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ABSTRACT

In this paper, the computer pat-

tern recognization technique is used for
identification of the damage states of

jacket platforms, which are considered
as fluid-structure-soil interaction sys-
tems WLth t irne-varying factors. The
training samples of each damage class of
the y acket platform can be obtained by a
series of model tests in the ocean simu-

lation laboratory or by computer simula~
tion taking into ‘account the modifica-

tion of the mathe~atical model and
environment condition according to the
monitoring measurements on the field
site. In order to limit the nutier of
possible damage states and avoid the

data explosion,the knoledge-based exper’c
system is proposedto make use of the
related knowledge available for damage
detection ofjacket platforms including
the human expert experience. The system
con”sists a knowledge base and inference
engine implemented in Prolog-i and Turbo
prolog and links up with a Fortran envi-
ronment for signal processing and numer-
ical ana”lysisvia the data base.

INTRODUCTION

Structural integrity monitoring
and damage detection are getting impor-
tant for jacket platforms to prevent
‘pollution of environment and loss of
life and also to protect investment. Up
to the present, ,~he StNCtUral integrity
monitoring and damage. detection are
still based on the underwater suney,
mainly” by “visual inspection and the
decision making for maintenance mostly
upon the experience. It is not only very

eXpenSiVe but also not reliable. In

order to improve ttie structural integri-

ty inspection, make cost decision

regarding maintenance, update residual

fatigue life prediction, modify math.
model and design codes, a lot of re-
seafch work have been done in recent

years on the st~ctural integrity moni-
toring and damage detection of jacket
platforms 1-11 . There are two kinds of
structural damages to be detected. One

is local crack, the other is the failure
of functional structure metiers for the

whole structure. Of course, the methods
used for detecting different kinds of
structural damages are different. For

instance, the ,MPI (Magnetic Particle

Inspection), ACFM(Alternate Current Field
lieasurement) and acoustic emittance

method are usually used for crack detec-
tion. The structural vibration or

elastic wave signals are taken to iden-
tify the dynamic behaviour of the struc-
tures for detecting the integrity of the
whole structure, such as the natural
frequency shift method, random decrement
method, Rubin’s flexibility method, the
echomechanical method etc. Other kinds
Of physical or chemical signals reflec-
ting the damage state of the structure

also can be used for damage detection,

for instance, the pressio-detection

method. However, it seems no single of

such methods is suitable enough to meet

all the demands above mentioned. ln this

paper, a knowledge-based expert system

is proposed to do planning, diagnosis

and decision making for structural

damage detection. It can make use of all

the advantages from different methods

and the experience accumulated by

different experts.

The task of damage detection is to
find out if the structure damage has
happened, how serious it is and where it
is located. As the jacket platform
structures are highly redundant, severe
damage to a single or a limited number
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of structural members will not necessari-
ly constitute a significant loss of the
integrity of the skticture. Sufficient
data which contain the information of
damage state should be acquired for

damage”” detection. It depends on the

severeness of the damage to be detected

and the effectiveness of the identifica-
tion method used.

According to the severeness of the
structural damages, the damage states
can be cataloged into 1Z!13
1. Total damage --- complete coliapse of

the struture,
2. Sever”e damage --- serious damage to

the structure,
3. Significant ~amage --- significant

damage to local area or minor damage

to the structure,
4. Unsignific”ant damage --- no or unsig-

nifican”t damage to the structure.
The system is designed for detecting the
significant and severe damage states so
that warning of disasters can be given
in: advance to preven”t loss of life and

valuable “equipment”and decision can be

made for maintenance during the operat-
ing life of the structure.

The pattern recognition technique

is used to make use of all the useful
information” from different identifica-

tionmethods effectively and efficiently.
The jacket platform system is a fluid-

structure-soil interaction system with

time-varying factors such as mass and
its’distribution; sea still wate”r level:
corrosion and marine growth to the

scantlings “and configuration of the

structure and the soil foundation etc.

These time-varying factors should be
measured or monitored simultaneously

with the input(excitation) and output
(response). Accordingly, a time-varying

math. model “is established for pattern

training of damage states by using
computer simwla”tion.

PATTERN RECOGNITION

Dainage State Space

A pattern ”o”r damage state D can be
characterized with a feature vecto”r x
comprising the values of a finite set of
parameters considered relevant to the
pattern;

X=(X1,X2, -..r%l) f (1)

where xi,i=l,2 ,... ,n represents the par-
ticular value associated with the i-th

dimension of the damage state D. The
damage state D is presented by pattern

feature vector X,

X=f(D) , (2)
or

Xi=fi(D) , (3)

where f~ is the measurement procedure
associated with “feature i. Using n
independent feature parameters xi, i=l ,

2“,..., n ak a f“rame..system of the damage
state space, each”possible damage state
can be expressed as a “point in the
space. For instance, if the fundamental
ei”genfrequencies of lateral vibrations
of. the jacket platform in x direction
and y direction fx, fy and the funda-
mental elgenfrequency of the torsion
vibratjon of the jacket platform fz are
selected as the feature parameters

XIIX2PX3, any point in the space
O-xIx.2x3 represents a damage state of
the jacket platform, Fig.1.” Variety of
frame systems with different feature
parameters can be” taken to describe the
damage states. It.!should be so selected
that “all the measured samples can be
partitioned into homogeneous and
well- separated”” subsets. ~t means all
the samples for the same class of-damage

Pattern To Be

mPre-
processing

I 1. I
Smnple. “Feature

Pattern Selection
Training

Fig. 2 pattern Recognition System
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states are similar to each other and
dissimilar to the samples belonging to
other class of damage states, according
to some predefine measure of similari-
~ylL,

Classification Of Damage States

The discriminant system for pat-
tern recognition is shown in Fig.2. It
comprises two stages: analysis stage and
implementation stage. The’preprocessing
should be taken to delete the noise,
correct system error in the measurements
and normalize the signals. The features
are selected and an effective classifier
is designed for training pattern in the
analysis stage. Then, any pattern to be
recognized can be easily classified to
one. of the classes of damage states in
the implementation stage.

Fur damage detection of jacket
platform’s, the dynamic response at fi-
nite points of the structure to a given
excitation or environment are measureed.
A set of the discreted signals in time
domain, frequency domain or space domain
can be “selected as the feature vari-
ables, for instance, the transfer func-
tions ‘(fjfs~), the power spectrum
density functions Psd(fj,si) or the
Randec signatures R(tj,si), i=l,2, ....m.

j=l, 2t. -.,n, see Fig.3.
Assume there are M different

classes of damage states W11W2, .;;;~ll
including the intact state class,
dered as a special class of damage
states, then the state space can be
considered as consisting of M regions,
each of which encloses the patter,n
points of a class of ~amage states,
Fig.4.

The problem of recognition is to
generate the decision boundaries which
Seperate the M classes of damage states

P
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Fig.4 Space of Damage States

(Patterm Classes)

on the basis of the feature vectors
extracted from the observed measurements.
Let the decision boundaries be defined
by decision or discriminant functions

which are scalar and single value

functions of the pattern vector X,
di(X), i=l,2, ...,M. If did., for
all .iFj , then X belongs to 1!c ass wi.

Since the damage states of jacket plat-

forms are normally generated under

randomness, Bayes decision function is
chosen for classification.

Bayes decision functions

di(X)=p(X/Wi)P(Wi), i=l,2, ....M (4)

minimize the average cost of misclassi-

fication with the lowest probability of

error. Where P(x\Wi) 1S the likelihood
function of class wi, P(Wi) is the a

priori probability of occurrence of
damage class Wi. X is assigned to class
Wi if and only if

di(X)>dj(X)

or

[P(x/wl)/P(x/wj)l>[p(wj)/p(wl )1- (5)

For damage detection of jacket platforms,
it is reasonable to assume that p (x/wi)
is multivariate Gaussian,

p(X\Wi)=(21T)-+ lcil-~exp[- +(x-mi)T

c;l (x-~)] ,

i=l,2, ....M. (6)

Where mi and Ci are the mean vector and
the covariance matrix respectively. In
view of the exponential form of the
probability density functions the deci-
sion functions can be simplified by

taking the natural logarithm of the

likelihood ratio, u< ~. X is assigned to
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the class Wir if and only if

u >a ,
~~

where

(7)

a=ln[P(Wj )\P(Wi)l=lnP(WJ )-lnP(Wi), (6)

uij(X)=ln[p(X\W )\p(X\Wj)]
i

=lnp(X\W~) -lnp(X\Wj) . (9)

Assume Ci=cj=c, i.e. the likelihood
functions of class Wi and class Wj have
same covariance matrix,

uij(X)=XTC-l (mi-mj)

‘“‘C-1 (mi-rnj) .-+(lni-mj) (lo)

Since uiJ(X) is a linear combination of

the components of X which is Gaussian,
Uij is also Gaussian. The mean value and
variance of u. are *rij and r:
respectively. Wi%re

~J

‘rij=(mi-mj)’rC-l (mi-mj) (11)

referred to as the Mahalanobis distance
between p(X\Wi) and p(X/Wj). The proba-
bility of misclassifying a pattern when
it comes from class WJ is P(wj>a/wj)
and the probability of misclassifying a

pattern when it comes from class Wi is

p(uij<a/Wi). Therefore, the probability
of error is given by

P(e)=P(W~)p(Uij <a/wi)+p(wj)ti(Uij>a/wJ)

=P(Wi)@(arj-*r~j )+p(wj)

[l-d[ar:f++rjj) 1 (12)

where @ is the standard normal distribu-
tion function. ‘P(e) can be used as a
reference of-certainty factor in inexact
reasoning.

Reiect Class Of Damaue States

In order to limit the number of
the class of damage states in the clas-
sifier, it is wise to put all less
possible damage states in a “reject
classl! which is the complement set of
the union of all the M classes of damage
states in the universe of damage states.
‘The Mahalanobis ’distance

r
Xmi

=(X-mi)T&l(X-mi) (13)

can be used as a measure of similarity

between the pattern vector X and the

mean vec%or Mi of class Wi. According to
the demand for the ievel of significance
or the confidence limits, a criterion

can be set as the threshold G of the
reject class. If Bayes classifier
assigns X into class Wi but r >G, thenxm~
X belongs tothe reject class.

Reduction Of Feature Parameters

An optimization procedure is deve-

loped to reduce the feature parameters
for classifying “.M classes of damage
states. The function of separation among

different classes in the damage state

space is defined as”
hj

S=i~lP(Wi) (mi-mO] TQ-”l(mi-mO) . (14)

Where M -- the number of damage clas-
ses to be recognized,

P(wi )-- the occurence probability

Of class W~#
mi -- the mean vector of the lth

damage class Wi,

m. -- the global mean vector of
all M damage classes,

mo=i~~(wi)mi,

Q -- themean covariance matriX

of all covariance matrices
of the M damage classes,

Q=i~lp(wl)ci.

If M=2, C1=C2=C and P“(W1)=P(W2), then
the function.of separation S will be the
same as Mahalanobi& distance, the
ineasure of “similarity.

By using the fact that

(mi-mO)TQ-l(mi-mo) “

=tr[Q-l (mi-rnO)(mi-mO)T] , (15)

and let

B= 1 P(wi)(mi-mO)(m -m )= , (16)
io

i= 1
the. separation function S can be ex-
pressed as

S=tr[D] , ‘ (17) ,

where D=Q-JB, YankD=M-l, (mi-~)(mi-mO)T

is the matrix outer product and results
in a symmetric matrix rank 1. Matrix B

refl’ects the distribution of the damage
classes in the damage space while matrix
Q reflects the distribution of damage
states within each class.
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STATISTICS OF CORROSION RELIABILITY.

MAINTENANCE
STATE ANALYSIS OTHER EZPERTISE

y2s=--
COPROSIOU EFFECTIVENESS
PREDICTION OF PROTECTION

I MONITORINGRECORD I I
PROTECTION16ETHOD

I

mLOCALENVIRONMENT

Pig.5 InferenceNetwork for Assessment

Obviouslyf if the damage states
spread loosely within each class and
closely among different classes,” the
value of Separation .fuction S will be

,.,---, very low.\ In other words, separation
fuction S depends on the spread of the
damage states within each class and

among different classes. In order to
reduce the number of feature variables
and get ,the optimal feature vector or
the optimal frame system of the damage
state space, separation function S 1s
chosen as the objective” function of
optimization.

Firstly, the number of dimensions
of the frame system of the damage state

space can be reduced to the rank D =M-1.
1-s

L ‘M- 1J

and

(18)

(19)

are the eigenvalue and eigenvector
matrix of Inatrix D, then by using @ as
the transformation matrix of the frame
system the feature vector x Can be
transformed to the principal coordinate

.->. system, expressed as feature vector Y,

Y=@Tx . (20)

in
be

w 1 ENVIRONMENT I

of Damage Possibility

The number of feature parameters
the principal coordinate system can
further reduced according to its

contribution to the separation function
s,

M-1
S=tr[D]= z v..

1 (21)
i=’1

Assume

V>v>. ..>v >...>V
1,2

(22)
i M-1 ‘

the coordinates corresponding to the
lower eigenvalues can be truncated if
their contribution to S is negligible.

DIAGNOSIS

Diaqnosis Strateav

Diagnosis of structural damage can
be considered as a sort of system
identification or an inverse problem of
structural dynamics. Principlely, by
measuring the environment or artificial
excitation (input) and the response of
the structure system(output) the modal
parameters i.e. eigenpairs and damping
ratios or the physical parameters such
as stiffness matrix, mass matrix and
damping matrix can be identified or
estimated. However, it is hardly to get
the unique solution and very different
to do differential diagnosis of variety
of structure damage states, especially
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F~g.6’ Establishing Current Math. Model

for the complex jacket platform struc-
ture system.

The diagnosis strategy we prefer
is to estimate all the possible damage
states of the jacket platform by making
use of the available knowledge for
assessment of structure damage such as
reliability analysis, statistics of
maintenance records of similar jacket
platform, the corrosion situation etc.
and other human expert experience. The
inference network for assessment of
damage po”ssibi~ity is shown in Fig.5.
In this way, the “set of damage state
classes to be recognized or diagnosed is
determined. Then the pattern recognition
technique is used ‘coassign the state of

structure system to one of the damage
classes by the feature vector which is
extracted from the monitoring signals
and contains suffici~nt information for
distinguishing different classes of
damage.

Computer Simulation

“’ The training samples of each
damage class Wi can be obtained from
the measurements on the jacket platform
in damage state class Wi. Obviously, it

is hardly realistic. However, it can be
realized either by a series of model
tests in the ocean simulation laboratory
or by comupter simulation taking into
account the modification of the time-
varying math. model according to the
monitoring measurements tin the field
site. The reanalysis technique for modi-
fication of the math. model can be used
to make the large amount of computing
more efficient. The scheme of system
identification for establishing the cur-
rent math. model is shown in Fig.6. The
latest information from monitoring
measurements and periodical -inspection
about the time-varying factors related
to the behavior of the system should be
considered in establishing the current
math. model, such as mass and its dis-
tribution, soil foundation, corrosion,
marine growth, sea level and others
which make sense in the math. model. The
block diagram of the diagnosis of struc-
tural damage is shown in Fig.7.

Although there are a lot of analy-

sis work in the present method, the
solutions of inverse problem of struc-
tural dynamics are avoided. Of course,
the accurancy of the analysis or the
uncertainties involved in the comptita-
tion will affect the results of the
diagnosik.

MODEL TEST

In order to verify the effective-
ness of the present method, two model
tests are carried out.” one i5 a 2-D

model testedin air and the other is a
3-D model tested in water with random
wave excitation. In this paper only the
2-D model test is presented, as the
test report of ‘the 3-D model has not
completed yet. It will come out in a few
weeks.

Similarity Dama e
Analysis C?ass

Classification
Excitation

Math. Model

Current of Str. With Feature
Selection

Training.
Math. Model Damage WL

“’Reject~Cl=s

Fig.7 Bloci Diagram of The Diagnosis

of Structural Damage .,,.
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Fig,8 Scheme of the Madel and Tasting

structure model
The scheme of
system is shown

Fig.8.. Five different classes of damage

is

the
in

are designed to be tested:
1. intact structure,
2. severance of structural member A,

3. severance of structural member B,
4. severance of structural member C,
5. partly cut of the leg near the bottom

at E.
All the damage states different from the
above five classes are put in the reject
class.

Single point random excitation and
single point response measurement are
taken for the test. The discrete trans-
fer function and Randec signature are
chosen as the feature vectors XT and Xii.
For each damage class a number of re-
cords are taken to get the mean feature
vector mi and the covarience matrix C.

(.i=l,2,3,4,5). The occurrence probabili~
ty for different damage class is assumed
same and the likelihood fuction p (x/wi )
of each class is considered as normal
distribution. Hence, the Bayes decision
function can be expressed as Uij>O or

lnd >lnd , for all i~j . (23)
.-., i j

After training the samples from
the five dainage classes, the Bayes

2
POWER
AM?LIFIER

SIGHAL

GENERATOR

System

classifier is established.

record samples from three

classes of damage, i.e.
1. severance of member B,

2. pafily cut of leg at E,
3. severance of metier D,
are put in the classifier to

Then three
different

see if the
pattern recognition system works
effectively.

The Bayes decision functions lndi
for classifying the three record samples
to one of the designed damage classes
are given in table 1 and table 2 by
using transfer function feature vector

‘T
and Randec signature feature vector

x~ respectively. The classification
result should be tested by usinq
Mahalanobis distance rxm. to see if it
is within the thresholh G which is
determined according to the given level
of significance. Then the final diagno-
sis results are obtained and shown in
the tables, see the last row.

The chi square distribution func-
tion at level of significance 0.01 is
used for calculation of the threshold of
each damage class. The threshold G=220
for the feature vector of transfer func-
tion, dimension number = 176 and the
threshold G=44 for the feature vector of
Randec method, dimension number = 25.

It seems the classifier works as
well as designed.
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Table 1. lndi and Diagnosis Results
by Using X.r

Table 3. lndi and Diagnosis Results

by Using YT

Record Sample
lndi Damage B Damage E Damage D

Intact Str. I -7589 -2319 -49950
Severance A .Y1425 -480 -23790
Severance B 217 -6948 -101600
Severance C -1649 -9065 -4919
Partly Cut E -4144 148 -39900
classifica-
tion Result ‘B E c
Threshold G 220 220 220

rxm~ 145<G 205<G 1001>G
Diagnosis
Result B E reject

Table 2. lndi and Diagnosis Results
by Using XR

Record Sample
lndi Damage B Damage E Damage D

Intact Str. I -309 -188 -332
Severance A -218 -149 -236
Severance B -126 -181 -159
Severance C -172 -239 -138
Partlv Cut E -241 -136 -261
Classifica-
tion Result B E c
Threshold G 44 44 44

rxmi 14<G 39<G 46>G
Diagnosis
Result B E reject

“As mentioned before, the dimen-

sions of feature vectors can be reduced
or transformed to the principal vectors”

without decreasing the separation func-
tion S. The number of principal vectors

for. classifying five damage classes is
4. Therefore, the feature vector XTand
X“R can be transf~rmed to the principal
vector YT and YE with only four feature

parameters” in the vector. The threshold

of the qamage class now becomes G=13 for
feature vector of 4 dimensions.

The diagnosis results are the same
as from the original feature vectors XT

and XR, see table 3 and table 4. However,

the pattern training work in prlnCipal
vector space is much more convenient

than in the ?“r19inal feature vector

space.

Record Sample
lndi Damage B Damage E Damage D

Intact, Str. .1 -1620 -356 -4691
Severance A -352 -124 -4477
Severance B 3.7 -1583 -9632
Severance C -1455 -2990 -1576
Partly cut E -1080 0.39 -7198
Classifica-
tion Result B E c
Threshold G 13 13 13

‘xmi
3.2<G 8.2<G 3161>G

~iagnosis

Result B E reject

Table 4. lndi and Diagnosis Results
by Using YR-

Record Sample
lndi Damage B Damage E Damage D

Intact Str. I -138 -35.2 -172
Severance A -57.1 -22.9 -72.5
Severance B -17.8 -61.0 -31.6
Severance C -41.9 -47.9 -29.6
Partly Cut E -61.4 -17.o -68,8
Classifica-
tion Result B E c
Threshold G 13 13 13

rxmi 3.O<G 8.9<G 27.6>G
Diagnosis
Result “B “- E“ reject

10
m

+B

L

-3
-E

LG.

t -- record sample of B ‘
@ --:record sam?le of E
,--- reoord sample of D

.

I,A,B,C,E -- five different
damage classes

G -- Threshold

r ~mi(yR)
u

1 10 102 103

Fig,9 MahalanobisDistance and Threshold
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Fig. 9 shows the Mahalanobis dis-

tances of the record samples to the mean
vectors of the designe”d damage classes

\ i.e. I, A, B, C and E, by us$n’g both
transfer function method and Randec
signature method. It can be seen from
this figure the transfer function method
is better than the Randec signature
method as the difference of the
Mahalanobis distances between assigned
damage class and the other damage
classes are larger in transfer function
method for this specific example.

EXPERT SYSTEM

Due to the complexity of struc-
tural damage detection, especially for
such complicated Fluid-Structure-Soil
systeci of jacket platform, the expert
system is chosen to make use of all the
knowledge accumulated in related fields,
and take the advantages’ of different
damage detection methods available, in-
cluding hardwares, such as sensors, A/D.
converters, filters, anlysers etc. and
softwares for preprocessing, feat”ure
seleczion, structural analysis, system
identification, decision ;aking and so
on. For a lot of expertise are heuristic,

an inference engine is needed for
reasoning and a large amount of numeri-

cal process has to be done in preproces-
, sing, ,structural analysis and pattern

recognition, a hybrid knowledge-based
expe~. systein1.5t16, implemented in
Proloy-i, Turbo-prolog and Fortran is
developed for deal~ng wit”h both symbolic

and numerical processes. The communica-
tion between Prolog “and Fortrah is
realized throuth data b“ase with data
files.. The structure of this expert
syktem is shown in Fig:lO.

The mixed search st”rategy of for-
ward and backward chaining is adopted.

til ‘. H ; : ‘Plot Data Data Expert

Control Control Base User

Data

nvironment Acquisition

Flg.10 The Structure of Expert System

For Damage Detection

Certainty factors are taken into account
in the inexact reasoning. Certain factor
CF is a real number in the interval I-
1.0”;1:0] indicates the certainty with
which each fact or rule is believed, as
it is used in the famous expert system
for diagnosis and treatment of meningi-
tis and bacteremia infections17.

Due to a huge amount of possible
damage states of jacket platforms, the
reduction of searching area is extremely
important to make the detection success-

ful . The set of all functional StNCtU-

ral members V can be partitioned into two
subsets Vn and Vd. Vn consists of mem-
bers never damaged or possibly damaged
but easily to be inspected, such as the
above water members. Vd is the comple-
ment of Vn. By using the initial infor-

mation about the structure, the environ-
ment and the records of monitoring and

inspection, the analysis of damageabili-

ty of each element of Vd can be carried

out and a limited nui-rber of classes of

damage states due to the damage of one
or some members of the most probably
damaged members in Vd can be chosen as
the damage class set U for pattern
recognition. The intact structure state
is considered as a special class in the
set u. All other damage states not
belonging to U are put in the reject
class U which is the complement of U in
the universe of damage classes. In this

way, the searching area can be reduced a
lot. However, if the damage class set is
not adequately selected or the number of
class is too limited that the damage
states of interest are calssified to the

reject class, then the damage class set
should be revised and the procedure of
pattern recognition should be tried
again.

The results of pattern recognition
may be different for different feature
vectors referring to different methods
of identification. Each method gives an
evidence for dama”ge classification. The
synthetic resuit can be obtained by
using the inexact reasoning for more
than one evidenceJ8.

CONCLUDING REMARKS

Combined with the identification of
the current math. model considering the
time-varying factors in the structure
and its environment, computer pattern
recognition
detect the

technique can be used to

damage of complicated .struc-
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tural system, such as the jacket plat-
form. The feature vectors obtained by
processing the measurements are differ-
ent for different identification hethods.
It is poss.ib.leto combine the features
used in different identification methods
in one feature vector. In this sense,
pattern recognition technique can make
use of the useful information from dif-
ferent identification methods. Obviously,
correct detection will depend on the
amount and completeness of discriminat-
ing information contained in the
measurements and the effective utiliza-
tion of this information.

In order to reduce the searching
area of damages tates and avoid data
explosion,. the knowledge-based expert

system is proposed to make use of all
the available doma-in knowledge related
to the-problem. The crucial problem is
knowledge acquisition, i.e. collecting
and u.tilizin.gthe related knowledge and
information. Seeking new identification
methods which are sensitive, reliable
and convenient for practical use is.also
an important issue for damage detection
of jacket platforms.
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,-
\ In your procedure to detect darnage,obviously you min- 1 think you’ll find in this paper a lot of mathematical

imizesomequantity. Whatis thisquantitythatyou min- expressionsbecause we assume that distributionof a
imize? I think you have used the term “Mahalanobis microcosm of the darnage states is a multivariable
distance.”Canyoudefie thisquantity? Gaussianpruss. In thiseasewecanpointto thevarious

logarithmsofitandthenweeangettothiskindofdistance
which indicateshow close two kinds of damageclasses
are in the spaceof damagestates.
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