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ABSTRACT

Recent developments in system reliability
analysis of offshore jacket structures based on ideal
plastic analysis methods are presented. The static
theorem of ideal plasticity theory is applied in a pro-
babilistic setting and upper and lower bounds on the
system reliability are established. A comparison with
the reliability for first member yielding provides a
quantitative measurement of the system redundancy.
The analysis is performed for static overloading and a
probabilistic load model is developed. Three example
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structures of up to 270 members are used ts demon-

strate the analysis procedure.

INTRODUCTION

In present design practice attention is focused on
assuring sufficlent reliability of the structural ele-
ments individually rather than on assuring sufficient
reliability of the structural system as a whole. How-
ever, system effects due io redundancy and many
failure modes can be significant and should be taken
into account in a rational design procedure. This, of
course, requires operational methods for assessing the
reliability of a structural system.

Different approaches can be applied for reliability
analysis of structural systems with system failure
involving failure of several elements of the structure,
One approach is to set up an ideal plastic model of the
structure and then define failure (limit state) as plas-
tic collapse {(formation of a mechanism) of this model.
Another possibility is to adopt a model in which the
structural elements exhibit some deformation-ioad
effect behavior and define failure of the structure as
the event of, e.g., a singular stiffness matrix or exces-
sive deformations of the structure. A review on relia-
bility models for structural systems is given in [1,2].

The ideal plastic model for the reliability with
respect to progressive [ailure of a structure has been
undertaken in numerous works, see [3-8] amongst
others, This is mainly because such systems can be
conveniently analyzed with respect to plastic collapse
applying the lower and upper bound theorems of plas-
ticity theory (theorems of limit analysis). In most
reported work the analyses have been based on the
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upper bound theorem according to which an upper
bound on the reliability ¢an be evaluated on basis of a
set of plastic mechanisms. If the set of ‘mechanisms is
complete, the upper bound coincides with the exact
reliability with respect to plastic collapse. However,
typically it is not practicable to take inte account the
complete set of mechanisms. In fact, even for simple
structures the number can be infinite and the evalua-
tion of the reliability is non-trivial. Methods for iden-
tifying a set of stgnificant (most likely) mechanisms
can be used for some types of structures. On basis of
these a close upper bound on the reliability may be
obtained. The formulation of the equation of virtual
work for a given plastic mechanism can be rather
involved, e.g. in the case of yield surfaces of random
shape. The same holds if the geometry of the struc-
ture is assumed random.

In this paper recent developments for evaluating
the reliability with respect to plastic collapse on basis
of the lower bound theorem are presented. Both a
lower and an upper bound on the reliability are
obtained. The reliability model is formulated for a
spatial truss structure, but the generalization to a spa-
tial frame structure taking into account load-effect
interaction in potential points of yielding is straight-
forward, [9,10]. The analysis procedure is demon-
strated on example structures of up to 270 members.

STRUCTURAL MODEL

An n times tedundant, plane or spatial truss
structure of m bars is considered. The external load-

ing is given in terms of a finite set of nodal forces
Q=1(Q1, Qs -+ Q) and the normal forces in the
bars are denoted by N = (N, N,, +-- N, ). The bars
are assumed to be ideal plastic. The yield load in ten-
sion is V;* and the yield load in compression N, ,
i = 1,2,.,m. The considered limit state of the struc-
ture s plastic collapse, i.e. formation of a mechanism.

LOWER BOUND THEOREM FORMULATION OF

FIYCIT TIINT T A Vaww FITW

THE RELIABITATY

The lower bound theorem of limit analysis is
valid for ideal plastic siructures, i.e. { ) the yleld sur-
face does not change during deformation, and i ) the



yield surface is convex and the plastic strain rates are
derivable from the yield function through the flow
rule (normality condition) under the assumption that

iii ) changes in geometry of the structure at plastic
collapse ¢re insignificant. The lower bound theorem

states that the structure is able to carry the external
load if and only if there exists a statically admissible
set of internal forces such that these nowhere violate
the yield condition, see e.g. [11].

Focusing on equilibrium states of the structure it
is convenient to apply a force method formulation.

oy . nrt 1
The complete set of statical conditions are expressed in

terms of the normal forces N and the external nodal
forces (Q as

AN=Q (1

A i=s the equ 1librium matrix civen in terme of the
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geometry of the structure. By Gauss-Jordan elimina-
tion or an equivalent procedure within the force
method [12,13] the solutions to (1) can be expressed as

N=ByQ+Byz 2

where z=(z,, 75, **+ ,z,) € R™ is called the vector
of redundants. If the elimination procedure is carried
out such that each z -component corresponds to a nor-
mal force in a bar of the truss structure, (2) expresses

a cholce of a statically determinate primary system.

The state of the 7 th bar is described by two func-
ticns

8~ (NN )= N7+ N,
(NFN) = NF=N, (3

&z LY LY i i
corresponding to yielding of the bar in compression
and tension respectively. If both functions are positive
the i{th bar behaves elastically. The behavior of the
truss structure is thus described by 2m functions.

The physical basic variables in the formulation of
the reliability comprise the nodal forces Q, the yleld
forces (N, N*) and a number of geometrical vari-
ables. However, throughout this presentation the
geometry of the structure is assumed deterministic. If
this is not the case, the equilibrium matrix in (1) is
random and the analysis becomes more complicated.
Let the variables Q,N—,N* be random and assume the
joint distribution to be continuous. Then a transfor-
mation T exists such that

U=TQN"N") 4)

is a normalized Gausslan vector with independent
components, see [14]. Let the dimension of this vector
be ¢. The behavior of the truss structure is now
described by 2m functions g, in the ¢ -dimensional
u -space defined such that

> 0 elastic behavior

2m
min lg (w2} <0 yietding in some point )

The reliability 1 —p y With respect to plastic collapse
can then be expressed as

1—p, = P{g()>0} (&)
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where
2m
g(u} = max [min[g, (w;z)]] (n
R i=l

The max-operation expresses that an admissible equili-
brium distribution of internal forces is sought for each
set of wvalues of the basic variables. The system
representation as given by (7) may obvicusly be
referred 10 as a parallel system with an infinity of
series subsystems.

For some of the considerations in the following it
is necessary to recast the expression for the reliability.
Noting that U can be expressed as U= RA (R 20)
where R? is a chi-square distributed random varfable
with ¢ degrees of freedom and A is a ¢ -dimensional
unit vector uniformly distributed on the unit sphere
2, the reliability can be given in the form

1-p, =J‘p{g(RA)>0"|A=a}fA(a)da (8)
1
='[P{g(Ra)>0]fA(a)da
¢

where f ,(a) = constant is the uniform density on
the unit sphere. If the safe set in u-space is star-
shaped (e.z. convex) with respect to the origin,
P{g(Ra) > 0} is given in terms of the chi-square dis-
tribution function x} as

Pl{g(Ra) > 0} = xXr(a}®) (»

where r{a) is the distance from the origin in u -space
1o the limit state surface in the direction defined by a.
For fixed a, r =r(a) is part of the solution to the
optimization problem:

Determine r 2 0 and zER™ such that r is max-
n
imized subject to min [g;(raz)] > 0.
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M owne Lmnsxormauon l is u.near \normauy CI.ISI.I'I-
buted physical basic variables), the optimization
problem reduces to a linear programming problem.

EVALUATION OF THE RELIABILITY

The evaluation of the reliability given by (6) or
(8) is non-trivial for problems of high dimensionality.
The following outlines how lower and upper bounds
on the reliability can be calculated under certain
assumptions. First and second order reliability
methods FORM/SORM as well as Monte Carlo simula-
tion methods are applied in the calculation. Besides
the reliability measures, a FORM/SORM analysis
directly provides parametric sensitivity measures for
the reliability with respect to deterministic and distri-
butional parameters, see [14]. These measures can be
used in a search for an optimal design.

Lower Bound on the Reliability

If the considered equilibrium distributions of
internal forces is restricted by substituting zER™ in
(7) by a finite number of vectors z;,z,, - - Z, the

right side of (6) provides a lower bound on the relia-



bility. The ST nenc e 3 . vleT .7 X I-
vector, Zo Tt .owoasncg uower doend can be
optimized = x:+cxg ¢ ne-_oemr Spumization
problem:

Deter= <2 = -#° su= -zalv the probability
P{!:;:[.! L= . > scaxmized.

The ammoc=" X 2.0 270z can be reduced if the lower
bound = & _g-: —azxmized by solving, in stead, the
oplimizz Laox proo.em:
Deermmize z,€R™ such that I!I??[P{gi (Uszg > 011
is maximized.
If the transformation T is lnear, this problem is a
linear programming problem and a solution can be
found efficiently. However, the lower bound on the
reliability obtained this way in general turns out to be
considerably smaller than the exact reliability. More-
over, the result depends strongly on the actual choice

of the redundants, ie. on the statically determinate
system (Bg and By in (2)).

In [15,16] methods for improving the lower
bound by considering more than one set of values for
the redundant forces or by considering more than one
choice of the redundants are given. The improvements
of the lower bound obtained by these approaches can
be significant. However, no general and efficient pro-
cedure to assure this has been reported.

Here, improvements of the lower bound on the
reliability by taking the set of redundants z as a ran-
dom vector Z are considered. For any outcome u of U
a value of z can be determined as the solution to the
right hand side of (7). Let this solution be denoted by
h(u). The reliability can thus be written as the relia-
bility of a series system as

1=p, = Plminlg, (UZI> 00 (10)
where
Z = h(U) = h(TWQ.N"N*}) (11)

Of course, the function h {s not known. However, the
right hand side of (10) provides a lower bound on the
reliability for any choice of the function h. Two
functions are applied here.

First, Z is chosen as a linear function of the
external loads Q, i.e.

Z=xQ+z (12)

and the lower bound based on this random z -vector is
sought maximized by solving the optimization prob-
lem:

m
Determine X,z, such that Iin—l?IP {g,(UZ)>0}]is

maximized.

This non-linear optimization problem is solved by
sequential linear programming. The solution has the
advantage of being independent of the chosen redun-
dants (see (2)).
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Secondly, Z is chosen as a linear function of the
external loads Q as well as the yield forces of the bars
(N".N*),

Z=xQ+y |+ | +20 (i3)

and  the problem  maximizing

m
min [P{g,(UZ) > 0}] is solved by sequential linear

programming. This case includes the optimization
problem formulation with deterministic safety mar-
gins in [7,17). For the choice of Z in (13) also the fol-
lowing optimization problem is considered:

n
Determine x,y,zy such that P{:}li]ll[g, w21 > 0}
is minimized.
The problem is solved by a steepest ascent method. To
improve the calculation efficlency the partial deriva-
tives of the reliability with respect to the parameters
X,¥.Zy are approximated by the asymptotic results for

parametric sensitivity measures known from first and
second order reliability methods, see [14].

In a later section lower bounds on the reliability
with respect to plastic collapse are calculated for three
truss structure examples. The results are compared
with the lower bound obtained by assuming a linear
elastic distribution of the internal forces in the struc-
ture.

optimization

Upper Bound on the Reliability

Two methods of plastic upper bound analysis are
considered, namely the directional search method
[9,10], and the linear combination method [7,17.

An approximate evaluation of the rellability in
(6) can be carried out by a first or second order relia-
bility method provided the most likely failure points
have been identified. Restricting the considerations to
the cases where the transformation T is linear, the
safe set in u -space is a polyhedral convex set.

A close upper bound on the reliability
corresponding to this set can be obtained by applying
only the hyperplanes defining the faces of this
polyhedral set with smallest distance to the origin of
u-space, From experience it is known that within
plastic system reliability analysis it is often necessary
to apply several hyperplanes in order to get a close
upper bound. Each hyperplane can be interpreted as
representing a faflure mode (plastic mechanism) of the
structure.

The crucial point in calculating a close upper
bound on the reliability is thus to identify the
significant hyperplanes. One possibility is to apply the
directional search method [9], describing the limit state
surface in u -space by r = r (a). A starting unit vector
2% is chosen. The distance to the limit state surface
r®=r(a® is determined as the solution to a linear
programming problem (see end of previous section).
Moreover, the unit normal vector a; to the limit state
surface in u!=r%"° is determined numerically. (Of



course, attention should be paid to the possibility of
having identified a singular point on the limit state
surface). The safety margin corresponding to the face
of the safe set in this point is then determined by the
reliabilivy index 8, = a{fa% 0 and the unit normal vec-
tor a;. With the new starting vector al = o, the same
nrocedure i reneated fﬁe“lﬂng in B = aofo.rl The
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procedure is continued until a stop criterion
{0, = 1) is fulfilled. The same scheme may now
be repeated with a new starting vector a®. In each step
of the algorithm the result (8,,a;) is stored if the
safety margin i not  highly  correlated
(py; = afa; = 1) with a previously identified safety
margin,

Each sequence in the procedure is similar to the
well-known Rackwitz-Fiessler algorithm of identify-
ing a first order reliability index, see [14]. However,
deviations are, that only points on the limit state sur-
face are considered (due to the formulation in r (a)),
and that the result of each step in the algorithm is
stored. The procedure is stopped by some convergence
criterion based on the probability content of the
identified polyhedral set. This probability is given by
the multi-variate normal distribution function and
can be evaluated approximately, e.g. in terms of upper
and lower bounds [7,12], The starting vector a® in
each sequence of the procedure is generated by simula-
tion using a sampling density giving preference to
directions corresponding to a lower fractile for a resis-
tance variable and an upper fractile for a load vari-
able. Alternatively, the starting vectors could be gen~
erated by some deterministic procedure, e.g. producing
more or less uniformly spaced points on the unit
sphere in u -space.

Another plasticity theoretical way of establishing
an upper bound on the relability is by the method of
linear combination of lower bound safety margins
[7,17). This method, referred to as the linear combina-
tion method, can briefiy be outlined as follows.

Consider a linear combination of lower bound
safety margins from (5) of the form

m
L=} v gy U;2) (14}
t=]

where the index function 7 (i ) is equal to either 2 ~1
\uﬁmpi‘ESSu‘Jﬁ safety margin for member { Jor 2i (ten-
slon safety margin for member i). It can then be
shown that L is an upper bound safety margin
corresponding to a plastic mechanism if i) L is
independent of z, and ii) the coefficlents y; all are
non-negative, {17 The linear combination method
uses this fact by establishing upper bound safety mar-
gins as linear combinations of the form in (14) using
so—called dominant lower bound safety margins. The
dominant lower bound safety margins are defined as
follows.

A plastic lower bound analysis is performed con-
sidering deterministic redundants z, To each of the

2m lower bound safety margins in (5) a reliability
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index 8; = &~ p lg;(u,25) > 0]) is associated. The
lower bound is sought maximized by maximizing the
smallest reliability index with respect to the deter-
ministic redundants, The safety margins with relia-
bility index equal to the smallest value (the Hasofer
Lind reliability index) in the solution are the dom-

et Trmrsram haviemd onfater renaslan Py ~——

inant lower bound S@icly mMargims, It can be shown
that for normally distributed basic variables a value
of the redundants exist such that there are at least
n +1 dominant lower bound safety margins [17].

Significant upper bound safety margins are
searched by considering linear combinations (pri-
marily) of the dominant lower bound safety margins.
In other words, the dominant safety margins are taken
as indicators for which members in the structure are
likely to yield under plastic collapse. As opposed to
failure tree reliability analyses based on successive
elastic analyses, a plastic analysis is here used to iden-
tify members that are likely to be yielding in a
significant mechanism. Details about the strategy for
combining the lower bound safety margins can be
found in [7,17).

Reliability Calculation by Simulation

The reliabflity 1—p, or the probability of
failure p, can be estimated by Monte Carlo simula-
tion. In particular the method of directional simula~
tion [18,19] seems appropriate using the expression for
the reliability in (8). The simulation is carried out by
generating N outcomes a,,a,, *** ,a;, *** ,ay of the
unit vector A. For each ontcome a. the distance r fa )]

WAL 4 &8 4 WA VARl Vs basadaw “‘t “" ’
is determined by solution of an optimization problem.
With

2= 1=x}r(a,®) (15)
Py Is estimated by

EIP] = ZP: (16)

N/
and an estimate on the variance on the estimator is

12

1 N ~In1v2 e m
N(N—-l),"-"p‘ Tems R

Var [P} =
Results from this type of simulation can be found in
the examples in a later section. In [19] other examples
are given and a method of reducing the variance of the
estimator by importance sampling is proposed. Furth-
ermore it is shown how parametric sensitivity meas-
ures can be simulated.

APPLICATION TO OFFSHORE JACKET STRUC-

v T Ty
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Reliability models of the type considered in this
paper are used to evaluate a reliability measure for
jacket-type offshore structures wunder extreme
environmental loading [8,20]. In this context a com-
puter analysis program RAPJAC (Reliability Analysis
of Plastic Jackets) based on the reliability methods

presented in the preceding sections has been developed,
[21,22].



The program can be used within the SESAM* pro-
gram system for structural analysis. In particular,
the SESAM preprocessor for generating geometry and
topology of a structure as well as a utility program
for calculating water particle kinematics can be
applied in connection with the reliability analysis pro-
gram. Of course, links to other commercial general
purpose structural analysis program systems are
straightforward to implement.

At present a first version of RAPJAC has been
completed. The version handles spatial truss struc-
tures. The basic assumptions for the reliability
analysis are: i } the overall geometry of the structure
is assumed deterministic, and ii ) the basic variables
{yield forces of bars and nodal forces) are jointly nor-
mal. The latter assumption can be relaxed, since the
present reliability analysis program can be coupled to
general purpose probabilistic analysis programs han-
dling any type of distributions like the PROBabilistic
ANalysis Program PROBAN from A.S Veritas
Research, [23]. In the reliability mode} all uncertainty
is described by random variables and the program is
almed at reliability assessment with respect to an
instantaneous overload.

An automatic generation of nodal forces from
waves and current is available. The forces are esta-
blished on basis of a deterministic water particle velo-
city field calculated (under the assumption that the
structure is absent) from a discrete, plane wave
applying a specified wave theory (Airy, Stokes 5tk
order, Deans Stream Function or the Cnoidal wave
theory) and using specified values for the wave helght,
period and direction as well as current velocity and
direction. Given such a velocity field the joint distri-
bution for the nodal forces is found using the Morison
formula as follows,

Consider a point on the axis of a tubular member
below the water surface. Let the water particle velo-
ity in the point be v = (v,,v,,v ;) where the first two
components are mutually orthogonal and orthogonal
to the member axis, and the third component is paral-
lel to it. Let the wave force intensity per unit length
of the tubular member at the considered point be
q = (g 1.9 2,9 3), Where g, and ¢, are orthogonal to the
member axis and g, is parallel to it. g Is then
assumed given by

g ConunfCopra O vivvf +vE
g2| = %"Pw(D""ZH) Cp;l C.D.Z’Z 0 vn/vf +v-f
g3 0 0 . CD,33 V;'V;g'
Cuu1Cunn © V1
+ l:—pw(D +2H)2 CM,ZI CM,22 4] \:'2 (18)
0 0 Car 33 vy

wh
WOET

diameter of the tubular member at the considered

ere pw is the specific mass of the water, D) is the

+) SESAM is a trademark of A.S, Veritec Sesam Systems, Norway.
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point, H is the excess radius of the member due to
marine growth, the Cp parameters are drag coefficients
and the C,, parameters are inertia coefficients. For the
sake of simplicity the off-diagonal elements as well as
the third diagonal element in the two matrices are
here taken as zero. Furthermore, the two diagonal ele-
ments in each matrix are assumed equal to Cp and
Cype» Tespectively, since the structural member is
tubular. However, it is noted that the more general
formula in (18) is implemented in RAPJAC.

The coeficlents Cp, and C,, are assumed to be
spatial Gaussian white noise processes over the struc-
ture. In a point, the two processes may be correlated.
Typically negative correlation originating from sta-
tistical uncertainty is assumed. The white nolse
assumption has been introduced in order to reduce the
computational effort when integrating the force inten-
sities into nodal forces for which the second moment
representation must be computed. Furthermore, the
excess thickness H can be assumed to be a spatial
white noise process. In this is the case, the second
moment representation for the force intensities q 1s
found approximately by a second order expansion in
the mean point. This approximation is not fully con-
sistent with a modern FORM/SORM analysis but has
been introduced to reduce the computational effort,
and to maintain the assumption of normally distri-
buted nodal forces. The approximation can be avoided
by coupling to PROBAN, but in that case the number
of basic variables increases radically. In summary,
the uncertainty in the wave and current forces Is
modeled by random coefficients in the Morison equa-
tion together with a random diameter of the member.
The mean value and standard devlation of the random
variables at a given position can be specified as a

plece-wise linear function of the elevation above the
sea bed

.

Gravity and buoyancy loads on the truss struc-
ture are generated automatically as well. Loads on
the deck structure, e.g. gravity loads, live loads and
wind loads can not be generated by the present pro-
gram but ioad models in terms of nodal forces on the
truss structure must be set up by the user.

The program provides lower and upper bounds on
the reliability with respect to plastic collapse. A
lower bound can be established as the reliability with
respect to initial yielding under the assumption of
elastic force distribution in the structure. Further-
more, the plasticity theoretical lower bounds can be
calculated. The upper bound analysis is based on two
different and completely independent plasticity
theoretical approaches comprising the directional
search procedure and the method of combining lower
bound safety margins. Finally, the reliability can be
checked by directional simulation. Results from such
simulations are given as an estimate on the reliability
together with an estimated coefficient of variation on
the estimator.



The program has been applied for research pur-
poses. It is planned to be available for practical pur-
poses like comparisons between alternative design
solutions, evaluation of the reliability of damaged
structu.-es, determination of the importance of the
structural members and for identification of an
optimal design under a complete load description. It is
furthermore the intention to continue the implemen-
tation of reliability methods for offshore jacket struc-
tures to the extent where real life sized structures
modeled as spatial frameworks can be handled.

EXAMPLES

Plane truss structure of 10 members
An n=2 times redundant plane truss structure

the 10 bars are assumed to be normally distributed
with the following representation:

lo.sz for i
E[N{_] = IeO,lJ.-;'! for i

IO.B;;N for i =7,8,9,10
O4uy for i =1234
1.6y for i =5,6,7,8,9,10
DINST _ DN

2,34
o

EIN?*] =

= = 0.15
EWNT - EWN,
Qy QL
Q1 [ _
: 4
3
9' 10 50
Qe .
13
3
7 8 Tu

v .
e

Fig. 1. Plane truss structure.

All variables are assumed independent, except ¥, and
Nt for which oIV, N *1=0.90 for all i. The
stiffness of the bars no. 1-4 are:assumed to be the
equal and 20% of the stiffness of the remaining bars.

Three loading cases for the structure are con-
sidered. In load case I only the horizontal force Q, is
subjected, in load case I both horizontal forces Q
and Q, are subjected, and in load case III the two
vertical loads @, and Q, are acting. The representa-
tion of the load variables are

ElQ=0.10uy , P[Q,]=0.03zy
ElQ,)=0.05uy ., DIQ,1=0.01uy
E[Q;]1=0.50uy . DIQs1=0.04uy
ElQJ=0.50uy , DIQJ=0.04uy

The correlation coefficient between Q; and @, is

assumed to be 0.8, and the correlation coefficient
between Q ; and Q 4 is assumed to be 0.5.

The reliability of the truss structure with respect
to plastic collapse is calculated by the different
methods. The results of the lower and upper bound
analysis are given in Table 1, 2, 3 and 4. The exact
reliability for this (small) structure can be found by
considering all plastic mechanisms, and for all three
load cases the upper bound result coincides with the
exact result.

The results of the lower bound analysis are given
in terms of the Hasofer-Lind reliability index By,
(equal to the reliability index corresponding to the

m
reliability min[P {g; (U;Z) > 0}]) and the system relia-
im]

bility index Bg. The only lower bounds close to the
exact result are those obtained by optimizing the sys-
tem reliability index. The elastic lower bound as well
as the plastic lower bounds based on linear program-
ming turn out to be significantly smaller than the
exact reliability.

In Tables 2, 3 and 4 results are given for the two
independent upper bound methods. The methods yield
the same and exact result on the system reliability
index in all three load cases. Experience from other
examples as well indicates that the upper bound ana-
lyses typically give close upper bounds, implying that
the methods identify all significant mechanisms.

Table 1. Results of lower bound analysis.
The numbers in parenthesis are the numbers of
iterations in the non-linear programming problems.

Load case ’ I IQ 4 I [Q,4Q,] i {Q,0,l
Type of analysis By B By Bg Bur Bg
Flastic lower bound: 2.67 2.47 1.41 1.39 2.78 236
Plastic lower bound :

max By; Wtz 3.79 3.37 272 233 3.08 243

max By; W.Irt. Xz 391  3.55(66)
max By; wrt.xyz 398  3.59(19)
max 8 wot.xyz 409 3.96(219)

291 254(19) 310 2.45(12)
291 2.54(8) 3.28 2.64 (40)
332 311117} 319 2.74(64)

Exact result 4.34

3.36 3.20




Table 2. Upper bound analysis for case ] .

Mech. Linear Directional Bars in
no. combinations -saarch yielding
1 4.38 4.38 i~ 8
2 4.87 4.87 2~ 4%

32 4.R7 487 1~ 3

4 6.25 3" 107

5 6.25 3+ 7t

6 6.49 6.49 7 10”

7 7.15 7.15 4* gt

8 8.22 4% 5% 107
9 8.55 -7

Be 4.34 4.34

Table 3. Upper bound analysis for case I7.

Mech. Linear Directional Bars in
no, combinations search yielding
1 344 3.44 1~ 3t
2 N 3.71 1~ 10™
3 4.87 4.87 2= 4t
4 5.87 5.87 3+ 7
3 £.13 7+ 0
6 7.15 4+ g*
7 7.88 3+ 4t
8 8.36 3+ 10"
9 8.55 1- 7

Bg 3.36 3.36

Tabie 4. Upper bound anaiysis for case Ji7.

Spatial truss structure of 48 members

The model of a steel jacket offshore platform in
Fig. 2 is considered. The structure is an n=12 times
redundant spatial truss tower with m =48 tubular
bars. All geometry variables, L.e. the dimensions of
the structure given in Fig. 2 and the dimensions of the
bars given in Table 5 are assumed to be deterministic.
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Fig. 2. Spatial truss tower of 48 tubular
bars.

Table 5. Dimensions and mean tension yield forces of bars.
The ratio between the diameter d and the wall thickness ¢
is assumed to be d /t = 60 for all bars,

Bar No. dm] Area [m?] E[N*] {MN]
201-204 2.0 0.210 67.20
205-208 1.5 0.116 37.07
209-212 1.0 0.053 16.80
213-224 2.5 0.324 103.78
225232 1.5 0.116 37.07
233-248 iz 0.074 23.73

Mech. Linear Directional Barsin
no. combinations search yielding
1 3.62 3.62 2”8
2 3.62 3.62 4 8
3 3.62 362 | R
4 3.62 3.62 37
5 3.76 3.76 17 107
6 3.76 3.76 4 9
7 376 .76 K [V
8 3.76 3.76 2° 97
9 7.08 7.08 5t 8
10 7.39 6t 7~ 8~
11 7.45 6* 77 9
12 7.88 3t gt 8
13 7.91 4% 6* 10~
14 8.92 7- 10*
15 8.92 8 g9+
B¢ 3.20 3.20
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The yleld forces and loads are assumed to be normally
distributed with the following representation:

E[N,1=0.73E[N*] given in Table 5
DN, 1= 0.15EIN,"], DIN,*]1= 0.10E[N,*]

Furthermore it is assumed that all yield forces are
equi~correlated with correlation coefficient 0.5.

The external loading on the structure is due to
gravity, live load, wind, wave and buoyancy. The
following load models are applied:

Gravity and live loads: Gravity and live loads
from the deck structure are modeled by four vertical
loads, one in each of the four top level nodes of the
truss structure. Each force has a mean value 20 MNV,
a coefficlent of variation 0.10, and the four forces are
equi-correlated with correlation coefficlent 0.5. Grav-
ity ioads of the iruss siructure itseif are referred io
the nodes as single forces, and are calculated for a
specific mass of the tubular members of

-



7.85:10°kg /m3.  Furthermore, additional gravity
loads are included (e.g. from inside stiffeners in the
members and in the joints) by assuming that the
specific mass of the interior of the members is
0.25-10%kg fm3. The gravity forces on the truss strue-
ture are assumed deterministic.

Wind load: Wind load on the deck structure is
modeled by a horizontal and a vertical force in each of
the four top level nodes. The magnitude of these
forces are all assumed proportional to a random vari-
able of mean 1.0 MN and with coefficient of variation
0.30. The direction of the wind model forces and the
coefficients of proportionality are given in Fig. 3. The
model i3 based on the assumption that the wind acts
in a direction of 30 degrees with one side of the truss
structure. Wind loading on the jacket structure itself
is neglected.

Fig. 3. Illustration of direction and mag-
nitude of nodal forces from the wind
loading on the deck structure.

Wave and buoyancy loads: The marine loading is
calculated on basis of the water particle kinematics
for a Sth order Stokes theory wave of height k =25m
and wave period I'=17s. The water depth is assumed
to be d =70m , Fig. 4, and the direction of the wave is
the same as the direction of the wind, Fig. 5. It is
assumed that no current is present. A second moment
representation for the nodal forces of the marine load-

nim)
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ing is determined under the assumptions that the drag
coefficient C, and the inerta coefficient C,, in the
Morison formula as well as the excess thickness of the
tube walls due to marine growth H are spatial Gaus-
sian white noise processes. The mean values and stan-
dard deviations as function of the position are given in
Table 6. Finally, vertical deterministic buoyancy
loads on the member parts under the sea surface are
calculated and added to the respective nodal forces.

The position of the wave is defined by the wave
phase angle 8, For 6=0° the wave crest is above the
first support of the structure (in the direction of the
wave propagation). For 0 approximately equal to 20°,
the wave crest is in the middle of the structure.

An elastic lower bound reliability analysis and a
plastic upper bound analysis based on the method of
linear combination of lower bound safety margins are
carried out for different values of the wave phase
angle 0. Selected cases have been checked by direc-
tional simulation. The results are shown in Fig. 5.

The difference between the reliability with
respect to iInitial fallure and the reliability with
respect to total plastic collapse is seen. For different
positions of the wave, different failure modes are
dominating. The same holds for the most likely
member to yield in the lower bound analysis. Only a
small difference between the reliability of the most
likely element to yield and yielding in any member is
observed in the extreme loading situation. This is due
to high correlation between element safety margins in
this case. The same tendency is observed in the upper
bound analysis with respect to plastic collapse, where

the rellability index for the most likely mechanism is -

only slightly higher than the plastic system reliability
index.

Finally it is noted that the variation in 8 of the
reliability index with respect to plastic collapse in this
case follows closely the variation of the elastic system
reliability index.

STOKES Sth ORDER WAVE THEORY

Fig. 4. Illustration of truss structure
and the example wave.
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Elevationz EIC,1 Dlc,]1 Elcy]l bicyl E[H] DIH]
0Om 1.0 0.4 2.0 0.3 0.00m 0.000m
30 m 1.0 0.4 2.0 0.3 00lm 0002m
65m 1.0 0.4 2.0 0.3 G0Sm 0010m
75m 1.0 0.4 2.0 0.3 0.10m 0.030m

e b

100

9C |

BC }

70 b

sc | -

-

40 |}

30 pF

20 F

1w t

Table 6. Mean value and standard deviation of Cp, Ci and H.
Coefficients are a function of elevation above sea bed. Between the given
levels the quantities vary linearly, and above 75m they are constant. At
-a given position the three variables are assumed uncorrelated.
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Fig. 5. Results of elastic reliability analysis with respect to initial yielding and plastic upper
bound reliability analysis with respect to plastic collapse for different positions of the wave

crest.
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Spatial truss structure of 270 members

An n =108 times redundant spatial truss struc-
ture model of a jacket structure is considered, see Fig.
6. The structure has 6 topologically identical levels,
each made up of 9 upright bars, 12 horizontal bars and
24 diagonal bars, l.e. m =270. The dimensions cf the
structure as well as the diameters of the bars are
given In the figure. The bars have a diameter/wall
thickness ratio of 60. All dimensions are assumed to
be deterministic.

The structure is subjected to dead load, live load,
wind load and wave load. In each of the ¥ nodes in the
top level a dead load G; and a live load P,
(i=1,2,..,9) are acting. In the same nodes a horizontal
wind load with magnitude V acts parallel to a side of
the structure. These forces represent the loading on
the jacket from the deck siructure. Finaily, a set of
forces representing the loading from wave and current
are assumed in the 9 nodes of each of the 5 remaining
levels. These 45 forces are all assumed proportional to
a random quantity W. The factor of proportionality
is constant within a level and the values are given in
Fig. 6. It is noted that the wave loading in this case is
not generated automatically but an example load has
been assumed.

The 560 basic variables N7 N.*. G,.G,.....G,,
PPy ...,Py, V, and W are assumed jointly nor-
mally distributed with the following representation:

E{N,"]= A,256MPa , DIN 1= 015E[M*] fort=1.2,.,270
EIN*1= A,320MPa , DI[N*1=010E{N*] for 1=1,2,..,270
el N*]=08 fori=12,.,270
PINEN]] =04 fori=jandk l=—+
ElG, 1= 7.5MN , DIG,1=010F1G,] fori=1,2,..9
EipPj= 2.5MN , DiPI=020EP] fori=12,.,9
Elv]= o05MN , D[vi=025E[V]
E[W]= 2.0MN , DIW]=0.305[W]
HAGi G;1=05, plP, P ]=07 forta}
Av.wl=09

where A, denotes the cross sectional area of the ith
bar. The correlation coefficients not given above are
assumed to be zero.

The following results are obtained:

| N e R P 1 LT T 0
LAASIIC LWWET AT LA A S Y2 53+

Element reliability: By = 3.71
System reliability : B =3.00
Plastic lower bound analysis with deterministic
redundants:
Element reliability: By = 4.38
System reliability : Bg =3.20
Plastic upper bourid analysis:
Number of identified mechanisms: 168
3 most likely mechanisms: 8= 6.10, 6.10 and 6.11

System reliability based on identified mechanisms:

5.84 < B <5.86

Fig. 6. Spatial truss structure with 270 tubular bars.
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The following remarks to the resulis are
appropriate. No efforts have been used to optimize the
plastic lower bound. The result.shown is the one
obtained in the initialization of the method of combin-
ing lower bound-safety margins:- In this case only a
moderate increase is obtained in:the-lower bound on
the reliability index as compared to the result based
on an elastic analysis.

The 3 mosy likely mechanisms involve yielding in
bars belonging to the third level (from the bottom) of
the structure. In fact, each mechanism corresponds to
failure of the four diagonals in one of the three verti-
cal planes parallel to the direction of the wave and
wind load. Also mechanisms involving yielding in a
rather high number of elements have been identified.
As an example, a mechanism with reliability index
6.52 involves yielding in 13 bars in the first level and
6 bars in the second level. Among the identified
mechanisms the maximum number of yielding bars in
one mechanism is 21.

Finally, a directional simulation of the reliability
has been performed. The identified mechanisms have
been applied to construct an importance sampling den-
sity. This density is used in 50% of the simulations,
whereas uniform sampling on the unit sphere is

apn]lpd in the remainine simulations.

prasss aal Sall IRALSNILANE SR A0S

A sample of
1000 simulations has been generated. In this example
the dimension of the u-space is as high as 560. The
computation of the distance to the limit state surface
is quite time consuming since a Hnear programming
problem with 540 constraints (2 times the number of
bars) and 227 variables (2 times the degree of redun-
dancy plus the distance) must be solved. Further-
more, the high dimension of u-space as well as the
relatively small probability of failure {mplies that
even though the simulation results in Table 7 shows a
very small coefficient of variation, the sample size
may be too small to guarantee that all significant
mechanisms have been found. However, the simula-

tion does not show that the opposite is the case.

Table 7. Directional simulation of the reliability
with respect to plastic collapse using 50% importance
sampling and 50% uniform sampling.

Sample Estimated Estimated coefficient
size reliability of variation on the
N index probability of failure
10 5.86 0.36

20 5.84 0.24

50 582 Q.13

100 5.84 0.10

200 5.84 0.07

500 5.84 0.06

1000 5.84 0.04
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CONCLUSION

Recent developments for evaluation of the sys-
tem reliability with respect to plastic collapse based
on the lower bound theorem are presented, and on
basis of these a lower and an upper bound on the reli-
ability are obtained. The reliability model is formu-

Tatad Far cnatial oo ctriatverog nraaram far nlaco
1@ LCG 101 Spdildl iTuss SUUCiues. n PrOgiail 1UT Pias

tic reliability analysis of offshore jacket structures has
been developed. The program can be applied within a
larger commercial program package for structural
analysis.

In brief, the basic variables that specifically can
be modeled as randotn within the program are:

® compression and tension yield forces of bars
{uncertainties e.g in yield stress and cross sec-

Finnnl noan PR | [P P, 1

uuwlial alca, “ WCLI. as muur.u ulLellaulLy g,

® nodal forces describing external loadings such as
dead load, live load, wind load and wave and
current load,

® parameters in the Morison equation, i.e. the nor-
mal and longitudinal drag and inertia coefficients
(when wave and current forces are generated
automatically),

® marine growth thickness (when wave and

a B o e P P g

current forces are generated automa tically 1
buoyancy and gravity forces, and
model uncertainty in wave and current forces.

The following conclusions can be drawn:

®  The reliability methods for plastic systems pro-
vide a means of quantifying redundancy of
structures. In common design practice such sys-
tem effects are not accounted for. Furthermore,
the system reliability method can e.g. be applied
for evaluation of the reliability of damaged
structures, and for development of reliability
based optimal design.

@  The upper bound on the reliability determined by
a first order reliability method converges towards
the exact reliability for increasing amount of cal-
culation. Often a close upper bound on the relia-
bility can be established with a manageable cal-
culational effort even for real life sized struc-
tures.

®  Simplifications must be introduced to make the
calculation of a maximized lower bound on the
reliability by a first or second order method prac-
ticable. Here, lower bounds based on one vector
of the redundants are considered and three cases
are undertaken: The vector of redundants is 1)
deterministic, 2) linear in the nodal forces, and 3)
linear in the nodal forces and the yield forces.

The lowar haunde racntting Fram an amtien ioadd e
4L AV Ll WAPWMLID LCOULMLLE, 11U Al UL uvIL

of these linear combinations do not in general



converge towards the exact rellability for increas-
ing calculation power. Results from random
redundants can be significantly closer to the exact
reliability than results from deterministic redun-
dants. Typically, however, the lower bounds

turn out to be somewhat smaller than the exact
reliability, at least for a practicable amount of
calculation,

The method of directional simulation provides a
general and rather efficlent means of establishing
a confidence interval on the desired relability.

The plastic reliability methods considered herein
are valid for truss structures under the assump-
tions that { ) the geometry is assumed determinis-
tic, and i ) the besic problem variables are nor-
mally distributed. The formulation of the relia-
bility can be directly generalized to frame struc-
tures with load-effect interaction and the distri-
butional assumptions above can be relaxed. How-
ever, the calculation methods based on linear pro-
gramming in this paper then turns out to require
non-linear programming. Alternatively, the
optimization of the lower bounds and the
identification of significant upper bound safety
margins can be carried out using a representative
Gaussian joint distribution, followed by a relia-
bility computation using a general purpose proba-
bilistic analysis program.

The reliability models considered are formulated
in terms of random variables. Generalizations to
random process models should be considered.
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