
.—

@

....<!<<,,<

. . .

;. $: ~ ~ W uVAL ARCHITECTSAND MARINEENGINEERS
:+ .* - _ A-W, suite400,JerseyCity,NewJersey07308
+.,“,. ,../ .= .— . -... . ,, . . % -.7!,s,mm, !um. sham.” ..,,...1 “o!,,, .,,,., !.”, .Irwa, 0.0,., 5-,, >,,>
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Recent developments in system reliability

analysh of offshore jacket str .ctures based on ideal
plastic analysis methods are presented. The static
theorem of ideal plasticity theory is applied in a pro-
babilistic setting and upper and lower bounds cm the
system reliability me established. A comparison with
the reifabillty for first member yielding provides a
quantitative measurement of the system redundancy.

The analystsisperformed for static overloading and a
probabilistic load mcdel is developed. Three example
structures of up to 270 members are used to demon-
strate the analysh prccedure.

1NTRODUCX1ON

In present d~ign practics attention is fca.ssd on
assuring sticient reliability of the structural ela-
ments indi~idually rather than on assuring sufficient
rellabifity of the structural system as a whole. How-
ever, system effects due to redundancy and many
failure mcdes can bs significant and should be taken
into account in a rational design prccedure. This, of
course, requires operational methods for -ing the
reliability of a stnctural system.

Different approaches can be applied for reliability
anafysk of structural systems with system failure
involving failure of severalelementsof thestrucf.ura.
One approach is to set up an ideal plastic mcdel of the
structure and then define failure (iimit state) as plas-
tic collapse (formation of a,mechanism) of this nmdeL
Another possibility fs to adopt a model in which the
structural elements exhibit some &formation-load
effect behavior and &tie failure of the structure as
the event of, e.g.,a singular stiffness matrix or exce+
sive deformations of the structure. A review on relia-
bility modeis for structural systems is given in [1,2].

The ideal plastic model for the reliability with
respect to progressive failure of a structure has km
undertaken in numerous works, see [3-8] amongst
others. This is mainly because such systems can be
conveniently analyzed with respect to plastic mllapse

aPPIYing the 10wer md up~r bound theorems of plas-
ticity theory (theorems of limit analysis). In most
reported work the analyses have been based on the

upper bound theorem according to which an upper
bound on the refiabiifty tam be evafuated on basis of a
aat of plaatic mechanisms. If the set of “mechanisms is
complete, the upper bmund coincides with the exact
refiabofty with respect to plastic coflapsa. However,

tYPicallY it K nOt practicable to take into account the
complete sst of machanfsma. In fact, even for simple
structures the number can be Iufmite and the evalua-
tion of the raliabilfty fs non-trivial. Met-hock for i&n-
tffyfng a set of significant (most Ukely) mezhanfams
can be ussd for some types of structures. On hasfs of
these a close upper kound on the rafiabilfty may bs
obiafned. The formulation of the equation of virtual
work for a given plastic mechanism can be rather
involved, e.g. fn the case of yield surfaces of random
shape. The same holds if the geometry of the struc-
ture @aasumsd Tandem.

In thfs paper rscent developments for evaluating
the reliabiffty with raspect to plastic collapse on basis
of the lower b.mmd thsnrem are presented. Both a
lower and an upper bound on the refiabifity are
obtained. The relfabiffty model fa formulated for a
spatial trus structure, but the genera ffzatfon to a spa-
tial frame structure taking into account load-e ffec+
fntsmction in pmtentfal poinfs of yielding is straight-
forward, [9, 10]. The analysfs procedure k demon-
strated on example structures of up to 270 membem.

STRUCI’UR4L MODEL

An n times redundant, plane or spatial truss
structure of m bars is mnsidered. The external load-
ing is given in terms of a finite aet of nodal forms

Q = (Q I. Qz, .,. ,Q ) and the normal forces in the
bars are &notad by N = (Nl, N2, . . . ,Nm ). The bars
are assumed to be ideal plastic. The yield load in ten-
sion is Ni + and the yield load in cornpreasionNt’,

i = 1,2,...,m. The con.sidared limit state of the struc-
ture is piastic collapse, i.e. formation of a mwhanism.

LowER sO~D lTff30Rf3M FORMULATION OF
mm ffELfAsILIm

The lower bound theorem of Iirnitanalysisis

validforidealplasticstructures,i.e.i) theyield sur-
facs does not chsnge during deformation, and ii) the
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yield surface is convex and the plastic strain rates are
derivable from the yield function through the flow
rule (normality condition) under tie assumption that
iii ) changes in geometry of the structure at plastic
collapsem insignificant.The lower bound theorem

statesthatthe structureisableto carrythe external

load if and only if there exists a statically admfs.sible

Set Of intirnal forces such that these nowhere vioiate
the yield condition, see e.g. [11].

Focusing on equilonium states of the structure it
is convenient to apply a force method formulation.
The complete set of statical conditions are expressed in
terms of the normaf forces N and the external nodal
forces Q as

AN=Q (1)

A is the equilibrium matrix given fn terms of the
geometry of the structure. By Gaus-s-Jordan eMnfna-
tion or an equivalent procedwe within the force
method [12,13] the solutions to (1) can te expressed as

N= BQQ+&z (2)

where z=(zl, z2, . . . .zn) < l?” is called the vector
of redundant. If the eftmfnation procedure Is carried
out such Umt each z-component mrresponds to a nor-
mal force in a bar of the truss structure, (2) expresses
a choice of a statically determinate primary system.

The state of the i ti bar is described by two func-
tions

b’ZI-I(N,-flt ) = N,-+ N,

gZ(N,+,N, ) = Nt+ –Ni
(3)

corresponding to yielding of the bar fn impression
and tmsion respxtively. If both funcUOns are psitive
the i th bar behaves elastfca.lly. The behavior of the
truss structure is thus described by !2m functions.

The physical basic variables in the formulation of
the reliability comprise the nodal forces Q, the yield
forces (N-, N+) and a number of geometrkd vari-
ables. However, throughout U12S presentation the
geometry of the structure la assumed &termiut.stic. ff
UIIS is not the case, the equilibrium matrix in (1) k
random and the analysfs becomes more compllcatexl.
Let the variables Q,N_,N+ be random and assume the
@nt distribution to be continuous. Then a transfor-
mation T exists such that

U = T(Q,NT,N+) (4)

is a normalized Gaussian vector with independent
components, see [14]. Let the dimensfcm of this vector
be q. The behavior of the truss stmcture is now
described by 2m functions g, fn the g -dimensional
u -space defined such that

I

>0 elusfic fk?flnvior
~:; I& (W)] <0 yiefdinginmm poinf(’)

The reliability1 – p, with respect to plastic collapse
can then be expressed as

l–p, = P{g(u) > o} (6)

where

g (u) = ma: [;pk, (W)]] (7)

The max+wratlon express= that an admissible equili-
brium distribution of internal forces is sxmght for each
set of values of the basic variables. The syskxn
representation as given by (7) may obviously be
referred to as a parallel system with an infudty of
series subsystems.

For some of the considerations III the foflowing it
is necessary to recast the expression for the mfIabiUty.
Noting that U can be expressed ?s U = RA (R >0)
where R 2 is a chi-wfuare distributed random variable
with q degrees of freedom and A is a q -dimensional
unit vector uniformly distributed on the unit sphere
flf the reliability can be given in the form

I-P, =~{8(RA)>O”lA=a)/~(a~a (8]

=~F’{g(Ra)>O}f .(alda
*

where f ~(a) = consfunf IS the uniform dendty on
the tit sphere. ff the safe set in u-space is star-
*a@ (e.g. convex) wftb respect to the origin,
P {g (R a) > 0) k given in terms of the chi-square dis-
tribution functfon %2 as

P {g (R a) > O} = ~% (a)a) (9)

where r (a) IS the dfstance from the origin fn u -space
to the limit state surfam in tie din?ction defined by a.
For tied a, r = r (a) k part of the solution to the
optfmhtion problem

Determine r >0 and z6R” such that r is max-

imized sub@t to ~~~ ~i (r az)] >0.

ff the transformation T k’ hear (normally distri-
buted physicaf imsfc variables), the optimization
problem reduces to a Unear Frogrammlng problem.

Evaluation OF THE RELfABfLfTY

The evaluation of the refiabflfty given by (6) or
(8) is non-trivial for problems of high dfmensionafity.
The following outlines how lower and upper bounds
on the refiabllity can & calculated mKIW mrti
assumpuons. First and second order reliability
methods FORM/SORM as well as Monte Carlo simula-
tion methods are applied in the calculation. Besides
the reliability measures, a FORM/SORM analysfs
directly provides parametric sensitivity measures for
the reliability with respect to deterministic and distri-
buUonal parameters, see [14]. ‘flese measures can be
used in a search for an opUmal design.

Lower Bound on the Refinability

If the considered equiffbrlum df.stributiom of
internal forces IS restricted by substituting z{ R n in

(7) by a 6nite number of vectors zl,~, . . . ,zP the
right side of (6) provides a lower bound on the reti-
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bility. ~ ~X _ x . :=- :CT .- x-
vector, i+ :x L.- X*A w be
Optindzuf a *L f.< s --- .y-:slization
problem

Wez G ~ ‘ s= .>: the probability

p{= L?, : >: sclaxinUzed.

The— -: < ~-~~.m an be reducd if the lower
bound s ==: ZQed by solving, in stead, the
0ptiuu22-z ~:ezl:

~=~e ~CR n such that~~’[~ {g{(U%> 0)1

is maximized.

U the wansformation T islinear,thisproblem isa

linearprogramming problem and a solutioncan be

found efficiently. However, the lower Imund on the
Alability obtained this way in general turns out to be
considerably smaller than the exact reliability. More-
over, the result depends strongly on the actual choi~
of the redundant, i.e. on the statically &terminate
system (BQ and Bz in (2)).

fn [15,161 methcd.s for improving the lower
bound by considering more than one set of values for
the redundant forces or by considering more than one
choice of the redundant are given. The improvements
of the lower bound obtained by these approaches can
be significant. However, no general and e5cient pm-
wdure to assure this has ken reported.

Here, improvements of the lower bound on the
reliability by taking the set of redund~t.s z ~ ~ ~m.
&m vector Z are considered. For any outcome u of U
a value of z can be determined as the solution to the
right hand side of (7). Let this solution be denoted by
h(u). The reliability can thus be written as the relia-
bility of a series system as

1 –P, = P {~~~[gi (Uz)l > o} ( 10)

where

Z = h(U)= h(T(Q,N-,N+)) (11)

Of course, the function h is not known. However, the
right hand side of (10) provides a lower bound on the
reliability for any choice of the function h. Two
functions are applied here.

First, Z h chosen as a Ifnear function of the
external loads Q, i.e.

Z= XCI+% (12)

and the lower bound based on tbfs random z -vector fs
sought maximized by solving the optimization prob-
lem:

Determine x,% such that ~~$P {g, (UZ) > o)] k

maximized.

Thfs non-linear optimization problem is solved by
sequential linear prcgmnuning. The solution has the
advantage of being independent of the chosen mdun-
dants (see (2)).

Secondly, Z ls chosen as a linear function of the
externai loads Q as well as the yield forces of the bars
(N-,N+),

and the optimlation problem maximizing
h

~~~ [P {gi (UZ) > 0)1 k solved by sequential linear

programming. TMa case Includes the optimization
problem formulation with deterministic safety mar-
gins in [7,17]. For the choice of Z in (13) also the fol-
lowing optimization problem is consi&red:

Determine x,y~ such that P {I&Igi (UZ)I 701

is minimized.

The problem k solved by a steepest ascemt methcd. To
improve the calculation e5clency the partial &riva-
tives of the reliability with respe$t to the parameters

x,Y.% are approximate by the asymptotic results for
parametric sensitivity measures known from first and
second order reliability methods, see [14].

fn a later section lower bounds on the reliability
with respect to plastic collapse are calculated for three
truss structure examples. The results are compared
with the lower bound obtaimxi by as.sumtng a llnear
elastic distribution of the internal forces in the stru.-
ture.

Upper Bound on the Reliability

Two methods of plastic upper bound analysls are
considered, namely the directional search method

[9,10], and the Unear combination method [7,171.

An approximate evaluation of the reliability in

(6) can be carried out by a first or second order relia-
bility methcd provided the mcst likely failure points
have been identified. Restricting the considerations to
the cases where the transformation T is linear, the
safe set tn u -space is a polyhedra convex set.

A close upper bound on the reliability
corresponding to this set can be obtained by applying
only the hyperplames defining the faces of thk+
polyhedral set with smallest distance to the origin of
u -space. Fmm experiewx it ts known that within
plastic system reliability analysk it is often necessary
to apply several hyperplanes in or&r to get a clme

upper ~~d. Each hyperplane can b-e interpreted as
representing a faflure mode (plastic mechanism) of the
structure.

The crucial point in calculating a close upper
buund on the reliability is thus to identify the
signifwant hyperplanes. One possibility is to apply the
directional search mahcd [9], describing the limit state
surface tn u -space by r = r (a). A startfng unit vector
a“ s dm.sen. The distance to the limit state surface
~ o = ~ (so) h &~rm~& ~S the ~lut,on to ~ ~=r

programming problem (see end of previous section).
Moreover, the unit normal vector .x, to the Umit state
surface fn U1= r ‘a” is determined numerically. (Of



courw, attention should be paid to the pmsibility of
having identified a singular point on the limit state
surface). The safety margin corresponding to the face
of the safe set in this @nt is then determined by the
reliability index /3, = u~a”r 0 and the unit normal vec-
tor ml. With the new starting vector al= ml the same
pqxedure 1s repeated resulting in flz = u~crlr 1. The
procedure is continued until a stop criterion
(W:ai +1 = 1) is fulfdled. The same scheme may now
be repeated with a new 5tarUng vector a“. In each step
of the algorithm the result (13i, at ) is stored If the
safety margin is not highly correlated

(P,, = Q’?u, = 1) with a previously identified safety
margin.

Each wxpk?nce in the procedure is similar to the
well-known Rackwitz-Fiessler algorithm of Identif y-
ing a first order reliabilityy index, see [14]. However,
deviations are, that only points on the llmit state sur-
face are considered (due to the formulation in r (a)),
and that the result of each step in the zdgorlthm is
stared. ‘fle prowlum is stopped by some convergence
criterion based on the probability ccmtit of the
identifmd polyhedral set. TIM probability LSgiven by
the multi-varfate normal distribution function and
can be evaluated approximately, e.g. in terms of upper
and lower tmm& [7,12]. The starting vexXor a“ fn
each sequence of the prwedure is gemrttted by simula-
tion using a sampling density giving preference to
directions corresponding to a lower fnictlle for a resis-
tance variable and an upper frmtile for a load vari-
able. Alternatively, the starting vectors could be gen-
erated by some deterministic prumdure, e.g. producing
mom or 1- uniformly spaced points on the unit
sphere in u -space.

AIIOth.3rplastidty th~tic,ll Way of establishing
an upper bound on the reliability is by the method of
linear mmblnation of lower bound safety margins
[7,17]. ‘flis method, referred to as the linear c0m3ina-

tian mdwd, can briefly be outlhed as follows.

Consider a llnear combination of lower bound
safety margins fmm (5) of the form

.
L = ~ yi gl(, )(u ;2) (14)

1-1

where the index function I(i) is equal to either 2i -1
(compression safety margin for member i ) or 2i (ten-
sion safety margin for member i). It can then be
shown that L is an upper bound safety margin
corresponding to a plastic mecb~m if i ) L IS
inde~ndent of z, and ii) the coefficients Y( all are
non-negative, [17]. The linear combination method
uses this fact by establishing upper bound safety nmr-
gins as linear combinations of the form in (14) using
s&called dominant lower bound safety margfns. The
dominant lower bound safety margins are defined as
fOllows.

A plastic lower Lmund analysis is performed con-
sidering &terministic redundant z ~ To each of the
2M lower tmund safety margins in (5) a relatability

indm 13j = O-l(P ~, (u, ~)> 01) is as.scciated.The

lower bound is sought maximized by maximizing the
smallest reliability index with respect to the deter-
mlnlsttc reduodmts. The safety margins with relia-
bility hl&X equal to the smallest “due (the Hasofer
Lind reliability index) in the solution are the dom-
inant lower bound safety margim. It can be shown
that for normally distributed basic variables a value
of the redundant exist such that there are at least
n +1 dominant lower bound safety margins [17].

Significant upper tmund safety margins are
searched by ccmslderlng linear combinations (pri.
marily) of the dominant lower bound safety margins.
In other words, the dominant safety margfn.s are taken
as indicators for which membm in the structure we
likely to yield under plastic COllape. As oppmed to
failure tree reliability analysEs based on su~ive
elastic analyses, a pfaszic analysis is here used to i&n-
tify membixs that are likely to be yielding in a
signi6cant mechanfsm, Oetails about the strategy for
combining the lower bound safety margins can be
found in [7,171.

Reliability Calculation by Simulation

The reliability 1 -p, or the probability of
failure p, can be @mated by Monte Carlo simula-

tion. In particular the method of directional simula-
tion [18, 19] seems appropriate using the expression for
the reliability in (8). The simulation fs carried out by
generating N outcomes al, a2, . . . , al, . . . , aN of the
mitt vector A. For each outcome a, the distance r (at )
is determined by solution of an optirnlzatton problem.
with

P, = 1 -X& (a, P) (15)
Pf B Estimated by

.$[P] = Lip,
N,-l

(16)

and an estimate on the variance on the estimator is

tar [P] = *,$l(P, – EIPI)’ (17)

Results from thl.stype of simulationcan be found in

theexamplesina latersection.fn[19]otherexamples

aregivenand a method of reducingthevarianceofthe

estimatorby importancesamplingispropmed. Furtb.

ermore itisshown how parametricsensitivitymeas-

urescan be simulated.

APPLICATION TO OFFSHORE JACKST STRUC-
TURES

Reliability models of the type considered in tbfs
paper are used to evaluate a reliability measure for
jacket-type offshore structu,~ under ~xt,eme
environmental loading [8,20]. In this context a com-
puter analysis program RAPJAC (Reliability AnalysIs
of Plastic Jackets) based on the reliability methods
presented in the preceding sections has been developed,
[21,221.
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The program can be used witidn the .933AM* prti

gram system for structural analy.sk fn particular,

the SESAM preprocessor for generating geometry and

ta~logy of a structure as well as a utlllty program

for calculating water particle kfnematlm can be

apfdied in connection with the reliability analysis pro-
gram. Of course, links to other commercial general

purpose structural analysis program systems are

strafgbtforward to implement.

At present a fwst version of RAPJAC has keen

completed. The version handles s@fal truss struc-
tures. The basic assumptions for the reliability
analysk are i ) the overall geometry of the sticture
is assumed deterministic, and ii) the ba.slc variables
(yield forces of bars and nodal forces) are jointly nor-
mal. The latter assumption can be relaxed, since the
present refiablllty analysl.s pr~ram can be coupled to
general purpme probabilistic analysls programs hm-
dling any type of dfstrfbutfons fike the PROE!abilistic
ANalysis Program PROBAN from A.S Veritas
Research, [23]. In the reliability model all uncertainty
is described by random variables and the program k
aimed at reliability assessment with respect to an
instantaneous overload.

An automatic generation of ncdzd forces from
waves and current fs available. The forces are esta-
blished on basis of a deterministic water particle velc-
city field calculated (un&r the assumption that the
structure k absent) from a discrete, plane wave

aPPIYing a spwffie=i wave theory (Airy, Stokes 5th
order, Oeans Stream Function or the Cnoidal wave
theory) and using specified values for the wave height,
pericd and direction as well as current velocity and
direction. Given such a velwlty field the joint distri-
bution for the nwdal forces is found using the Morison
formula .9sfollows.

Consider a point on the axis of a tubular member
below the water surface. Let the water particle velo-
city in the point be v = (v ~,v~,v~) where the first two
components am mutually orthogonal and orthogonal
to the member axis, and the third component is paral-
lel to it. Let the wave form intensity per unit length
of the tubular member at tie considered @nt be

q = (q IXI~,gs), where q I ~d q ~ am OflhwOnal tO the
member axis and q ~ k parallel to it. q is then
assumed given by

i=, CD,,, CD,,, o v,-

q, = $PW (D += ) CK,2, cD,n o v,-

q, o 0 CD,,3 “,1”,1

Cw,ll CM,12 o +1
+ +pw (D +2H )2 CM2, CM~, o +, (18)

00 CM,,, <,

where ~ isthe specfficmass of the water, D is the

dfameter of the tubular member at tie considered

*)sE5AMu. trademarkof A..%VcriiccScum systems,Norway.

point, H is tie excess radius of the member due to
marine growth, the CD parameters are drag coefficients
and the CM parameters are inertia cceficients. Forthe

sake of simplicity the offciiagonal elements as well as
the third diagonal element in the two matrices are
here taken as zero. Furthermore, the two diagonal ele=
ments in mch matrix are assumed equal to CD and

CM, respectively, since the structural member Is
tubular. However, it fs noted that the more general

formufa in (18) k hnpfememted in RAPJAC.

The cce5cfents CD and CM are assumed to be
spatial Gaussian white nof.se processes over the struc-

ture. fn a pdnt, the two prowsscs may be correlated.

Typically negative mrrelation originating from sta-
tistical uncertainty fs a5sumed. ‘fbe white nOf=
assumption has been introduced fn order to reduce the
computational efort when integrating the force inten-
sities into nodal forces for which the =ond moment
representation must be computed. Futiermore, the
excess thickn= H can be assunwd to be a spatiaf
white noise process. III tids is the case, the second
moment representation for the force intensities q k
found approximately by a second order expansion h
the mean point. This approximation fs not fully mn-
slstent with a modem FORM/SORM analysis but has
been introduced to reduce. the computational efort,
and to mafntain the assumption of normally distri-
buted ncxial forms. The approximation can be avoided
by coupfing to PROBAN, but in that case the number
of hSfC variables kc— radically. fn summary,
the uncatafnty b the wave and current fomes IS
modeled by random mefTmknts in the Morison eqiM-
tion together with a random dfarneter of the member.
The mean value and standard deviation of the random
varlabks at a given pmition can be specffied as a
pi-wk linear function of the elevation above the
w L@.

Gravity and buoyemcy kids on the truss struc-
ture are generatd automatically as well. Lcada on
the deck structure, e.g. gravity binds, live loads and
wind loads can not be generated by the present pro-
gram but lead models in terms of nodal forces on the
truss structure must te setup hy the user.

The program provtdes lower and uppsr bounds on
the reliability with respect to plastic mlla~. A
lower bound can be estabffshed as the reliability with

=- b initial yielding un&r the assumption of
efastic force distribution fn the structure. Further-
more, the plastidty theoretical lower boumds can k
udcufated. The upper bound mralysfs k based on two
dffemmt and completely Independent plasticity
theoretical approaches comprising the directional
search procedure and the methcd of combining lower
bound safety margins. FinaflY, the reliability can be
checked by directfonaf slmufation. ”Results from such
simulations are given w an estimate on the reliability
together with an estimated me5cient of variation on
the estimator.
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The program has ten applied for research pur-

POSS. It ~ Planned to be available for practical pur.
- Uke comwrtins between alternative design
solutions, evaluation of the reliability of damaged
structures, determination of the importance of the
structural memkers and for l&ntlfmation of an
optimal design under a complete load description. It is
furthermore the inkntion to continue the implemen-
tation of reliability methods for offshore jacket struc-
tures to the extent where real life sized structures
modeled as spatial frameworks can be handled.

EXAMPLES

Plane tru.w structure of 10 mernhem

An n =2 times redundant plane trUS sttiure
of m =10 bam is considered, Fig. 1. lle yield fom of
the 10 bars are assumed to be normally distributed
with the following representation

0.2PN for i = 1,2,3,4

E [N,-] = LOpN for i = 5,6

0.8#N for i = 7,8,9,10

[

0.4AtN for i = 1,2,3,4
EINi+l = L@N for i = 5,6,7,8,9,10

--k-J-Q3 Q4

Q, 6

2

b--l

Fig. 1. Plane ~ stmcture.

All variables are assumed independent, except N,- md
Ni+, for which pLV,-,Nt+] =. 0.90 for all i. TM
stifnm of the bars no. 1-4 are: assumed to be the
equal and 2(7%of the suffness of the remaining ham.

Three lcadlng cases for the structure are con-
sidered. fn load case I only the horizontal force Q ~ is
subjected, in lmd case II both horizontal forces Q,
and Q ~ are subjected, and m load case III the two
vertical loads Q ~ and Q, are acting. The representa-
tion of the lmd variables are

EIQI]= O.lOPN , DIQII= 0.031LN

E[Q2] = 0.05/tN , D [Q21= O.OI#N

E[QJ = 0.50#N , D [QJ = 0.04PN

E[QJ = 0.50/.LN, D [QJ = O.WZ..J

The correlation @efficient between Q, and Q ~ is
assumed to be 0.8, and the. correlation meficlent
between Q3and Q4is —d to b 0.5.

The refiabilfty of the truss structure with respect

tO P18SUC COlhPW IS udcuiatd by the diferent
methods. The results of the lower and upper bound
analysis are given in Table 1, 2, 3 and 4. The exact
reliability for this (small) structure can be found by
considering all plastic meclumfsms, and for all three
load cases the upper bound result minddes with the
t?xict rtsult.

The results of the lower bound analysls are given
in terms of ‘the Hasofer-Lind reliability fndex 19HL
(equal to ~ mfiabifity index corresponding to the

reliability m.n[P (g, (UZ) > 0)1) and the system relia-

bility index 19G. The only lower bounds close to the

exact result are those obtained by optimizing the SY5

tern reliabilityindex. The elasticlower bound as well
as the plastic lower bOun& bad on linear program-
ming turn out to be significantly smaller than the
exact reliability.

In Tabl= 2, 3 and 4 results are given for the two
independent upper bound methods. The methods yield
the same and exact result on the system reliability
in&x in a13 three lead x. Experience fmm other
exampiex as we13 indicates that the upper bmmd ana-
lyses typically give clme upper bounds, fmplying that
the methods identify all signihcant mdmnimm.

I

Table 1. Results of lower bound analysIs.
The numbers in parenthesis are the numbers of I

iteratiom in the non-linear programming problems.

Load case I [Q J II [Q 1,QJ III [Q ~,QJ

Type of analysis 13HL i3G 13HL BG 13HL flc

E!astic fmw?rfmu?ld: 2.67 2.47 1.41 1.39 2.78 2.36
Pkzstic fmver bind:

max J3HLw.r.t. z 3.79 3.37 2.72 2.33 3.08 2.43

max 13HLw.r.t. x,2 3.91 3.55 (66) 2.91 2.54 (19) 3.10 2.45 (12)

max BHL w.r.t. X,Y,Z 3.98 3.59(19) 2.91 2.54 (8) 3.28 2.64 (40)
max /3G w.r.t. X,Y,Z 4.09 3.% (219) 3.32 3.11 (117) 3.19 2.74 (64)

.Zzact remdt 4.34 3.36 3.20
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no. L7nnbmations .Saarcia yieldfng

1 4.38 4.38
~- ~-

2 4.87 4.87 *- d+

3 4.87 4s7 ~- s+

4 6.25 3- lo-
5 6.25 3+ 7+
6 6.49 6.49 7+ lo-
7 7.15 7.15 4+ 8+
8 8.22 4+ 6+ 10-
9 8.55 ~- ,-

&) 4.34 4.34

Table 3. Upper bound analysis for case 11.

Mech. Unear Directional Bars Ill
no. combinations search yielding

1 3.44 3.44 ~- 3+

2
3
4
5
6
7
8
9

3.71 3.71 1- lo-
4.87 4.87 2- ‘f+

5.87 5.87 3+ 7+
6.13 7+ lo-

7.15 g+ ~+

7.88 ~+ g+

8.36 3+ 10+
8.55 ,– ~-

B. 3.36 3.36

Table 4. Upper bound anolysis for case III.

rfech. Linear Directional Bars in

no. comblnatio- s.sarch yielding

1 3.62 3.62
z- ~-

2 3.62 3.62
g- ~-

3 3.62 3.62
~- 7-

4 3.62 3.62
s- ,-

5 3.76 3.76 1- lo-
6 3.76 3.76

g- 9-

7 3.76 3.76 3- lo-
8 3.76 3.76

z- 9-

9 7.08 7.08 ~+ 8-

10 7.39 6+ 7- 8-

11 7.45 (j+ 7- 9-

12 7.88 3+ 6+ 8-

13 7.91 4+ 6+ 10-
14 8.92 7- 10+
15 8.92 8- 9+

& 3.20 3.20
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Spatial truw structure of 48 members

The model of a steel jacket offshore platform in
Fig. 2 is considered. The structure ls an n=12 times
redundant spat3al truss tower with m=48 tubular
bars. All geometry variables, i.e. the dimensions of
the structure given in Fig. 2 and the dimensions of the
bars given in Table 5 are assumed to be deterministic.

Fig.2. SpoUaltruss tower of48 tubular
ban.

Table5.~iomtim~~ion~ldfor~ofti.

l%eratio betwee. thediwneterd andtbewall thicknesst

isaswnedtob$dlt =60 forallbc.rs.

t
Bar No. d [m] h IM21 E [N,+] [MN]

201-204 2.0 0.210 67.20
205-202 1.5 0.116 37.07
209-212 1.0 0.053 16.80

213-224 2.5 0.324 103.78
225-232 1.5 0.116 37.07
233-248 1.2 0.074 23.73

The yield forces ond lmds are assumed to be normally
distributed with the following representatkxv

E [N1-l = 0.75E [Nt+l given in Tabfe 5

D W,-l = 0.15E [h’,-] , D [N,+]= O.1OE[hft+]

Furthermore it is assumed that all yield forces are
equi-mrrelated with correlation cce5cient 0.5.

The external loading on the structure is due to
gravity, live load, wind, wave and buoyancy. The

following load models are applied

Gravity and live Ws: Gravity and live loads
from the deck structure are mcdeled by four vertical
loads, one in each of the four top level nodes of the
truss structure. Each force has a mean value 20 MN,
a cceficient of variation 0.10, and the four forces are
equi%orrelated with correlation coefficient 0.5. Grav-
ity loads of the truss stmcture itself are referred to
the nodes as single forces, and are calculated for a
specific mass of the tubular members of

1-i
;



7.85.1 @kg/m3. Furthermore, additional gravity
loads are included (e.g. from inside stilfenem in the
members and in the joints) by assuming that the

sP@fic m=s of the interior of the members IS
0.25. l@kg / m 3. The gravity forces on the truss struc-
ture are assumed determinktic.

Wind kwd: Wind I@ad on the deck structure is
modeled by a horizontal and a ./erticaf force in each of
the four top level nodes. The magnftude. of these
forces are all assumed proportional to a random vari-
able of mean 1.0 MN and with coeflmient of vatition
0.30. The direction of the wind modef forces and the
coe5cients of proporilonafity are given fn Fig. 3. The
model is based on the assumption that the wind acts
in a direction of 30 degres with one si& of the truss
structure. Wind leading on the jacket structure itself
is neglected.

*

0.05
~. 0.40

0.40
0, ‘m 103

0.25
~-$ - ~, 05

025
w 102

0.25

Fig. 3. illustration of direction and mag-
nitude of nodal forces from the wind
loading on the deck structure.

Wave and hmyancy Leads: The marfne loading is

calculated on bads of the water particle kinematics
for a 5th order Stokes theory wave of height h =25m
and wave Wriod T = 17s. The water depth fs assumed
to bed =712m, Fig. 4, and the direction of the wave is
the same as the direction of the wind, Fig. 5. It fs
assumed that no current IS present. A sezond moment
representation for the nodal forces of the marine load-

ing is determined under the assumptions that the drag
dcient CD and the tnertia ccef6dent CM in the
Morison formula as well as the excess thickness of the
tube walls due to marine growth H are spatial Gaus-
sian white noise processes. The mean values and stan-
dard deviations as function of the paition am given in
Table 6. Finally, vertical deterministic buoyancy
loads on the member parts under the sea surface are
calculated and added to the respective nodaf forces.

The position of the wave is defined by the wave
phase angle O. For 13=W the wave crest is above the

first support of the stmcture (in the direction of the
wave propagation). For Oapproximately equal to 2W,
the wave crest is in the middle of the structure.

AII elastic lower bound reliability analyds and a
plastic upper Lxmnd emalysis bi%?edon the method of
flnear combination of lower bound safety margins am
mrrfed out for dMerent vafues of UM wave phase
angfe O. Selected cases have been checked by dimc-
ticmed simulation. The results are shown in Fig. 5.

The dtierence between the reliability with

respd to initial failure and the reliability with

~- ~ toW Pltic COllape fs seen. For dUTertat
pcdtions of the wave, diiTerent failure mocks am
dominating. TIM same holds for the most likely
member to yield in the lower bound anafysis. Only a
snmll dlfi’erene between the reliability of the mmt
fikely element to yield and yielding in any member E
otserved in the extreme loadfng situation. This is due

tO hQh correlation between element safety margins in
tbfs case. The same tendency k observed in the upper
bound analysk with r-espd b plastic collapse, where
the reliability in&x for the most likely mechanism IS
only sfightly higher than the plastic system reliability
index.

Finally it is noted that the variation in @of the
reliability index With respect to phStiC collaF& in this
case folfows closely the variation of the elastic system
dIabiffty fndex.

q(m)

100 t

s.,0.,s 5,” ORDER w,,, THEORY

FiK. 4. fllustm.tion of truss structure
and the example wave.
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Table 6. Mean valw and standard deviation of CD, CM and H.

Coefficients are a function of elevation above sea bed. Between the given
levels the qurmtlties vary linearly, and abeve 75m they are constant. At
a given pcmkion * three variables are assumed uncorrelated.

30 m 1.0 0.4 2.0 0.3 0.01 m 0.M12 m
65 m 1.0 0.4 2.0 0.3 0.05 m 0.010 m
75 m 1.0 0.4 2.0 0.3 0.10 m 0.030 m
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Fig. 5, Results of elastic reliability analysis with respect to initial yielding and plastic uppsr
t-aund reliability analysis with respect to plasticcollapse for dbierent fmsitions of the wave
crea.
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Spatial truss structure cf 270 members

An n =108 times redundcmt spatial truss struc-
ture model of a jacket structure is considered, see FIS.
6. The structure has 6 topological identical levels,
each made Up of 9 upright bars, 12 horkmntal bars and
24 dsagonal bars, i.e. m =270. The dimensions of the
structure a3wefla3the dfarceter2 of the bzrs are
given in the figure. Th8 bzrs have a diameterhvall
thtcknfssmtlo of do. Asldin18n31Gn2 areaslnMdt0
be &termM2Uc.

The structure fs subjected to dad lmd, live bad,
tid14ti wvelti. htioftie9&htie
tcp level a dead load Cl and a live load Pi

(i=l,2,...,9) are acting. In the same ncxiesa horlzo.taf
wind load with magnitude V acts parallel to a side of
the ztructure. ‘2%353forces represent the loadfng on
the jacket from the deck structure. Finally, a set of
forces representing the loading fmm wave and current
are 333umed in the 9 ncda of 3acbof the5 remainhg
levef3. Thfce 45 forces am all assumed pmportionaf to
a random quantity W. The factor of pmpmtionality
IS ctmstant within a level and the values are given in
Fig. 6. It is noted that the wave loading in thts case is
not generated automatically but an example load has
teen assum3d.

The 5fXl basic variables N1-,N~, G ~,G~, . . . . G9,

PIJ’2, . . ..P9. V, and W are assumed jcintly nor-

mafly dktrlbuted wttb the following reprewntatiom

EW,-] = .482S6MFU ! D w!-]= O.ISEU$-,”1 for 1=12 .....270
EN,+] = A, 320h4m , D E+,+]=O.I@NS+l for 1=1,2,...,270
FW,-,N,+I= 0.8 for 1=1,2,...,270
phftajl =0.4 for i *J andk ,1=-,+

,5[G, 1= 7.5MN , D [G,]= 0.l@G, 1 for I =1,2,...,9
EPi 1= 2.SMN , D fn 1= 0.2wtP,l for i =1,2,...,9
EtV]= 0.5MN , DIV]=O.2SE[V]
E[W]= 2.OMN , DIw I=o.3wI[w I

/4G,,G,]=0S, s(P,,P, ]=O.7 fort-j
g4V,Wl = 0.9

where Ai denotes the m secttonat area of the i th
bar. The fnrrelation coef7ictent3 not given above are
assumed to be zero.

The following resulti are obttdmxk

E2asfic lower baw-ld analysis
Element mliabifity i3HL= 3.71
System refiablllty : jqe = 3.CIJ

Fla.stic lower &und anafysis with deterministic

redundant:
Element reliability LIML= 4.38
Syzt.?m reliability: B@ = 3.m

Pfa2fic upper fhnmd anatysis:

Number of i&nti6ed mwhanfsnw 168
3 most lfkely mdardsms: 13= 6.10,6.10 and 6.11
System reliability based on IdentS6ed mechanism=
5.84< ~ <5.86

+- +,*-I

T
9.,*

+

,0.,-

t
!,.,!.

+

!..!-

t

!6.-

t

+. -.+

fig. 6. Sptial tru.m structure with 270 tubular tars.
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The following remarks to the results are

appropriate. No efforts have been used to optimize the
plastic lower bound. The result. shown ls the one

obtained in the initialization of@ method of combin.
in< lower bound safet% @a@ms: fn this case only a
moderate fncrease is obtained III: the lower bound on

the reliabilityindexas compared to the resultbased

on an elasticanaly-

The 3 mast likeIymechanisms involveyieldingin

barsbelongingtothethirdlevel(from thebottom)of

thestructure.In fact,eachrnechardsmcorrespondsto

failureof thefourdiagonalsIUone of thethreeverti-

cal planesparallelto the directionof the wave and

wind load. Alsm mechardsms involvingyieldingin a

ratherhigh number of elemmts have been identified.
As an example, a mechanism with reflability index
6.52 fnvolves yielding in 13 bars fn the first level and
6 bars fn the second level. Among the identified
mw’hwdsms the maximum number of yieldfng bms in
one mechanism k 21.

Finally, a directional simulation of the reliability
has been performed. The identtfmd mechanisms have
been applied to construct an importance sampling den-
sity. This density k used in 50% af the simulations,
whereas uniform sampfing on the unit sphere IS

appll~ fn the remaining simulations. A sample of
10Y3 simulation has keen generated. In this example

the dimension of the u-space IS as high as 560. The

computation of the distanrx to the limit state surface
fs quite time consuming since a finear programming
problem with 540 constraints (2 times the number of
bars) and 227 variables (2 times the degree of redun-
dancy plus the distance) must be solved. Further-
more, the blgh dimension of u -space .%swell w the
relatively small probability of failure implfes that
even though the simulation remits III Table 7 shows a
very smalf caeficient of variation, the sample size
may be too small to guarantee that all significant
mechanisms have been found. However, the simula-
Uon does not show that the oppsite is the case.

Table 7. Directional timulatfon of the reliability
with Imp to plastic collape using 50% importance

sampfJng and 50% uniform sampling.

Sample Estimated Estimated c0e5cient
size relialdlft y of variation on the
N index probability of failure

10 5.86 0.36
20 5.84 0.24
50 5.82 0.13
103 5.84 0.10
202 5.84 0.07
500 5.84 O.ffi

~mm 5.84 0.04

CY3NC2,USfON

Refent developments for evaluation of the sys-
tem reliability with respect to plastic mllapsf based
on the lower bound theorem are prtsentai, and on
bash of these a lower and an upper bound on the refi-
nability are obtained. The reliability model k formu-
lated for spatial truss structures. A program for pla.-
tic reliability analysis of offshore jacket structures has
been developed. The program can be appfkd withio a
larger commercial program package for structural
analysis.

fn brief, the basic variables that specifically can
be modeled as rmdom within the program ara

compression and tetion yield forcesof txm

(uncertaintiese.g.in yieldstressand crosssec-

tionalarea,aswelfasmodel uncertainty),

nodal forcesdescribingexternalloadings such as
dead load, live load, wind load and wave and
current load,

parameters III the Moriwn equation, Le. the nor-
mal and longitudbml drag and inertia c.mficients
(when wave and current force are generated
automatically),

marine growth tbfckness (when wave and
current forces are generated automatically),

buoyancy and gravity forces, and

model uncertainty in wave and current forces

The following conclusions can be drawn

The relk.bifity methods for plastic systems prc-
vide a means of quantifying redundancy of
structures. fn common design practice such sys-
tem effects are not accounted for. Furthermore,
the system reliability method can e.g. be applied
for evafuauon of the refiabillty of damaged
structures, and for development of reliability
based optimal design.

The upper bound on the rellabifity determined by
a first or&r reIiabifity method converges towards
the exact reliability for increasing amount of cal-
culation. Often a cfose upper bound on the relia-
bility can ke established with a manageable cal-
culational effort even for real life sized struc-
tures.

Simpli6cations must b-e fntmduced to make the
calculation of a maximized lower bound cm the
reffability by a first or swond order method prac-
Ucable. Here, lower bounds based on one vector
of the redundant are considered and three cases
are undertake The vector of reduntints LS 1)
&terministic, 2) Unear in the nodal forces, and 3)
ffnear in the ncdal forces and the yield forms.
The lower bounds resulting from an optimization
of these linear combinaUom do not in general
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converge towards the exact reliability for ticreas-
ing calculation power. Results from random
redundant can be significantly clwer to the exact
reliability than results fmm deterministic mdun-
dants. Typically, however, the lower bounds

turn out to be somewhat smaller thrmtieexati
reliability, at least for a Prr@icable amount of
calculation.

● The method of dirwtional sirnufation providesa
general and rather efficfent means of establishing
a confidence interval on the desired refiablllty.

● Tbe plastic reliability methods considmedherekn
are valid for truss structures under thea=ump-
tions that f ) the geometry is assumed determinis-
tic, and if) the basic problem variables are nor-
mafly distributed. The formufatfon of the relia-
bility can be directly generalized to frame struc-
tures with load-eikt interaction and the distri-
butional assumptions above can be relaxed. How-
ever, the calculation methods based on flnear prO-
gm.mmiug in this paper then turns out to require
non-llnear pmgmmmlng. Alternatively, the

optimization of We lower bounds and the
identication of significant upper Lmund safety
margfns can te cariied out using a representative
Gaussian joint dfstrlbution, followed by a relia-
Mlfty computation using a general purpmz pmba-
bilfstfc anafysfs program.

● The mdiability modefs considered are fornndateff
in terms of random variables. Genem.fizations to
random proms modefs should be mnsidered.
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