
THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS
6tJl Pavonla Avenue, SUlte 4U0, Jersey City, New Jersey 07306 USA

Paper presented at the Mtina SiYuctwal ln~tion, Mamtanan&, and Ma?itoring Sympasium

StwaIon Nahonal Hotel, Adington, Wrginia, krch 1E19, 1991

A Probabilistic Approach for Determining the Effect
of Corrosion on the Life Expectancy of Marine
Structures
G.J.White, U.S.NavalAcademy,Annapolis,Maryland
B.M. Ayyub, University of Maryland, College Park, Maryland

ABSTRACT

Thispaperlooksata meansofevaluatingtheeffectof

corrosionon theestimatedservice-lifeofmarine

structures.Boththemean valueandstandarddeviation

ofthecorrosionratearetreatedasrandomvariables.

Estirrratesforthesevaluesaredevelopedusing

semivariogramanalyskwithkrigingestimation.These

valuesarethenincludedinanextreme-valueanalysisby

usingMonte Carlo simulation to determine the
likelihood of a particular level of wastage in a given
time period. As the structure ages and undergoes in-

—Y semice inspections, the estimators for the corrosion rate
are updated and revised estimates of service-life can be
provided. A example procedure for including the
effects of corrosion on the service-life of a structure for
a specific mode of failure is examined and discussed.

INTRODUCTION

The problem of the loss of structural material to
corrosion has been a thorn in the side .of marine
designers since metals first went to sea. In recent years
tremendous amounts of money and effort have gone
into the development of coatings and protection systems
to mitigate this loss of structural material. Even with
these systems there is still some problems both with the
pitting and general wastage of the structural material.

When performing a service life analysis of marine
structures both pitting and general wastage need to be
included in the limit states. They can affect a number
of potential failure modes through (1) the loss of
structural strength through the general wastage of
structural material under corrosive attack and (2) the
potential hazards associated with loss of:tntctural
integrity due to”a.through thickness penetration from
localized pittirig of the structure. The determination of

“-, the rate of corrosion and the rate of pitting has been a
\ major difficulty in designing cost-effective and reliable

structures. Part of the difficulty is associated with the

errorsinthemeasuringdevices,buta largerpartisdue

toattemptingtocharacterizeafieldvalue(themean

thickness,thusthethicknessloss)froma seriesofpoint

estimations.Thisk especiallydifficultsincecorrosionis

a randomstochasticprocess.

The objectiveofthispaperk tolookatonepossible

way ofincludingtheeffectsofcorrosionina service-life

estimationanalysisusingprobabilisticmethods.This

includesboththedeterminationofthecorrosionrates

andhow toincorporatethem intotheanalysis

procedure.Inordertodeterminationtherates,the

basicconceptsofsernivariogramanalysisandkrightg

estimationaredkcussed.The proceduretoincludethe

informationon ratesisbasedon updatingexisting

knowledgethroughregressionanalysisandtheuseof

Monte CarlosimulationwithVarianceReduction

Techniques(VRT),

SEMIVARIOGI?AM ANALYSIS AND KRIGING ESTIMATION

Steel plating which has been exposed to a corrosive
environment on one side will exhibit a characteristically
rough surface. One would expect that the thickness of
the plating would vary from point-to-point on the
surface of the plating. One would also expect that this
variation would be local in nature; that areas which
have experienced relatively large amounts of wastage
would be interspersed with areas which have
experienced relatively little loss of thickness. Over a
large area, such as the bottom of a ship, one would
expect little correlation in thickness loss between
nonadjacent areas. However, there would be some
correlation in local areas, ones which are relatively
close to one another. The semivariogram function is a
mathematical description of this relationship. If the
mean thickness “ofan area, such as a panel of plating, is
required, sample thickness measurements within the
area can be used. The weights attached to each sample
point will be based on their spatial relationship to one
another and to’the area being investigated. The

sernivariogram function is the means for determining
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the weights with kriging providing the best unbiased function to the data in order to obtain w estimate of
linear estimates of the weights. The following the variation between data points. The most frequently
discussion is largely based on the works of McCuen and used semivariogram model is called the spherical model
Synder [1], and McCuen, et al [2], and Ayyub and and takes the following form [1]:
McCuen [3].

f -r, for h > r

Semivario mam Analwi$

The thickness of a material at any location X over the
surface of the material can be denoted as Z(X). The
thickness at any other location, a distance h away from
the initial point at location X, can be written as Z(X +
h). If the distance h is relatively small then it is likely
that there is some correlation between Z(X) and Z(X +
h), For large distances h this correlation is likely to be
O; that is Z(x) and Z(X + h) are independent. The
separation distance at which the autocorrelation
between Z(X) and Z(X + h) becomes zero is denoted
as r, the range of influence. The range of influence can.
be evaluated from test data as will be described later.

We areinterested in assessing the variability between,
the two measurements taken a distance h apart’. The
variogram, which is given as 27(h), provides the
characterization’of the variability of the property z
between two points [2];

Zy(h) = : ~ [z(xi) - Z(W + h)]z (1)
,=1

in which “nis the number of measurement made at a
separation distance h, and ~ is the location of a point

with respect to some set of coordinates. It should be
appareni that Equation (1) has the form of the expected
value of the variable [z(XJ - z(X + h)]z :

2T(h) = E{[z(~) - Z(xi + h)]z} (2)

The application of Equations (1) and (2) assumes that
the value of the variogram ordy depends on the distance
that the points are separated, h, and not on the location
of the sample points, X, within the area being
investigated. Aother way of looking at this assumption
is that the field of measurements represents a
statistically stationary field. This is not to say that the
differences for each pair of points a distance h apart
must be equal, only that they must be from the same
statistical population. Points that are some other
separation distance apart may be from a different
statistical population [1].

Dividing the variogram vaIues from Equations (1) and
(2) by 2 yields the semivariogram y(h). Typically,
values of -y(h) are found for discrete distances h and the
results presented in the form of data points on a plot of

semivariogram vs. separation distance. It is then very
useful to fit a mathematical model of a semivariograrn

(3)

where -y,is the sernivariograrn model parameter called

the sill. The sill represents an upper bound on the value
of the sernivariogram. It is the characteristic of the
model which says the variation of the samples at a
distance r apart is equal to the variance of all of the
data: There is no special relationship between the
sample points at this separation distance. The spherical
model is just one of many models available. It is the
most widely used model because it has the shape and
scale properties that characterize many real data sets.

Another form of sernivariogram model which has been
found useful in fitting data from corroded plates is a
combination model. Because there is often a very rapid
increase in variance, even at ihort distances, on the
surface. of a corroded plate, the variance data never
approaches zero. The spherical model can be modified
by including a constant, ‘yn, sometimes called the nugget

effect, to account for this phenomena. The combination
form of Equation (3) would be [1]

The purpose of the sernivariogram analysis is to provide
a means of estimating the mean value of thickness of
the plating over some specified area. However, the best
estimate of that value is not the only thing we are after,
we also want a measure of the accuracy of the estimated
mean. This accuracy measure can be provided by the
standard error of the estimate, or the error variance.

Error Variance of the Mean

If we collect only one thickness measurement z(X) in a
field thathas dimensiiom” of L by W, then that value
represents our best estimate for the mean value of the
thickness of the plating. The accuracy of that estimate
can be characterized by the error variance 2-y(h). The”
standard error of the estiinate S, would then be the
square root of the error variance.

Since our sample consists of only one point in a field,
the error variance is m~de up of two components. The
first is the average variation between the sample point,
S, and every other point ~thin the field. From this we
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the field.The computationofthiscomponentinvolves

carryingoutthefollowingintegration[2]:

1

Figure 1. Auxiliary Function

Because the integration in Equation (7) must be carried
out numerically for all but the simplest models, a
standardized set of solutions were developed. Examples
of these solutions are presented in Figure (2) for the
standardized case where r = 1.0, and the length and
widdy dimensions are normalized by r. Reference [1]
provides tables for other cases.

mustsubtractthevariationwithinallofthepointsinthe

field.The secondcomponentk subtractedbecausewe

arenotinterestedinfindingthestandarderrorofthe

estimateforallpointsinthefield,butratherthe

variationoftheaveragevaluewithinthefield.The

errorvariancecanbewrittenas[3]:

sj = 2r(s,z) - r(z,z) (5)

The variance component I’(S,z) is a function of the
length and width of the field, the location of the sample
point within the field, and the underlying
semivariogram model. The computation of 17(S,z)

\ involves integration and can be very tedious.
Fortunately, a standardized auxilia~ function g(L,~ is
available for the case of a sample taken in the corner of
a field of length L and width w assuming a spherical
sernivariogram model. Figure (1) provides some
example values for this function based on the field
dimensions being normalized by the Langeof influence
r. The auxiliary function also assumes that both the sill
and the range of influence are equal to 1.0. For a field
where the sample point is not at one corner, Figure (1)
may still be used by dividing the field into four
rectangles with dimensions Li and Wi andfindingthe

weightedaverageofthevaluesofg(Li,W,)by[3]

[

r(s,z)= ~,”~ ~ ‘iwig(~l,wi)
1=1 1 (6)

The term within the brackets is the auxiliary function
for the case where the sill value is equal to one. To find
the auxiliary function for the case of interest the
bracketed term is multiplied by -y,, the sill value for the

current case.

The variancecomponent r(z,z)inEquation(5)isthe

fieldauxiliaryfunction.Thisisthesemivariogram

between eachpointinthefieldand everyotherpointin
-..
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Figure 2. Field Auxiliary Function

If we have collected thickness measurements from n
points in the field, then a reasonable estimate of the
mean value could be given by:

(8)

where Wiis the weighting factor associated with data

point z(XJ. The weighting factor is an indication of the

importance of measurement z(XJ in determining the

mean value of thickness. Including more points in the
sample also changes the form of Ihe error variance.
Equation (5) now becomes [3]

sc~= ws,z) - r(z,z) - r(s,s) (9)

The third term in Equation (9), r(S,S), represents the

variation within the sample points. This variation must

be subtracted from the first term because it represents

variation that is imbedded in the first term. The within

sample variance component is the average

semivariogram value for every pair of points in the

sample arid can be computed for each pair using the

spherical model of Equations (3) or (4).
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Estimation of the Mean Thickness bv Kriting

If weights are assigned to each sample point when
determining the mean value, as in Equation (8), then
the error variance needs to include the sample weights.
Therefore, the estimate of the error variance can be
given by [1]:

S~2= 2 f ‘i 7(S,,Z)- f ‘Iwj T(si$sj) -w,a (lo)
iel j=l

If we impose the constrain thal the sum of the weights,
Wi,must be equal to one, then we are able to solve for

the values of the weight factors by minimizing the
following function [1]:

Minimize S,z - h

[[ .11~ Wi -1
i-l

(11)

Here k is an unknown quantity and Equation (11)
represents an example of a Langrangian optirnization,
with Equation (10) as the objective function. The k
term would then be the Lagrange multiplier and the
solution would come from a set of n+ 1 equations for
the n+ 1 unknowns, here ~ and the n values of Wi. The

solution vector of the weights would provide the
minimum possible error variance for the given sample
measurements, sernivariogram model, and criterion
function (mean value).

$amule Analvsis for Steel Plating

In order to evaluate the effectiveness of the foregoing
techniques, four ten-inch square pieces of heavily rusted
mild steel plating were carefully measured. The
nominal original thickness of the plating was 12 ga.
(.128 in.) and they had been in active use in a marine
environment for 12 years. The plates were weighed to
determine the mean value of remaining thickness.
Thickness measuremems of the plates were
mechanically taken at one-half inch intervals over the
entire area of the plate. Using Equation (1), the
semivariograms at separation distances, h, of from 0.5 to
7.0 inches were computed for”each plate, The values of
the semivariograrns were plotted against separation
distance, as shown for Plate A in Figure (3). Various
values for the sill,. -yPthe nugget effect, ~n, and the range

of influence, r, were tried in”equations (3) and (4) in
order to find theeurve with the best fit to the data. The
scatter in the data at separation distances above 5
inches is a result of the size of the plates being used.
There are fewer pairs of points that can be used to
evaluate the sernivariogram as the separation distance
increases, thus decreming the confidence in the
resulting semivariogram estimates. The sill value, ~,,

is based on the variance of all of the data points on all
of the plates and is considered to be an accurate

measure. The results from the four plates suggested
using 7, = 110 milsz, ~n = 50 rnilsz, and r = 5 inches.
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Figure 3. Fitted Semivariogram Models for
Plate A

Estimation of Mean Thicfmess

In order to demonstrate how one might use
semivariogram analysis and to see the effect of spatial
location of the sample points, eight different sets of
sample numbers and locations were investigated using
one of the sample ten-inch square corrode plates. T’he
plate, Plate ~ had a mean thickness, found by
weighing, of .097 inches. The results are given in Table
(1). Using one sample point, the effect of meting in
from the corner to the center of the plate reduces the
estimated error. The change in the mean value
estimate is just chance. Increasing the number of points
to two dramatically reduces the standard error. The
location of the two points on the plate also has a big
effect on the error. If,the points are moved too close
together the area within their combined range of
influence is reduced, thus causing an increase in the
error term. If they are moved too far apart, there is no
interaction bemeen points and again the error is
increased. There is also a point of diminishing return
on increasing the number of sample points. The extra
sample point taken when going from four points to five
points in Table 1 only decreased the error by about 370.

The scatter of the estimated thickneis found using the
sernivariogram approach for the different sampling
strategies shows two interesting points. First, the
estimated thickness is highly dependant on the values at
the sampling points; If there” is any bias to the sampling
strategy, the methodology proposed here would not be
able to account for it. The analysis depends on the
difference between sample points at a distance h apart
being of the same statistical population. Table 1
further shows that as the error decreases, the scatter
about the measured mean thickness also decreases. It is

,/-
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Table 1. Results of Analysis of Plate A
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Location of
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this relationship which allows the conceut of
4

x. semivariograrn analysis to be used for developing
sampling strategies.

“ESTIhf.4TION OF CORROSION ~TES

One of the reasons for determining the remaining
thickness of a corroding material is to use that
information to determine a corrosion rate. Knowledge

of the corrosion rate allows one to plan a measurement

and inspection strategy which will increase reliability in

a cost effective manner. However, the corrosion rate is

really a stochastic random variable. It has some mean

value, standard deviatio~ and distribution type. In

previous work [4], the authors have found the logrmrrnal

distribution with a Coefficient of Variation (COV) of
().25 to be a re~onable model for the statistics of an

initial estimate for the corrosion rate [5].

Prior to taking samples one usually has an estimated
value for the mean corrosion rate in a particular

environment. This information can come from

published reports or handbooks which are based cm

testing [5]. The mean value of thickness found using the
analysis methods, proposed here, can be used to
determine a new estimator of the mean corrosion rate.
By subtracting the remaining thickness from the original

---., thickness and dividing by the exposure time, an

estimated mean corrosion rate is found. This rate can
be assumed to be the outcome of an experiment and
can be used to update the prior information using
13ayesian updating [6]. Because the prior distribution
for corrosion rate is lognormal, the conjugate
distribution is also Iognormal. That is, the posterior
distribution for the mean corrosion rate is lognormal.
The evaluation of the new mean value of corrosion rate
is a fairly straight forward process given in most
textbooks dealing with Bayesian methods [6]. It is
interesting to note that the new mean value will be the
weighted average of the prior mean and the mean
determined from the semivariogram analysis. The
weights are inversely proportional to the standard

deviations of the estimated means.

The Wastape AllowanceModel

As useful as the corrosion rate information is however,
it will merely provide a point estimation at a specific
instant in time. Because the corrosion rate changes
with time the authors have chosen to treat the results of
the semivariogram analysis as a new data point for
estimating the mean wastage vs. time curve. When the
structure is new, the mean wastage vs. time curve is a
linear function of the estimated initial corrosion rate,
because that is the ordy information available. The
equation of the line takes the form

mean value, W[ = t Rm (12)

where WLis the mean value of total wastage at time t,

and R~ is the mean value of the initial estimated

corrosion rate. But as information is obtained
regarding wastage at later times, they can be used to
estimate the mean wastage curve using regression
analysis. The shape of the wastage curve will likely be
adequately modeled as a power or exponential function,

The mean value isn’t the only information available. h
estimate of the shape of the distribution of wastage at
time t can be provided by the sill value found from the
semivariogram analysis. Typically, the coefficient of
variation (COV) of the data is used as a measure of the
distribution of values about the estimated mean. The
COV of the wastage can be estimated from the data
used in the semivariogram analysis. The COV of the
wastage is also a function of time. The initial estimate
comes from tabulated values, with later updates
provided by the semivariogram analysis. As was
proposed for the mean value of wastage, a regression
analysis on the values for the COV of wastage could be
performed. This would provide a relationship between
COV and titpe similar to that available for the mean
value. For this analysis it was assumed that initially



there would be a linear increase in COV with time,
given as

COV(WJ = [ COY(R) (13)

where COV(R) is the initial estimate for the coefficient
of variation of wastage and t is time .

EXTREMEVALLTIIANALYSIS ‘

In order to make the wastage model compatible with
the extreme value modeling of the load, it needs further
development. According to the extreme value
modeling, an extreme load is evaluated in a time period
T, where T can be any value from the current “time to
the design life of the structure. The extreme load can
occur at any point in time t,within the time period T.
On the other hand, the plate wastage k a non-stationary
stochastic process within the same time period T. This
stochastic process can be simulated using Moute Carlo
methods and converted into a random variable. The
process can be summarized as follows:

L Determine an initial value for time period T.
This initial period must be set to an initial value
larger than zero. The wastage at zero time
period is zero.

2, Randomly generate time f according to a
uniform probability distribution of Thetime
period T.

3. At the generated time f, evaluated the
statistics of wastage according to mean value and
COV of wastage found from the regression
analysis. The distribution type is L.ognormal.

4. Randomly generate M wastage values
according to the distribution as defined in step 3.

5. Repeat steps 2 to 4 N times.

6. Determine the mean value, COV and
distribution type for the resulting M times N
values of the wastage allowance Wa in the time

period T as set in step 1.

7. Go to step 1, and increase the value of T, and
repeat steps 2 to 6 for the new T value.
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Figure 4. Wastage as a Function of Time

The above process is illustrated in Figure 4. For each
time period T, a probability density function (PDF) of
wastage for that period is generated. Each of these
PDFs is then plotted and a curve constructed through
the mean values, as shown in Figure 5. The resulting
wastage allowance random variable Wa is a function of

the time period T.

The simulation processes as described in the above
steps was performed for assumed linear wastage rates
R~ of 1,2 and 3 mpy, COV(R) of 0.1,0.25 and 0.4 and

time periods T of 1,5, 10,15,20,25 and 30 years.
Based on this parametric analysis, it can be concluded
that the mean value uf wastage allowance is dependent
on the wastage rate and the period T, and is not
dependent on the COV(R); while COV of wastage”
allowance is dependent on COV(R) and the time
period, and is not dependent on the wastage rate R.
These results were plotted in Figures 6,7, and 8.

Wastage
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for We T \
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10 m w
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Figure 5. Wastage Allowance as a Function of Time
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In order to examine the distribution type for the
wastage allowance random variable, two cases were
considered. In the first case, the mean value and COV
of the wastage rate were taken to be 3 mpy and 0.1,
respectively, and the time period equal to 10 years: The
wastage allowance was simulated 2000 times, and a
distribution goodness-of-fit was performed. The results
are shown in Figure 9. In the second case, thg mean
value and COV of the wastage rate were taken to be 3
mpy and 0.25, respectively, and the time period equal to
25 years. Again the wastage allowance was simulated

Frequency
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Figure 10. Wa PDF for an Expected Life of 25 Years

ZCJOOtimes,anda distributiortgoodness-of-fitwa.S

performed.The resultsareshowninFigure10.Based

on these rwo cases, it can be concluded that the wastage
allowance can be considered to follow a normal
probability distribution with non-negative values, i.e.,
any simulated negative value for wastage allowance is
replaced by a zero wastage allowance. This results in a
heavier lower tail consistent with the actual distribution,



resulting in reducing the statistical error in the assumed IWFEtttZNCES

normal probability distribution model.
1.

CONCLUSIONSANDRECOMMENDATIONS

The information provided in this report gives a brief
description of one means of including corrosion in a life 2.

expectarq analysis. The semivariogram analysis
provides insight on the effects of measurement locations
and the number required to’get a desired level of
cotidepce in the results. It has been shown that the
location of the”sample measurements can dramatically
affeet ‘the level of error in the estimated mean. Of 3.

equal value is the knowledge that there is a decreasing
benefit in taking more samples beyond a certain
number. That certain number is tied to the area being
investigated and the size of the range of influence.
Determination “ofappropriate values for the sill and the

4.

range of influence is an impo@n part of the analysis,
and one which requires considerable effort.
Calculations of these parameters for a variety of cties
could ‘be performed “and tabulated in tables or charts.
Confidence limits on the values for specific situations
could also be provided and methods for including that 5.
uncertainty in the analysis developed.

The wastage allowance model provides a means of 6.
including the effect of corrosion in a life expectancy
assessment of a marine structure. The procedure is
more computationaIly efficient than it first seems. The
development of the wastage allowance curve need only
be done after new information is available, e.g.
inspection results. Once the curve is developed, the
equationfor that mean value of wastage allowance for
time period T can be used in the life assessment
procedure.

There is still much work left to be done in order to
make this technique a useful tool in engineering
practice. A means for including the effects of time on
both the sill value and the range of influence in
semivariogram analysis needs to be, developed. Errors
associated with the measuring device need to be
removed from the sample data so that the
semiva~ogram is looking at the differences in thickness,
not measurement errors. The authors are currently
working on, a meansof investigating pitting using the
approached described here.

Despite the remaining shortcomings, the semivariogram
analysis ‘with kriging estimation isstill a very useful tool
for making sense out of existing thickness
measurements and shows promise of being able to do.
much more.
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