lateral pr=ure. The stresses and lateral
pressure are mcdaled as time-dependent stochastic
procsssas, whereas the material properties and
geometry parameters are mcdeled as random vari-
ables. The kehavior of plate elements with respsct to
various failure criteria is formulated m terms of limit
state functions which include time dependent as well
as time independent basic variables.

A strength model for an unstiffene.1 plate under
combined loading IS presented and load mcdels for
still water loading and wave induced loading as well
as structural behavior are presented. A reliability
analysis for a problem with time independent as well
as time dependent basic variables is develo~d, where
special emphasis is put upon a coupling between a
frost-order reliability methcd and an outcrosslng
analysis for a Gauss[an vector process. The reliability
method LSapplied to the load and strength models.
Finally, results from an example are presented and
general conclusions are offered.

S Veritas Ressarch, Oslo, Norway

STRENGTH MODEL

The elastic buckling and plasticity failure of a
plate subjected to combined stresses and lateral prm-
sure, Fig. 1, can be formulated as

n(o, ,ay ,rv )P ..4 ,B >T,8EJwP ) > 1 (1)

where V( )= degrea of utilizationor usagefactor,

0.= Strt%sin thex4iraction,0%= stressin they.

direction,r~ = shear stress, p = lateral pressure,
A = plate length, B = pfate width, T= plate thickness,
8= represents geometrical impsrfsction, E= Young’s
mcdulvs, L= Poisson’s ratio, and up= yield stress. in
general, the variables A, B, T, & E, v, and up are

timefndepdent and thevariablesox, Cy, r?, and p

ma time &pendant. For a stiffenedplatealsoproper-

tiesof thssU5enersanterthelfmitstatefunction.
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Fig. 1 A plate under biaxial stress, shear
str~ and lateral pressure.

In general, no closed form solutions are available
for the usage factor which is obtained numerically by
iterative procedures. Plate elements in marine struc-
tures me generally integrated parts of larger orthog~



nally stiffenedstructures. In [IIa procedure has been

presenti to compute the usage factor for an

unstiffened plate subjected to biaxial stress and lateral

pressure. The boundary conditions prescribe the plate

as simply supported out-of-plane along all edges, with

edges to remain straight during deformation but free

to move in-plane. Imperfections from welding and

the erection prccedure are assumed to be small and in
the shape of the natural buckling mode. The imper-
fection size is described by the dimension-free param-
ter 8. The procedure has later been extended to
include shear stresses and is here used with this exten-
sion.

A further generalization to a complete hull se’-
Uon IS suggested in [2], basedon a simplifiedmechani-

caldescriptionofthehullbehavior.From a reliability

analysk pointof view thisgeneralizationisstraight-

forward and the limitstatefunctionuses crosssec-

tionalforcesand external pressure rather than local
stres.sts and external pressure.

LOAD MODEL

Two ty~ of loads are considered. L@ad.sdue to
sbiplplatform weight, cargo/topside weight, buoy-
ancy, and water pressure are mcdeled os a renewal
square wave process, see Fig.2. Tlwse loads are
denoted still water loads. The amplitudes are random
varfables which, dependfng on the operational pattern,
are modeled as independent or dependent. The dura-
tion of a puke for a shfp correymnds to one voyage in
a loaded condition and the d“ratfon between ballmt
changes in a ballast condition. For slmpficity, the
duration of a puke is taken as deterministic and con-
stant. The still water lcadfng Induces ~tfonal forces
in a crass section, which agafn induce stresses. A
flnear stmctural analysis is applied in the transforma-
tion fmm global fores to lccal stresses. Lwal stresses
within each pulse are described by correlated random
varfables with statistics derived from stat.lstics for
sectionaf forces. fn [3] such statistim have been
presented for shfpxsbased on extensive measurements

4

Fig. 2 Load mcdel for still water lead.

To model the wave induced loading, the sea con-
dition fs divided into stationary sea states. Here a sea
state IS defined by the most important wave charac-
teristics, i.e., the main wave direction @,the significant

wave height H~ and the mean wave periwl T=. Short
crested seas are modeled by combining long crested
waves from different directions weighted according to
a wave energy spreading function.

Long term probabilities for various main wave
directions are determined from wind measurements,
wave measurements on stationary buoys, or better
from sailing ships thereby accounting for operational
patterns. A wave =atter diagram 1s used which gives
the fraction of time with different combinations of HS

and T=. The oned.imenslonal Pierson-Moskowitz
wm.e spectrum, which is unfquely defmd for each

specffic combination of Efs and Tz, is used within each
sea state to describe the wave energy on dUTerent fre
qnencies. Within each sea state stationary conditions
are assumed. Each pulse in the still water load prc-
cess contains a number ofseastates.

Linear wave theory is applied and a Gaussian
wave loadlng is assumed. A linear structural behavior
is assumed and wave fnduced load effects are thus
Gau.ssfan p,—. Transfer functions from the sea
elevation to stresses and pressure are denoted by
Hr. (o), 7fu,(0), H,V(0), and HP(o), respectively.

TIM vector (.JZ (t ),oY (t ),Tv (t ),P (t )) fs a Gaussian
vector prmess with zem mean value. Covartances for
the components and tfme &rivatfves are

1
var[o.1 = lHrt(d 12sJdd@ (2)

and similarequations An overbardenot6sa complex

conjugate,and Sw (co)isthewave speftrum.

RELfARfLf’fY METHOD

The reliability of a structural element is gen-
erally analyzed with respectto one or more failure

criteria.For one criteriontheperforrnanwfsdescribed

throughthefimitstatefunctiong ( )

I

<0 forz m faifure sef

8 (Z) = O forz on limif state surface (6)

>0 forzinsnfemz

The vector Z is a vector of basic variables describing
uncertintles in lcadlng, material properties, geometry,
statistical estimates and analysis mcdefs. In addltlon,
the limit state function can depend on a set of deter-
ministic design parameters and time. The failure PT*
bability for tie considered failure mcde, PF, 1s the

probabilitythatthe vectorZ has a value for which

g(z)<o.
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Outcmxsing Analysis

Let the vector of basic varlabks be Z = Z(r ),
where Z(t ) is an ergodic vector process. The failure
probabUity far a failnm criterion with limit state
function g is in a time period [O,D ]

PF = P(g (Z(t )) <0 for some t E IO,D ]) (18)

or simply as

PF = F’ (o&iqDg (Z(t )) <o) (19)

The safe set is S = {z Ig (z) > O) and an upper bound
on the conditional failure probability is, [5]

P= < F’(g(Z(O))<O) + u(S)D = Po+ &S)D (20)

The firstterm on the right hand side P. is the instan-
taneous failure probability and the second term is the
expected numter of outcmssings of the safe set. As an
alternative the conditional failure probability can be
approximatixf by

P= = , _[,_polexp( .yyl) (2,)

The mean outcrossingrate of the safe region,

4S ),may be obtainedfrom a generalizationof Rlce,s

formula,[51,

i 1.
AS) = f z(Z) ~ iN f ~N,Z(iN ,Z)di~ d (&Y) (22)

where ~N is the projecttcm of the time derivative ~ on
the out-bound normal vector at a point on the limit
state surface W. With k time dependent basic vari-
ables the calculation of u(S ) requires an k - l-fold
surface integration. An additional problem is that
often the fhnit state surface is only given ti an impli-
dt Way.

For stationary Gaussian prcc= an asymptotic
result is avahble, whfch may be used as an approxi-
mation to (22). T-he mean value vector and covarianm
matrix for (2([),Z(t))are

Consl&r firsta transformationcorrespondingto the

Ro.senblatttransformation(10)

u(t) = L(Z(t)-~) (24)

where U isa setofuncorrelatedand standardizednor-

mal variables.L satisfies

L-l (L-l~ = ~z (25)

Lisa lower triangularmatrixand may be determined
by a Cholesky trbmgularization procedure for pasitive
definik matrices. The asymptotic value of the mean
outcmssing rate of the safe set S. in u-space
corresfmnding to S in z -space is, [81,

VLsu)-ds’”) (26)

~ ‘u is the tangent hyprplaae at the design point in

u -space computed for the case where Z is independent
of time, see Fig. 3.

as.

Fig. 3 Outcrossing of safe set and safe
~t with Ilnearlmd lmundary.

The appmxhnatfng hyperplanehastheequation

&S’u: /3-#u=o (27)

An outcrcslng of thesafesetS. by thevectorprccess

h then replacedby an up-crossing of level (3 by the
SZZIlarprocess c# U[t ). This process has zero mean
and unit varfance and the mean upcros.sing rate of
level R fs

la) = +liGml .3@) (28)

where M.) denotes the standardized normal probabil.
ity density, The variance of the derivative prccess k

The approximationtothefailureprobabilityin(21)is

thustakenas

It is noted that the approximation is indepe~dent of

elements fn the cross covariance matrix c~ tin

improved asymptotic formula for the outcrossing rate

is available in [9]. This formula is slightly more
illvOkd and IncludesCti as wellascurvatureinfor-

mationinthepoint/3a.When theprocess$ U isnar-

row banded a betterresultmay beobtalmd by replac-

ingthemean u~rosslng rate(28)by an effectiverate

&terrnlned by an interpolationbetween the up-

crosslngratefortheenvelop prows forsmalllevefs

and the up-crossfngrateof the processitselfformgh

levels,[5,101.

Combined Reliability Analysis Procedure

In the general case the vector of basic variables
consists of the sets
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When all basic variables are random variables the
computation of the failure probability can be
e5ciently done by first- or second-or&r reliability
methcds. When one basic variable is a random func-
tion of time, Le. a random prcess, the interest is gen-
erally only on the maximum or minimum value of
this function over some specified time interval. This
maximum or minimum value k a random variable for
which the distribution may be determined, and first-
or second-md.er reliability methcds can then be
applied directly. When two or more ofthebasic vari-
ables are random functioms in time a load combination
pmbiem exists and modifications of first-order tech-
niques are needed. In the past, approximate rules such

asTurkstra’srule,[4,5],have been* tOrePla~ the

random prcas.sesby one or more combinationsof ran-

dom variables. Turkstra’s rule has proved to provide
sulfxient accuracy for many llnear combinations of

in&p5ndent prwess6s. The use of Turkstra’s rule or a
similar rule for dependemt vatibles and for nonlinear
combinations has, however, not been verified.

Nonlinear load mmbinatlons are here treated as
first-passage problems for a vector process out of a
safe set. Emphasis is put upon Gaussian vector
pmmsses descrfb!ng response of a linear structure to
wave loading. Rased on the first-passage analysls a
failure probability conditioned on the basic random
variables IS computed. The overall failure probability
fa then obtained by integrating the conditional failure
probability over all values of the time independent
bl15iCvarfables.

lle fimt-order reliability method, the outcmssing
analysis for Gaussian vector Proceses,and the com-

bined reliabilityanalysisprocedure are described in
the following.

First-order Reliability y Method

The failure probability for a given failure mcde
is denoted by PF and maybe computed by

PF = P(g(z)<o) = f f.(z)dz (7)
86<0

where f ~(z) is the joint probability &nsity function
of Z. An exact evaluation of Pz is rarely feasible and
fuskxder reliability methcds (FORM) have therefore
evolved as pracUcal methods to evaluate god approxi-
mations in an efficient way, [5]. A further improve-
ment is achieved by use of a second-order reliability
meilmd @ORM), [51.

fn the evaluation of (7) a FORM uses a variable
transformation of Z into a set of uncormlated and
standardized normal variables U,

U = T[Z) (8)

For indepmdent variables one possible choice for the
transformation T is

T: fli =@-i(Ft(Z, )), i=l,2,..., n (9)

where 0( ) denotfs the standardized normal distribu
uon function and FZ, ( ) is tbe distritmtion function

for Z,. For dependent variables the Rosenblatt
transformation, [61, has been suggestd 111[7],

T: C/i = 4.-1(Ff(Z, IZI, . . . ,Z(_, )), i=l,.,n (10)

where F,( l,..., ) b the distribution function for

Z, mnditlomd on (Z,, . . . . Z,_,).

The equationfor the llmltstatesurface in u -
space becomes

g“ (u)= g(’r-l(u)) = o (11)

In a FORM the limit state surface in u -space is
appmxim.ati by its tangent hyperplane at the point
on the surface clmsest to the origin, Le. the pint with
the fdghest probability density. This point u“ =T(z” )
is called the design point and is found by a minimiza-
tion procedure with one constraint. The design point
is expressed as

u“ = @ (12)

where B denotes the distance from the orlgln to the

appmfimating tangent hyperplane in u -pace. B is
called the first-order reliability index and the sign of
/3 Is determined as the sign of g. (0). m is a unit vector
normal to the limit state surface at the design point
and is directed towards the failure set. The com-

pnsnts in the vector are called sensitivity facto=.
The fi=t-order approximation to the failure probaMl-
ity fs

PR = 0(-6) (13)

The design point u“‘ must generally te obtained
by an iterative search algorithm. One algorithm mn-
s15ts of mnstructfng a sequence ul,u2, . . . ,%, . . . .
mxmding to the rule

8.(% )
%+1 = ~Ta~+ I Vg” (Um) I am (14)

where ~ k a unit vector defined by

Vg”h% )
%=-

1Vk’u(Um) I
(15)

The gradientof gu is relatedto the gradientof 8

through

Vg. (u)= Jr Vg (Z) ( 16)

where J l?.the Jacobian matrix,

II

J= &
w, (17)

For Independentvariablesthe use of the transforma-

tion(9)leadstoa diagonalJacobianmatrix,whilethe

Rosemblatttransformation(10) leads to a lower

triangularmatrix.

188 L



z = (z,,z2(t)) (31)

where Z, is a vector of random variables and Z2(C) is
an ergcdtc random process. In a general formulation
some distribution parameters describing Z2(t ) may be

modeled as random variables and thus contained In
Z,. In that case %(2) IZ1 = ZI is an ergcdic random

process, and the procedure described below cm
equally well be applied.

With a limit state function g the failure proba-
bility in a time period [O,D ] is

Px = P (o@~D g (z1,z2(r))<o)= (32)

-.

~ ~ ~ ~P(o#&l@,,z2(t)) <O)fz,(z,)dz,

The conditionalfailureprobability

P~ (z,)= P (o&lgD g (Zl,zz(t )) <o) (33)

k given by (30) where PF, (3 ,W and possibly also L
and C% now &pend on the value z,. A direct n -fold

~-ration tO COmpUte the failure probability by (32)
fs impractical for nontrivial cases. Therefore a first–

order reliability methcd, as described earlier, is

aPPfi~ fOr ~ integration to approximate the failure
probability. One possible approach is suggested in

[111. An alternative formulation, differing in the
order in which the numerical calculations are per-
formed, has been suggested in [12]. In this approach
an auxtlkmy standard normal variable U is introduced
and a llmit state function h (u ,Z1) is &fined as

h (u ,2,) = u –@(Pp(z,)) (34)

It can be easiIy proven that P (~ (U ,Z,) <0) is equal to
the unconditional failure probability PF in (32).

E@ed on the formulation in (34) and the expression
for PR (zl) in (30) a first-order or second+rder refia-
billty methcd can be directly applied. When the itera-
tion prccedure in (14) is used, derivatives of PF (z,) in

(30) are needed. These derivatives may be computti
numerically, but analytical formulas can be developed
based on parametric sensitivity factom fn first-orda
refinability methods, [5].

RRLfABILHY OF AN UNSTfFFENED PLATfI
UNDER C41M33Wf3DLOADING

The elastic buckllng and plasticity failure of a
plate subjected to combined stresses and lateral pres-
sure may be formulated by a limit state function
given by, see (1)

g (z)= l–q(o= ,0,,rv ,p,A ,B ,T,8~,v>oF ) (35)

Within each sea state, the stresses and lateral
p.-ESSUreare induced by still water loading and wave
loading, i.e.,

U=(t) =mx, +o,v(r)

Oy(z)=cy, +or(t)

Tq (t ) = r=y, + 7VW(2 ) (36)

P(2)=.D, +pw(t)

where o=, OY,,r-, and p, me stillwater inc.::c<

stressesand lateralpressurewhich are time inde~ z.

dent random variableswithin each stillwater :.x<

pulse. o=(t), Ov (t),r- (2) and PW (? ) are wave

induced stresses and lateral pressure. It is assurmd
that still water loading is independent of wave
induced loading. The set of basic variables is hencz
divided into Z1 = (u,=,Ov ,r,w,p,,A ,B,T,8@ ,V,OF ),

~d Z,(? )= (uxw (t).up (t),r,w (t),pw(r )).

To perform the combined reliability analysis a
time interval of constant amplitude still water loading
Is first considered. Conditioning on ZI = z,, the condi-
tional failure probability is obtained f rom (30), where
the mean outcrossing rate of the safe set is obtained
from

Ifs) = ?Pi547,dL3,j) (37)
t=l ,=1

in which pi Is the probability of the i th wave direc-
tion, q, is the probability of the j th sea state, and

v(flij ) is the mean up-crossing rate for the given wave
direction and sea state, which is computed by (28) and

(29). The output from this combined reliability
analysis ts a refiabllfty index and design paint

u“ = Be = f3(a” ,m~,WF ) (38)

where au is the sensitivity factor for the auxiliary
variable U in (34), cz~ is the vector of sensitivity

factors for the stresses and pressure induced by the
still water Ioadfng, and rip is the vector of w~,.
tivity factors for the geometry and material parame-
ters.

The mliabifity for a period containing one pulse
of the still water load has been determined. In prac-
tice the interest is on a larger reference pmkd, e.g., 1
year or the design life time. Let the number of pulses
in the still water load model within the reference
yricd be N. With independent stfll water leading
from puke tm pulse, the failure probability in the
reference period is approximated by

PF = 1 – oN(f3,p) (39)

where B k a vector with identical elements R from
(38), and P is a correlation matrix with elements

The theory for series system reliability has been

aPP~~ md the probability in (39) can be evalut~
by a simple one-dimensional integral, see [5]. The
abuve prwedure w be mcdified if a different model
for the still water loading is adopted. Along the same
lines, a procedure can also be developed which uses
the duration of a sea state rather than the pulse dura-
tion in the still water loading as a basic time interval.
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EXAMPLE

The prccedure is applied for a reliabiflty analysls
of a plate element located at the bottom of a ship hull
at midship. Fixed deterrninhtic vafues are assumed
for Poisson’s ratio, and for the length and width of
the plate. A fmd deterministic value is also assumed
for the normal stress in the y-direction due to still
water loading. Components of a 3-dimensional mul-
tfnormal distribution are assumed for the distribu-
tions of still water induced stress In x-direction, shear
stress, and the latiral pressure, [3]. A lognormal dis-
tribution is assumed for the plate thickness. Normaf
df.stributfons are assumed for Young% modulus and
yield stress. These distributions and their pammetws
are given in Table 1. The units in Table 1 are m for
lengths and MPa for Youngvs modulus, stresses and
lateral pressure.

Table 1: Lti of plate pa.mraetem

,ariabie DM,bution Mean Stand. Dc..

Multinorroal 1 54.29 5.5
Fixed 41.24

Multimmmi 2 0,00 0.5

Multinommi 3 o.i66 0.02
Fixed 5.30
Fed 1.20

Lognormal 0,015-0.025 0,0 W5-O.C025
Normal 0.01 0.001
Normal 2.1X103 L5X104

Fixed 0.3

Normal 385 24

A time pk?d of one year is used. Five main
wave directionsare considered correspondingto head
sea, quarter forward seas, and beam sea, with frac-
tions of occurrence tfme 25%, 2x.25%, and 2x12.5%,
respectively. Ttwse numbers have been selected somb
what arbitrmffy. The sea scatter diagram used is
based on the sea scatter diagram for the North Atfan-
Uc, Station India, but it is somewhat simpllhd. For
all sea states and wave directions the one-dfmensiona3
Pierson-Mmkowitz wave spectrum, [5], k M.

The pmbaMlity of failure for various platf
thicknesses k @en k Table 2. Column 2 in this table
fs relatkd to an analysis with uncertainties fn enviro-
nmental loadlng only, whereas column 3 is related to
an analysis with all sources of uncertainty included.
Table 2 Indicates that the uncertainties in material
proprtles and geometry parameters are important and
should be fncluded along with uncertainties in
environmental loadfng when computing the failure
probability. The most important source of uncer-
tainty fs, however, due to uncertainty m the envinm-
mental loading with a squared smsltivity factor
around & = w:= 0.40-0.55, meaning that 4}55% of
the total uncertainty is due to this source. The second
and third most important uncertainties are those

related to thickness and yield stress with smsltlvity
factors of #= 0.18-0.30 and &= 0.23-0.27, rewec-
tively. The fourth mcst important uncertainty k-the
still water induced lateral pressure with sensitivity
factor around ~ = 0.03. The remaining uncertainties
are less important and have sensitivity factors smaller
than& =o.ol.

The computed probabilities are for one year with
the assumption of continuous voyage of the ship at a
sped of 7 Knots in an environment described by the
assumed wave directions and sea scatter diagram. fn a
real situation a ship has several voyages and stops
within each year, is traveling at different speeds and
in different environments. These factors should be
fncluded in the analysis before deciding that a thick-
ness of, e.g., 25 nun, provides enough safety or fs very
conservative.

Tabic. 2 Failureprobabilitiesforexampleplate

Thick.css loadinguncertaintyonly Allmuertnintim

0.0150 0.959ELM 0.152E+@2

0.0175 0.213Efu 0.523E-01

0.0225 0.669EJ23 0.170EJ21

0.0250 0,340E-05 0.811E-03

SUMMASY ANf3 CONCLUSIONS

A pmtabiffsticmethod for elasticbucklingand

coliape analysIsfor unstiffenedpiatesunder com-

binedbiaxialstress,shearstress,and lateralpressure

isdeveloped.The procedureisappikd toevaluatethe

failureprobabilityfora piateunder stillwater load-

ing and wave induced loading. The uncertainties fn
the wave loading and the still water induced stresses
and lateral pressure as well as the uncertainties in the
the geometry parameters and material properties of
the plati are considered.

A formulation as a first-passage problem for a
stress vtior process outcrossing a safe set is first

aPPff~.ac~~~g forUDCefititleSinthewave l@ad-
fng oniy and conditioningon allthe othervariables.

‘Thisleadsto the conditionalfailureprobablfity.A

fastintegrationtechniquebasedon a first-orderreffa-

bilitymethod fsthen appliedto compute the overall

failureprobability.

An illustrativeexample analysisisperformedto

compute theprobabilityoffailureofa bottom plateof

a ship hull. The resultsindicatethe importanceof

mnsidering the material and geometry parameter

unce~nties. The most importantsourcesof uncer-

taintyare those relatedto the wave loading,plate

thicknfssand yieldstress.

The procedure may be extended to include other
sources of uncertainty and can be used to develop new
design formats for unA.0Ten4 as well as stiffened
plates III ships and fixed and floating offshorestruc-
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tures. A cafibratlon of partial safety factors and load

wmbimtion factors for sectional forces and material

properties may be derived by applying the method,
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